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if we consider three points and three coefficients which sum to 1, then their cor-
responding convex combination is not clearly defined since it may depend on the
order of combining the points. On the other hand, this convex combination is a
unique point in Banach spaces since the spaces have linear structures. Based on
the above fact, B. Beauzamy [3] studied characterization of uniform convexity of
Banach spaces using convex combinations of three points with three coefficients.
Since the characterization obtained is an important result, other researchers used
it in order to study geometry of Banach spaces [12, 21].

In this paper, we study properties of convex combinations of three points
with three coefficients which sum to 1 in uniformly convex Busemann spaces and
Hadamard spaces. Namely, we put a pair of three points and consider a triangle
consisting of the points. Convex combinations of the points are inside the triangle.
In particular, we take up two convex combinations which have different orders of
combining same points from each other. We research ranges of distances between
the convex combinations using uniform convexity of uniquely geodesic spaces. The
main finding is that a distance between two convex combinations is less than or
equal to a value given by a comparison of shapes between the triangle in the Eu-
clidean plane and the triangle in an Hadamard space. Moreover, we find results of
distances between the convex combinations which are generalizations of a property
of uniformly convex Banach spaces proved by Beauzamy.

In Section 2, we present several preliminary definitions and results. In Section
3, we prove ranges of distances between the convex combinations of three points
with three coefficients which sum to 1 in uniformly convex Busemann space and
Hadamard spaces. In Section 4, we consider R-trees which is specific cases of
Hadamard spaces. We prove values of distances between the convex combinations
inside equilateral triangle.

2. Preliminaries

Throughout this paper, R denotes the set of real numbers.
Let (X, d) be a metric space. A path in X is a continuous map γ : [0, l] ⊂ R → X.

Given a pair of point x, y ∈ X, we say that a path γ : [0, l] → X joins x and y if
γ(0) = x and γ(l) = y. A geodesic path in X is an isometry γ : [0, l] → X such that
d(γ(s), γ(t)) = |s − t| for every s, t ∈ [0, l]. A geodesic segment γ([0, l]) ⊂ X from
x to y is the image of a geodesic path γ : [0, l] → X joining x and y. Note that a
geodesic segment from x to y is not necessarily unique. If no confusion arises, then
[x, y] denotes a unique geodesic segment from x to y. A (uniquely) geodesic space is
a metric space (X, d) if every two points in X can be joined by a (unique) geodesic
path. Geodesic spaces provide a natural setting for considering triangles. A point
z ∈ X belongs to the geodesic segment [x, y] if and only if there exists t ∈ [0, 1]
such that d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y). For such a point, we write
z := (1− t)x⊕ ty, which is a unique point in [x, y] for t.

Given distinct points x, y ∈ X, a metric midpoint of x and y is a point m ∈ X if
d(x, y) = 2d(x,m) = 2d(m, y). A complete metric space X is geodesic space if and
only if every pair of points in X has a metric midpoint [2, p. 2, Prop. 1.1.3].
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Definition 2.1 ([4, pp. 576–577][19, pp. 203–204]). A Busemann space is a geodesic
space (X, d) such that for every two geodesic paths γ1 : [0, l1] → X and γ2 : [0, l2] →
X, the map Dγ1,γ2 : [0, l1]× [0, l2] → R defined by

Dγ1,γ2(t, s) = d
(
γ1(t), γ2(s)

)
is convex.

There are various equivalent ways of expressing the definition of Busemann
spaces. Several characterizations of Busemann spaces and other results on Buse-
mann spaces consult the books [14, 19]. This condition gives the following elemen-
tary facts:

(1) [2, p. 4, Prop. 1.1.5] Every Busemann space X has a convex metric,
that is, for every x, y, z ∈ X and t ∈ [0, 1],

(2.1) d(x, (1− t)y ⊕ tz) ≤ (1− t)d(x, y) + td(x, z).

(2) [19, p. 210, Prop. 8.1.4] Every Busemann space is a uniquely geodesic
space.

(3) [14, p. 40, Def. 6.5] In a Busemann space X, for every x, y ∈ X and
t, s ∈ [0, 1],

(2.2) d
(
(1− t)x⊕ ty, (1− s)x⊕ sy

)
= |t− s|d(x, y).

