
LNALNA ISSN 2188-8167 
2020



36 K. HISHINUMA AND H. IIDUKA

and noise exist. Reference [4] performs a convergence analysis of the fixed point
quasiconvex subgradient method including the effect of inexactness of its computa-
tion. However, to the best of the author’s knowledge, there are no studies on the
rate of convergence of (or experiments on) the fixed point quasiconvex subgradient
method when computational errors and noise exist.

In this paper, we discuss the rate of convergence of the fixed point quasiconvex
subgradient method including the effect of the inexactness in its computation. Two
analyses are presented: the rate of convergence of the sequence generated by the
fixed point quasiconvex subgradient method in terms of the objective functional
value and the degree of approximation to the fixed point set. These analyses are
extensions of the analyses presented in [5], which does not consider the effect of
computational inexactness. Furthermore, this paper presents numerical examples
including computational errors and noise. Through these discussions, this paper
unravels the effect of the computational inexactness on the efficiency of the fixed
point quasiconvex subgradient method.

This paper is organized as follows. Section 2 gives the mathematical preliminar-
ies and defines the inexact fixed point quasiconvex subgradient method. Section 3
discusses the convergence rate analysis of the inexact fixed point quasiconvex sub-
gradient method. Section 4 numerically compares the behaviors of the proposed
method and the existing ones. Section 5 concludes this paper.

2. Mathematical preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ : H × H → R and its
induced norm ∥·∥ : H → R. N is the set of natural numbers without zero, and R
is the set of real numbers. A functional f : H → R is called quasiconvex if f(αx+
(1 − α)y) ≤ max{f(x), f(y)} for every x, y ∈ H and α ∈ [0, 1] [1, Definition 5.1],
[3, Definition (4.4)]. The effective domain of a functional f : H → R is defined as
dom(f) := {x ∈ H : f(x) < ∞}.

Here, let f : H → R be a quasiconvex, continuous functional, and let X ⊂ H be
a nonempty, closed, convex set. Then, the main problem of this paper is to

minimize f(x) subject to x ∈ X.(2.1)

We define the set of minima and the minimum value of Problem (2.1) by X⋆ :=
argminx∈X f(x) and f⋆ := infx∈X f(x), respectively.

Let us define other terms and notations that will be used in the later discussion.
B := {x ∈ H : ∥x∥ ≤ 1} is the unit ball in this Hilbert space, and S := {x ∈ H :
∥x∥ = 1} is the unit sphere in that space. Id is the identity mapping of H onto
itself, and the closure of a set C ⊂ H is denoted by clC.

The metric projection onto a closed, convex set C ⊂ H, denoted by PC , and
is defined as PC(x) ∈ C such that ∥x− PC(x)∥ = infy∈C ∥x− y∥ for any x ∈ H.
For any α ∈ R, the α-slice of a functional f : H → R is defined as lev<α f :=
{x ∈ H : f(x) < α}. A mapping T : H → H is said to be nonexpansive if
∥T (x)− T (y)∥ ≤ ∥x− y∥ for any x, y ∈ H, and it is said to be firmly nonexpansive if

∥T (x)− T (y)∥2 + ∥(Id−T )x− (Id−T )y∥2 ≤ ∥x− y∥2 for any x, y ∈ H. Obviously,
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a firmly nonexpansive mapping is also a nonexpansive mapping [2, Subchapter 4.1].
The properties of these nonexpansivities are described in detail in [2, Chapter 4],
[12, Chapter 6]. The fixed point set of a mapping T : H → H is defined as
Fix(T ) := {x ∈ H : T (x) = x}.

The distance of a vector x ∈ H from a set Z ⊂ H is defined as dist(x,Z) :=
infz∈Z ∥x− z∥ [6, Subsection 2.1]. A functional f : H → R is said to satisfy
the Hölder condition of order p > 0 with modulus µ > 0 on H if f(x) − f⋆ ≤
µ(dist(x,X⋆))p holds for all x ∈ H [6, Assumption 2]. For given a point x ∈ H and
for a nonnegative real ϵ ≥ 0, we call the set ∂̄⋆

ϵ f(x) := {g ∈ H : ⟨g, y − x⟩ ≤ 0 (y ∈
lev<f(x)−ϵ f)} the ϵ-subdifferential of the quasiconvex functional f at a point x ∈ H
[6, Definition 2.4]. We also call any of its elements a subgradient.

In this paper, we consider the fixed point quasiconvex subgradient method incor-
porating three kinds of computational inexactness, as shown in Algorithm 1. The

Algorithm 1 Inexact fixed point quasiconvex subgradient method [4, Algorithm 1]

Require:
f : H → R, T : H → H.
{vk} ⊂ (0,∞), {αk} ⊂ (0, 1]. ▷ Hyperparameters

{ϵk} ⊂ [0,∞), {rfk} ⊂ H, {rTk } ⊂ H. ▷ Inexactness
Ensure:

This algorithm generates a sequence {xk} ⊂ H.
1: x1 ∈ H.
2: for k = 1, 2, . . . do
3: gk ∈ ∂̄⋆

ϵk
f(xk) ∩ S.

4: g̃k := gk + rfk , T̃k := T + rTk .

5: xk+1 := αkxk + (1− αk)T̃k(xk − vkg̃k).
6: end for

difference from the original fixed point quasiconvex subgradient method [5, Algo-

rithm 1] is the appearance of the sequences {ϵk}, {rfk}, and {rTk }. The sequences

{ϵk} and {rfk} are from [6], and they express the computational errors and noises

respectively. In addition to these sequences, the other sequence {rTk } we consider
expresses the noise appearing in the computation of the nonexpansive mapping.

The following assumption and propositions will be used in the later discussion.

Assumption 2.1 ([4, Assumption 2.1]). We suppose that

(A1) the effective domain dom(f) := {x ∈ H : f(x) < ∞} coincides with the whole
space H;

(A2) there exists some firmly nonexpansive mapping T : H → H whose fixed point
set Fix(T ) coincides with the constraint set X;

(A3) the constraint set X is nonempty, and there exists at least one minimum, i.e.
X⋆ ̸= ∅;

(A4) the generated sequence {xk} is bounded [6, Assumption 1];
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(A5) the functional f satisfies the Hölder condition of order p > 0 with modulus
µ > 0 on H [6, Assumption 2];

(A6) the sequence {αk} ⊂ (0, 1] satisfies 0 < lim infk→∞ αk ≤ lim supk→∞ αk < 1
[5, Assumption 3.1];

(A7) there exist some Rf , RT , ϵ ≥ 0 such that
∥∥∥rfk∥∥∥ ≤ Rf for all

k ∈ N, lim supk→∞
∥∥rTk ∥∥ = RT , and lim supk→∞ ϵk = ϵ [6, Assumption 3];

(A8) the sequence {vk} ⊂ (0,∞) converges to some nonnegative real v ∈ [0,∞),∑∞
k=1 vk = ∞, and there exists a nonnegative real c ≥ 0 such that

∥∥rTk ∥∥ ≤ cvk
for all k ∈ N.

Proposition 2.2 ([9, Lemma 6.(b)]). If x̄ + r̄B ⊂ cl
(
lev<f(xk)−ϵk f

)
for some

x̄ ∈ H and r̄ ≥ 0, then ⟨gk, xk − x̄⟩ ≥ r̄ holds.

Proposition 2.3 ([4, Lemma 2.3]). Let {xk} be the sequence generated by Algo-
rithm 1, and suppose that Assumption 2.1 holds. If f(xk) > f⋆ + µr̄p + ϵk holds for
some r̄ ≥ 0, then ⟨gk, xk − x⋆⟩ ≥ r̄ for all x⋆ ∈ X⋆.

Proposition 2.4 ([2, Corollary 2.15]). Let x, y ∈ H, and let α ∈ R. Then,

∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2

holds.

3. Convergence rate analysis

Before performing the convergence rate analyses, let us show the fundamental
inequalities for evaluating the objective functional value and the degree of approxi-
mation to the fixed point set. We can use the lemma in [4, Lemma 3.1] for the first
purpose. However, we must reexamine the degree of approximation to the fixed
point set here, because the lemma shown in [4, Lemma 3.2] does not contain the
term v2k, which is used in the convergence rate analysis.