Every complete geodesic locally compact, locally convex, and simply connected
metric space is a Busemann space. Basic examples of Busemann spaces are the
Euclidean space, normed strictly convex vector spaces, R-trees, classical hyperbolic
spaces [2], and Riemannian manifolds of global nonpositive sectional curvature [5].

Let (X, d) be a geodesic space. △(x1, x2, x3) denotes a geodesic triangle which is a
set consisting of geodesic segments [x1, x2], [x2, x3], [x3, x1] ⊂ X. If a point p ∈ X lies
in the union of [xi, xj ] for some i, j ∈ {1, 2, 3}, then we write p ∈△(x1, x2, x3). Given
a geodesic triangle △(x1, x2, x3), there exists a comparison triangle △(x̄1, x̄2, x̄3)
which is a geodesic triangle in the Euclidean plane (E2, ∥·∥) such that d(xi, xj) =
∥x̄i − x̄j∥ for i, j ∈ {1, 2, 3}. If p = (1 − t)xi ⊕ txj ∈△(x1, x2, x3) for t ∈ [0, 1] and
i, j ∈ {1, 2, 3}, then a comparison point for p is a point p̄ := (1 − t)x̄i ⊕ tx̄j ∈△
(x̄1, x̄2, x̄3).

Definition 2.2 ([16, p. 119]). A CAT(0) space is a geodesic space (X, d) such that
for every △(x, y, z) ⊂ X, p ∈ [x, y] and q ∈ [x, z],

(2.3) d(p, q) ≤ ∥p̄− q̄∥,
where p̄ and q̄ are comparison points respectively for p and q. An Hadamard space
is a complete CAT(0) space.

The condition (2.3) is equivalent to the CN inequality [6, p. 64] [2, pp. 5–6], that
is,

d

(
x,

1

2
y ⊕ 1

2
z

)2

≤ 1

2
d(x, y)2 +

1

2
d(x, z)2 − 1

4
d(y, z)2

for every x, y, z ∈ X. The following lemma is a generalization of the CN inequality.
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Lemma 2.3 ([9, p. 2574, Lem. 2.5]). Let (X, d) be a CAT(0) space. Then

d(x, (1− t)y ⊕ tz)2 ≤ (1− t)d(x, y)2 + td(x, z)2 − t(1− t)d(y, z)2

for every x, y, z ∈ X and t ∈ [0, 1].

A CAT(0) space X is geodesically connected and if every geodesic triangle in X
is at least as “thin” as its comparison triangle in the Euclidean plane E2. Obvi-
ously, all CAT(0) spaces are Busemann spaces and thus uniquely geodesic spaces,
but not vice-versa. The CAT(0) space has been investigated in various fields in
mathematics, and a great deal of results have been obtained [5]. Basic examples of
Hadamard spaces are Euclidean spaces, Hilbert spaces, R-trees, classical hyperbolic
spaces, complete simply connected Riemannian manifolds of nonpositive sectional
curvature, Euclidean Bruhat-Tits buildings [6], the Hilbert ball [15], and other im-
portant spaces included in none of the above classes [5].

The notion of uniform convexity in Banach spaces appeared in Clarkson [8]
whereas a modulus of convexity in hyperbolic spaces was coined by Goebel and
Reich [15]. Similarly, there exists the notion of uniform convexity in metric spaces
[11] and a modulus of convexity can be defined in geodesic spaces [18]. This modu-
lus has been a very useful tool in geometry of geodesic spaces and it basically gives
information about how square or rotund balls are.

Definition 2.4 ([18, pp. 468–469]). A uniquely geodesic space (X, d) is said to be
uniformly convex if for every r > 0 and ϵ ∈ (0, 2] there exists δ ∈ (0, 1] such that
for every a, x, y ∈ X,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ ϵr

 ⇒ d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r.

A modulus of convexity is a mapping δ : X × (0,∞)× (0, 2] → (0, 1] providing such

δ = δ(a, r, ϵ) := inf

{
1− 1

r
d

(
1

2
x⊕ 1

2
y, a

)
: d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ ϵr

}
for given a ∈ X, r > 0 and ϵ ∈ (0, 2].

While in Banach spaces there exists a natural modulus of convexity for each space
which only depends on ϵ, in geodesic spaces we need to assume that the modulus
depends on three variables: the center of the ball given by a, the radius of the ball
given by r, and the separation condition given by ϵ. By the CN inequality, the
modulus of convexity of a Hilbert space is a modulus of convexity for every CAT(0)
space, so that every CAT(0) space is uniformly convex [17, p. 391, Prop. 8].

3. Convex combinations inside geodesic triangles

In this section, we study some properties of metrics between convex combina-
tions inside geodesic triangles of uniformly convex Busemann spaces and Hadamard
spaces.
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Proposition 3.1. Let (X, d) be a complete Busemann space. If p, q ∈ X and
µ ∈ [0, 1], then

1 + µ

2
p⊕ 1− µ

2
q = µp⊕ (1− µ)

(
1

2
p⊕ 1

2
q

)
.

Proof. Let u = µp⊕ (1− µ)(p/2⊕ q/2). Since u ∈ [p, q], there exists α ∈ [0, 1] such
that αp⊕ (1− α)q = u. We have

d(p, u) = (1− µ)d

(
p,

1

2
p⊕ 1

2
q

)
=

1− µ

2
d(p, q) =

1− µ

2
· 1

1− α
d(p, u).

Therefore 1− α = (1− µ)/2 and α = (1 + µ)/2. □

Theorem 3.2. Let (X, d) be a complete Busemann space. Let x1, x2, x3 ∈ X be
three distinct points such that d(x1, x2) = d(x1, x3) = r. Set ϵr = d(x2, x3). If X is
uniformly convex, then for every t ∈ [0, 1],

d

(
x1,

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

))
≤ r

(
1 + t

2
− tδ(x1, r, ϵ)

)
.

Proof. By uniform convexity of X, we have d(x1, x2/2⊕ x3/2) ≤
(
1− δ(x1, r, ϵ)

)
r.

Using Proposition 3.1, applied to p = x3, q = x2, µ = (1− t)/(1 + t), we obtain

t

1 + t
x2 ⊕

1

1 + t
x3 =

1− t

1 + t
x3 ⊕

2t

1 + t

(
1

2
x2 ⊕

1

2
x3

)
.

Therefore

d

(
x1,

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

))

=
1 + t

2
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)
=

1 + t

2
d

(
x1,

1− t

1 + t
x3 ⊕

2t

1 + t

(
1

2
x2 ⊕

1

2
x3

))

≤ 1− t

2
d(x1, x3) + td

(
x1,

1

2
x2 ⊕

1

2
x3

)
≤ (1− t)r

2
+ t
(
1− δ(x1, r, ϵ)

)
r = r

(
1 + t

2
− tδ(x1, r, ϵ)

)
.

□

Theorem 3.3. Let (X, d) be an Hadamard space. Let x1, x2, x3 ∈ X be three
distinct points. Let

pt =
1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
for t ∈ [0, 1]. Then

1

2
d(pt, x3)

2 +
1

2
d(pt, (1− t)x1 ⊕ tx2)

2

≤ (1− t)

(
d(x1, x3)

2

)2

+ t

(
d(x2, x3)

2

)2

− t(1− t)

(
d(x1, x2)

2

)2

.(3.1)
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Proof. Using Lemma 2.3, we obtain

d(pt, x3)
2 ≤ 1− t

2
d(x1, x3)

2 +
1 + t

2
d

(
t

1 + t
x2 ⊕

1

1 + t
x3, x3

)2

− 1− t

2
· 1 + t

2
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

=
1− t

2
d(x1, x3)

2 +
1 + t

2

(
t

1 + t
d(x2, x3)

)2

− (1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

=
1− t

2
d(x1, x3)

2 +
t2

2(1 + t)
d(x2, x3)

2

− (1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

.(3.2)

In the same way, we have

d(pt, (1− t)x1 ⊕ tx2)
2

≤ (1− t)d(pt, x1)
2 + td(pt, x2)

2 − (1− t)td(x1, x2)
2

= (1− t)

(
1 + t

2
d

(
t

1 + t
x2 ⊕

1

1 + t
x3, x1

))2

− (1− t)td(x1, x2)
2 + td(pt, x2)

2

=
(1− t)(1 + t)2

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

− (1− t)td(x1, x2)
2 + td(pt, x2)

2.(3.3)

Moreover,

d(pt, x2)
2 ≤ 1− t

2
d(x1, x2)