Lemma 3.1 ([4, Lemma 3.1]). Let {xk} be the sequence generated by Algorithm 1,
and let Assumption 2.1 hold. Suppose that x⋆ ∈ X⋆ and M1 := ∥x⋆∥+supk∈N ∥xk∥ <
∞. Then,

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − (1− αk)

(
2vk

(
⟨gk, xk − x⋆⟩ −RfM1 −

1

2
vk(Rf + 1)2

−
∥∥rTk ∥∥ (Rf + 1)

)
−
∥∥rTk ∥∥ (∥∥rTk ∥∥+ 2M1

))
.

holds for all k ∈ N.

Lemma 3.2. Let {xk} be the sequence generated by Algorithm 1, and let Assump-
tions (A1–7) hold. Suppose that x⋆ ∈ X⋆, and assume that the sequence {vk} is
bounded from above. Then, a constant M2 ≥ 0 exists such that

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk(1− αk)
∥∥∥xk − T̃k(xk − vkg̃k)

∥∥∥2
+ (1− αk)v

2
k(1 +Rf )

2 + (1− αk)
(
2vkRfM1 +

∥∥rTk ∥∥ (2M2 +
∥∥rTk ∥∥)) .



EFFICIENCY OF INEXACT FIXED POINT QUASICONVEX SUBGRADIENT METHOD 39

for all k ∈ N which satisfies f⋆ < f(xk)− ϵk.

Proof. Fix x⋆ ∈ X⋆ and k ∈ N arbitrarily, and suppose that f⋆ < f(xk) − ϵk. By
using Proposition 2.4, we obtain

∥xk+1 − x⋆∥2 =
∥∥∥αk(xk − x⋆) + (1− αk)(T̃k(xk − vkg̃k)− x⋆)

∥∥∥2
= αk ∥xk − x⋆∥2 + (1− αk)

∥∥∥T̃k(xk − vkg̃k)− x⋆
∥∥∥2(3.1)

− αk(1− αk)
∥∥∥xk − T̃k(xk − vkg̃k)

∥∥∥2 .
Let us further evaluate the term ∥T̃k(xk − vkg̃k)− x⋆∥2 appearing on the right side

of the above inequality. Since T̃k is defined as T̃k := T + rTk , we expand the term

∥T̃k(xk − vkg̃k)− x⋆∥2 into∥∥∥T̃ (xk − vkg̃k)− x⋆
∥∥∥2 = ∥∥T (xk − vkg̃k)− x⋆ + rTk

∥∥2
= ∥T (xk − vkg̃k)− x⋆∥2(3.2)

+ 2
⟨
rTk , T (xk − vkg̃k)− x⋆

⟩
+
∥∥rTk ∥∥2 .

Now let us furthermore proceed to evaluate the term ∥T (xk − vkg̃k)− x⋆∥2. The
nonexpansivity of the mapping T and the Cauchy-Schwarz inequality lead to

∥T (xk − vkg̃k)− x⋆∥2 ≤ ∥xk − x⋆ − vkg̃k∥2

≤ ∥xk − x⋆∥2 + v2k ∥g̃k∥
2

− 2vk ⟨gk, xk − x⋆⟩+ 2vk

∥∥∥rfk∥∥∥ ∥xk − x⋆∥

≤ ∥xk − x⋆∥2 + v2k(1 +Rf )
2

− 2vk ⟨gk, xk − x⋆⟩+ 2vkRf ∥xk − x⋆∥ .

Here, the definition of the constant M1 in Lemma 3.1 guarantees ∥xk − x⋆∥ ≤ M1;
thus, the above inequality can be simplified as

∥T (xk − vkg̃k)− x⋆∥2 ≤ ∥xk − x⋆∥2 + v2k(1 +Rf )
2

− 2vk ⟨gk, xk − x⋆⟩+ 2vkRfM1.

The assumption of this lemma states that f(x⋆) = f⋆ < f(xk) − ϵk, i.e., x⋆ ∈
lev<f(xk−ϵk) f . Hence, the definition of gk ∈ ∂̄⋆

ϵk
f(xk) ensures that 0 ≤ ⟨gk, xk − x⋆⟩,

and we have

∥T (xk − vkg̃k)− x⋆∥2 ≤ ∥xk − x⋆∥2 + v2k(1 +Rf )
2 + 2vkRfM1.