2 +
1 + t

2
d

(
t

1 + t
x2 ⊕

1

1 + t
x3, x2

)2

− 1− t

2
· 1 + t

2
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

=
1− t

2
d(x1, x2)

2 +
1 + t

2

(
1

1 + t
d(x3, x2)

)2

− (1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

=
1− t

2
d(x1, x2)

2 +
1

2(1 + t)
d(x3, x2)

2

− (1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

.(3.4)

Combining (3.4) with (3.3), we get

d(pt, (1− t)x1 ⊕ tx2)
2

≤
(1− t)(1 + t)2

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

− (1− t)td(x1, x2)
2

+ t

{
1− t

2
d(x1, x2)

2 +
1

2(1 + t)
d(x3, x2)

2 −
(1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2
}
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=
(1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

−
t(1− t)

2
d(x1, x2)

2 +
t

2(1 + t)
d(x3, x2)

2.(3.5)

We conclude from (3.2) and (3.5) that

1

2
d(pt, x3)

2 +
1

2
d(pt, (1− t)x1 ⊕ tx2)

2

≤
1

2

{
1− t

2
d(x1, x3)

2 +
t2

2(1 + t)
d(x2, x3)

2 −
(1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2
}

+
1

2

{
(1− t)(1 + t)

4
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)2

−
t(1− t)

2
d(x1, x2)

2 +
t

2(1 + t)
d(x2, x3)

2

}

=
1− t

4
d(x1, x3)

2 +
t(1 + t)

4(1 + t)
d(x2, x3)

2 −
t(1− t)

4
d(x1, x2)

2

= (1− t)

(
d(x1, x3)

2

)2

+ t

(
d(x2, x3)

2

)2

− t(1− t)

(
d(x1, x2)

2

)2

.

□

Theorem 3.4. Let (X, d) be an Hadamard space. Let x1, x2, x3 ∈ X be three
distinct points such that d(x1, x2) = d(x1, x3) = r. Set ϵr = d(x2, x3). Then for
every t ∈ [0, 1],

d

(
1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
,
1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
≤ 1

2

√
(1− t)2r2 + tϵ2r2 − d(x3, (1− t)x1 ⊕ tx2)2.

Proof. Let

pt =
1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
and qt =

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
for t ∈ [0, 1]. Using Lemma 2.3 and Theorem 3.3, we obtain

d(pt, qt)
2 ≤ 1

2
d(pt, x3)

2 +
1

2
d(pt, (1− t)x1 ⊕ tx2)

2 − 1

4
d(x3, (1− t)x1 ⊕ tx2)

2

≤ (1− t)
(r
2

)2
+ t
(ϵr
2

)2
− t(1− t)

(r
2

)2
− 1

4
d(x3, (1− t)x1 ⊕ tx2)

2

=
1

4

{
(1− t)2r2+ tϵ2r2− d(x3, (1− t)x1 ⊕ tx2)

2
}
.

Therefore

d(pt, qt) ≤
1

2

√
(1− t)2r2 + tϵ2r2 − d(x3, (1− t)x1 ⊕ tx2)2.

□

Remark 1. In a Hilbert space (H, ∥·∥), Lemma 2.3 is Stewart’s theorem, that is,∥∥x−
(
(1− t)y + tz

)∥∥2 = (1− t)∥x− y∥2 + t∥x− z∥2 − t(1− t)∥y − z∥2

for every x, y, z ∈ H and t ∈ [0, 1]. If ∥x− y∥ = ∥y − z∥ = r and ∥x− z∥ = ϵr, we
have

(3.6)
∥∥x−

(
(1− t)y + tz

)∥∥2 = (1− t)r2 + tϵ2r2 − t(1− t)r2 = (1− t)2r2 + tϵ2r2.
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Convex combinations pt and qt in the proof of Theorem 3.4 have different or-
ders of combining three points. Let x̄1, x̄2, x̄3 ∈ E2 be comparison points re-
spectively for x1, x2, x3 in an Hadamard space X. Combining (3.6) with Theo-
rem 3.4, d(pt, qt) is less than or equal to a value given by the difference between

∥x̄3 − ((1− t)x̄1 + tx̄2)∥2 and d(x3, (1−t)x1⊕tx2)
2. This implies that the difference

of shapes between a geodesic triangle △(x1, x2, x3) ⊂ X and a comparison triangle
△(x̄1, x̄2, x̄3) ⊂ E2 gives a relation of between two convex combinations which have
different orders of combining same points from each other in X.