Hence, together with inequality (3.2), we have∥∥∥T̃ (xk − vkg̃k)− x⋆
∥∥∥2 ≤ ∥xk − x⋆∥2 + v2k(1 +Rf )

2 + 2vkRfM1

+ 2
⟨
rTk , T (xk − vkg̃k)− x⋆

⟩
+
∥∥rTk ∥∥2 .

Here, Assumption (A4) implies that there exists a constant M ≥ 0 such that ∥xk∥ ≤
M for all k ∈ N, and the sequence {∥x⋆ − T (xk − vkg̃k)∥} is also bounded, because
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∥x⋆ − T (xk − vkg̃k)∥ ≤ ∥x⋆∥+∥xk∥+vk ∥g̃k∥ ≤ ∥x⋆∥+M+(supj∈N vj)(Rf+1) < ∞
for all k ∈ N. Let us define the constant M2 as this upper bound. Using the Cauchy-
Schwarz inequality, we can simplify the above inequality as follows:∥∥∥T̃ (xk − vkg̃k)− x⋆

∥∥∥2 ≤ ∥xk − x⋆∥2 + v2k(1 +Rf )
2 + 2vkRfM1

+
∥∥rTk ∥∥ (2 ∥T (xk − vkg̃k)− x⋆∥+

∥∥rTk ∥∥)
≤ ∥xk − x⋆∥2 + v2k(1 +Rf )

2 + 2vkRfM1

+
∥∥rTk ∥∥ (2M2 +

∥∥rTk ∥∥) .
Thus, together with inequality (3.1), we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk(1− αk)
∥∥∥xk − T̃k(xk − vkg̃k)

∥∥∥2
+ (1− αk)v

2
k(1 +Rf )

2

+ (1− αk)
(
2vkRfM1 +

∥∥rTk ∥∥ (2M2 +
∥∥rTk ∥∥)) .

This completes the proof. □
Let us discuss the efficiency of Algorithm 1. First, we will examine the rate of

convergence in terms of the objective functional value. For this, we introduce two
notions: the sequence of best approximate points {x⋆k} ⊂ H and the inradius of the
slice defined by these points {rk} ⊂ R ∪ {−∞,∞}.

Definition 3.3 ([6, Definition (5.3)], [5, Definition Appendix G.1]). Let {xk} be
the sequence generated by Algorithm 1. Suppose that the minimum x⋆ ∈ X⋆ is
fixed in context. Then, we define

Γ(k) := max

{
i ≤ k : f(xi)− ϵi = min

j≤k
(f(xj)− ϵj)

}
,

x⋆k := xΓ(k),

rk := sup{r > 0 : x⋆ + rB ⊂ lev<f(x⋆
k)−ϵΓ(k)

f}

for each k ∈ N.

The following theorem shows the rate of convergence of the sequence generated
by Algorithm 1 in terms of the inradius {rk}.

Theorem 3.4. Let {xk} be the sequence generated by Algorithm 1, and let Assump-
tion 2.1 hold. Then, a number k0 ∈ N exists such that

rk ≤ RfM1 +

(
sup
j≥i

∥∥rTj ∥∥
)
(Rf + 1) +

c

2

((
sup
j≥i

∥∥rTj ∥∥
)

+ 2M1

)

+
∥xi − x⋆∥+ (Rf + 1)2

∑k
j=i(1− αj)v

2
j

2
∑k

j=i(1− αj)vj

for any x⋆ ∈ X⋆, k ≥ k0, and i ∈ {1, 2, . . . , k}.
In particular, k0 = 1, i.e., the above inequality holds for any k ∈ N when {αk} ⊂

(0, 1).
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Proof. Before proving the theorem, let us give the number k0, which is the lower
bound of usable numbers for k. In the following, we will use the property that
0 < 1 − αk for (at least) a fixed number k ∈ N. If {αk} ⊂ (0, 1), 0 < 1 − αk holds
for all k ∈ N. Hence, we can set k0 := 1 in this case. In the opposite case, i.e.,
αk ∈ {0, 1} for some k ∈ N, Assumption (A6) guarantees a number k0 ∈ N exists
such that 0 < (1− lim supk→∞ αk)/2 < 1− αk holds for all k ≥ k0. Hence, we use
this beginning number k0 in this case. In both cases, 0 < 1 − αk is guaranteed for
all k ≥ k0.