Theorem 3.5. Let (X, d) be an Hadamard space. Let x1, x2, x3 ∈ X be three
distinct points such that d(x1, x2) = d(x1, x3) = r. Set ϵr = d(x2, x3). Then for
every t ∈ [0, 1],

d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
≤ r

(
1 + t

2
− tδ(x1, r, ϵ)

)
+

1

2

√
(1− t)2r2 + tϵ2r2 − d(x3, (1− t)x1 ⊕ tx2)2.

Proof. Using the triangle inequality and Theorems 3.2 and 3.4, we obtain

d
(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
≤ d

(
x1,

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

))

+ d

(
1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
,
1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
≤ r

(
1 + t

2
− tδ(x1, r, ϵ)

)
+

1

2

√
(1− t)2r2 + tϵ2r2 − d(x3, (1− t)x1 ⊕ tx2)2.

□

If (X, d) is a Banach space with norm ∥·∥, convex combinations of a finite number
of points do not depend on the order of combining the points. Since the modulus
of convexity of a Banach space is

δ(ϵ) = inf

{
1−

∥∥∥∥x+ ty

2

∥∥∥∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
,

the following lemma is included in Theorems 3.2 and 3.5 with r = 1.

Lemma 3.6 ([3, p. 191, Lem. 2]). Let (X, ∥·∥) be a Banach space. Let x, y ∈ X be
two distinct points of norm 1. Set ϵ = ∥x− y∥. If X is uniformly convex, then for
every t ∈ [0, 1], ∥∥∥∥x+ ty

2

∥∥∥∥ ≤ 1 + t

2
− tδ(ϵ).

This implies that Theorems 3.2 and 3.5 are generalizations of a property of uni-
formly convex Banach spaces.
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4. Convex combinations of R-trees

In this section, we study some properties of metrics between convex combinations
inside geodesic triangles of R-trees. In particular, we focus on triangles in which all
three sides are equal.

Definition 4.1 ([22, p. 379]). An R-tree is a uniquely geodesic metric space X such
that if x, y, z ∈ X are such that [x, z] ∩ [z, y] = {z}, then [x, z] ∪ [z, y] = [x, y].

The following is an immediate consequence of the definition of an R-tree:

(R1) For x, y, z ∈ X there exists a point w ∈ X such that [x, y] ∩ [x, z] =
[x,w].

An R-tree may be defined as an Hadamard space. The largest modulus of con-
vexity can be easily calculated for R-trees.

Lemma 4.2 ([10, p. 652, Thm. 5.9]). The modulus of convexity of an R-tree giving
the largest δ for each a, r, and ϵ coincides with the modulus of the real line, that is,
it can be written as δ(ϵ) = ϵ/2.

Let (X, d) be an R-tree and △(x1, x2, x3) a geodesic triangle in X. By (R1), there
exists w ∈△(x1, x2, x3) such that [x1, x2] ∩ [x1, x3] = [x1, w]. An equilateral triangle
is a geodesic triangle △(x1, x2, x3) such that d(x1, x2) = d(x2, x3) = d(x3, x1). An
equilateral triangle △(x1, x2, x3) satisfies

(4.1) d(x1, w) = d(x2, w) = d(x3, w) =
1

2
d(xi, xj),

where i, j ∈ {1, 2, 3} with i ̸= j. This implies that w is a midpoint of every [xi, xj ].

Theorem 4.3. Let (X, d) be an R-tree and △(x1, x2, x3) an equilateral triangle in
X. Then

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
=

1

2
xi ⊕

1

2
xj

for every t ∈ [0, 1], where i, j ∈ {1, 2, 3} with i ̸= j.

Proof. Let m = (1/2)xi ⊕ (1/2)xj for i, j ∈ {1, 2, 3} with i ̸= j. Clearly for all
t ∈ [0, 1],

t

1 + t
x2 ⊕

1

1 + t
x3 ∈ [m,x3] ⊂ [x1, x3].

By (4.1), we have

d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)
= d(x1,m) + d

(
m,

t

1 + t
x2 ⊕

1

1 + t
x3

)
= d(x2,m) + d

(
m,

t

1 + t
x2 ⊕

1

1 + t
x3

)
= d

(
x2,

t

1 + t
x2 ⊕

1

1 + t
x3

)
=

1

1 + t
d(x2, x3).
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From this equality and (4.1), we obtain

d

(
x1,

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

))
=

1 + t

2
d

(
x1,

t

1 + t
x2 ⊕

1

1 + t
x3

)
=

1 + t

2
· 1

1 + t
d(x2, x3)

=
1

2
d(x1, x3) = d(x1,m).

We reaffirm that m ∈ [x1, x3] and

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
∈ [x1, x3].

By a uniqueness of a point m belonging to a unique geodesic segment [x1, x3] such
that d(x1, z) = (1/2)d(x1, x3), we conclude that

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

)
= m.

□

Remark 2. In an R-tree, let △(x1, x2, x3) be an equilateral triangle such that the
length r of its one side. Combining Theorems 3.2 and 4.3 and Lemma 4.2, notice
that ϵ = 1, we obtain

d

(
x1,

1− t

2
x1 ⊕

1 + t

2

(
t

1 + t
x2 ⊕

1

1 + t
x3

))
= d

(
x1,

1

2
x1 ⊕

1

2
x3

)
=

1

2
r

≤ r

(
1 + t

2
− t · ϵ

2

)
=

1

2
r.

This implies that the inequality in Theorem 3.2 is an equality when △(x1, x2, x3) is
an equilateral triangle in an R-tree.

Proposition 4.4. Let (X, d) be an R-tree and △(x1, x2, x3) an equilateral triangle
in X. Then

(4.2)
1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
=


1− t

2
x2 ⊕

1 + t

2
x3, 0 ≤ t ≤ 1

2 ,

t

2
x2 ⊕

2− t

2
x3,

1
2 ≤ t ≤ 1.

Proof. Let z = (1/4)x2⊕ (3/4)x3 and m = (1/2)xi⊕ (1/2)xj for i, j ∈ {1, 2, 3} with
i ̸= j. Clearly, z = (1/2)m⊕ (1/2)x3 and for every t ∈ [0, 1],

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
∈ [m, z] ⊂ [m,x3].

We now prove the theorem for 0 ≤ t ≤ 1/2. Obviously,

1− t

2
x2 ⊕

1 + t

2
x3 ∈ [m, z] ⊂ [m,x3].
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By (4.1), we get

d

(
1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
, x3

)
− d

(
1− t

2
x2 ⊕

1 + t

2
x3, x3

)
=

1

2
d
(
(1− t)x1 ⊕ tx2, x3

)
− 1− t

2
d(x2, x3)

=
1

2

{
d
(
(1− t)x1 ⊕ tx2,m

)
+ d(m,x3)

}
− 1− t

2
d(x2, x3)

=
1

2

{
d
(
(1− t)x1 ⊕ tx2,m

)
+ d(m,x2)

}
− 1− t

2
d(x2, x3)

=
1

2
d
(
(1− t)x1 ⊕ tx2, x2

)
− 1− t

2
d(x2, x3)

=
1− t

2
d(x1, x2)−

1− t

2
d(x1, x2) = 0.

By a uniqueness of a point p belonging to a unique geodesic segment [m,x3] such
that d(p, x3) = (1− t)d(m,x3) =

(
(1− t)/2

)
d(x2, x3), therefore for 0 ≤ t ≤ 1/2,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
=

1− t

2
x2 ⊕

1 + t

2
x3.

We next prove the theorem for 1/2 ≤ t ≤ 1. Obviously,

t

2
x2 ⊕

2− t

2
x3 ∈ [m, z] ⊂ [m,x3].

By (4.1), we get

d

(
1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
, x3

)
− d

(
t

2
x2 ⊕

2− t

2
x3, x3

)
=

1

2
d
(
(1− t)x1 ⊕ tx2, x3

)
− t

2
d(x2, x3)

=
1

2

{
d
(
(1− t)x1 ⊕ tx2,m

)
+ d(m,x3)

}
− t

2
d(x2, x3)

=
1

2

{
d
(
(1− t)x1 ⊕ tx2,m

)
+ d(m,x1)

}
− t

2
d(x2, x3)

=
1

2
d
(
(1− t)x1 ⊕ tx2, x1

)
− t

2
d(x2, x3)

=
t

2
d(x1, x2)−

t

2
d(x1, x2) = 0.

By a uniqueness of a point p belonging to a unique geodesic segment [m,x3] such
that d(p, x3) = td(m,x3) = (t/2)d(x2, x3), therefore for 1/2 ≤ t ≤ 1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

)
=

t

2
x2 ⊕

2− t

2
x3.

□



164 YUKINO TOMIZAWA

Theorem 4.5. Let (X, d) be an R-tree. Let △(x1, x2, x3) ⊂ X be an equilateral
triangle such that d(xi, xj) = r for i, j ∈ {1, 2, 3} with i ̸= j. Then

(4.3) d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
=


1 + t

2
r, 0 ≤ t ≤ 1

2 ,

2− t

2
r, 1

2 ≤ t ≤ 1.

Proof. We have

d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
= d

(
x1,

1

2
x1 ⊕

1

2
x3

)
+ d

(
1

2
x1 ⊕

1

2
x3,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
=

1

2
r + d

(
1

2
x2 ⊕

1

2
x3,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
.(4.4)

Combining (2.2) and (4.4) with Proposition 4.4, we obtain for 0 ≤ t ≤ 1/2,

d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
=

1

2
r + d

(
1

2
x2 ⊕

1

2
x3,

1− t

2
x2 ⊕

1 + t

2
x3

)
=

1

2
r +

∣∣∣∣12 − 1− t

2

∣∣∣∣ d(x2, x3) = 1 + t

2
r.

Similarly, we have for 1/2 ≤ t ≤ 1,

d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
=

1

2
r + d

(
1

2
x2 ⊕

1

2
x3,

t

2
x2 ⊕

2− t

2
x3

)
=

1

2
r +

∣∣∣∣12 − t

2

∣∣∣∣ d(x2, x3) = 2− t

2
r.

□

Remark 3. In an R-tree, let △(x1, x2, x3) be an equilateral triangle such that the
length r of its one side. We easily have d(x3, (1−t)x1⊕tx2) = (1−t)r for 0 ≤ t ≤ 1/2
and d(x3, (1− t)x1⊕ tx2) = tr for 1/2 ≤ t ≤ 1. Using Theorem 3.5 and Lemma 4.2,
notice that ϵ = 1, we obtain

d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
≤ r

(
1 + t

2
− t · ϵ

2

)
+

1

2

√
(1− t)2r2 + tϵ2r2 − d(x3, (1− t)x1 ⊕ tx2)2

≤


r

2
+

1

2

√
(1− t)2r2 + tr2 −

(
(1− t)r

)2
=

r

2

(
1 +

√
t
)
, 0 ≤ t ≤ 1

2 ,

r

2
+

1

2

√
(1− t)2r2 + tr2 −

(
tr
)2

=
r

2

(
1 +

√
1− t

)
, 1

2 ≤ t ≤ 1.
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If 0 ≤ t ≤ 1/2, then 1+t ≤ 1+
√
t. Moreover if 1/2 ≤ t ≤ 1, then 2−t ≤ 1+

√
1− t.

Combining these results and Theorem 4.5, we get

d

(
x1,

1

2
x3 ⊕

1

2

(
(1− t)x1 ⊕ tx2

))
=


1 + t

2
r ≤ r

2

(
1 +

√
t
)
, 0 ≤ t ≤ 1

2 ,

2− t

2
r ≤ r

2

(
1 +

√
1− t

)
, 1

2 ≤ t ≤ 1.

The above are results of equilateral triangles in R-trees. Considering theorems in
Section 4, a separate question arises:

Question 1. Let △ (x1, x2, x3) be a geodesic triangle in an R-tree such that
d(x1, x2) = d(x1, x3) = r > 0 and d(x2, x3) = ϵr for ϵ ∈ (0, 2]. How long are
the distances between convex combinations inside this geodesic triangle?
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[18] L. Leuştean and A. Nicolae, A note on an ergodic theorem in weakly uniformly convex geodesic

spaces, Arch. Math. (Basel) 105 (2015), 467–477.



166 YUKINO TOMIZAWA

[19] A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature: Second Edition, EMS

IRMA Lect. Math. Theor. Phys. vol. 6, Eur. Math. Soc., Zürich, 2013.
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