Fix x⋆ ∈ X⋆, k ≥ k0, and i ∈ {1, 2, . . . , k} arbitrarily. If rk is nonpositive, the
statement obviously holds. Therefore, let us consider the case where rk is positive.
Fix δ ∈ (0, rk) arbitrarily. Then, the definition of rk implies that

x⋆ + δB ⊂ lev<f(xΓ(k))−ϵΓ(k)
f

⊂ lev<f(xj)−ϵj f.

for all j ≤ k. Hence, from Lemma 2.2, we have

δ ≤ ⟨gj , xj − x⋆⟩

for all j ≤ k. Together with Lemma 3.1, we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2

− (1− αk)

(
2vk

(
⟨gk, xk − x⋆⟩ −RfM1

− 1

2
vk(Rf + 1)2 −

∥∥rTk ∥∥ (Rf + 1)

)
−
∥∥rTk ∥∥ (∥∥rTk ∥∥+ 2M1

))
≤ ∥xi − x⋆∥ − 2δ

k∑
j=i

(1− αj)vj

+
k∑

j=i

(1− αj)

(
2vj

(
RfM1 +

1

2
vj(Rf + 1)2 +

∥∥rTj ∥∥ (Rf + 1)

)

+
∥∥rTj ∥∥ (∥∥rTj ∥∥+ 2M1

))
.

Here, Assumption (A8) states that ∥rTj ∥ ≤ cvj . Hence, we can simplify the above
inequality as follows:

∥xk+1 − x⋆∥2 ≤ ∥xi − x⋆∥ − 2δ

k∑
j=i

(1− αj)vj + (Rf + 1)2
k∑

j=i

(1− αj)v
2
j

+ 2

(
RfM1 +

(
sup
j≥i

∥∥rTj ∥∥
)
(Rf + 1)

+
c

2

((
sup
j≥i

∥∥rTj ∥∥
)

+ 2M1

))
k∑

j=i

(1− αj)vj .
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Here, the discussion on the number k0 at the beginning of this proof ensures 0 <

(1−αk)vk ≤
∑k

j=i(1−αj)vj . Hence, the nonnegativity of the left side of the above

inequality and positivity of the term 2
∑k

j=i(1− αj)vj leads to

δ ≤ RfM1 +

(
sup
j≥i

∥∥rTj ∥∥
)
(Rf + 1) +

c

2

((
sup
j≥i

∥∥rTj ∥∥
)

+ 2M1

)

+
∥xi − x⋆∥+ (Rf + 1)2

∑k
j=i(1− αj)v

2
j

2
∑k

j=i(1− αj)vj
.

The arbitrariness of δ ∈ (0, rk) implies that this theorem holds. This completes the
proof. □

If there are no errors or noise, i.e., ϵk := 0, rfk := 0, rTk := 0, and c := 0 for all
k ∈ N, Theorem 3.4 coincides with the existing theorem [5, Lemma Appendix G.1]
for the exact fixed point quasiconvex subgradient method. This implies that this
theorem is an extension of the existing result.

The following proposition shows the relationship between the inradius of the slice
and the objective functional value.

Proposition 3.5. Let {xk} be the sequence generated by Algorithm 1, and let As-
sumption 2.1 hold. Then,

f(x⋆k)− f⋆ ≤ µrpk + ϵΓ(k)

holds for any k ∈ N such that f⋆ < f(x⋆k)− ϵΓ(k).

Proof. Fix x⋆ ∈ X⋆ arbitrarily. The continuity of the functional f and the assump-
tion f⋆ < f(x⋆k) − ϵΓ(k) guarantees there exists an open ball of nonzero radius and
center x⋆ contained in the slice lev<f(x⋆

k)−ϵΓ(k)
f . This implies that rk has a positive

value. Since rk is the supremum of the set {r > 0 : x⋆ + rB ⊂ lev<f(x⋆
k)−ϵΓ(k)

f},

x⋆ +

(
r +

1

j

)
B ∩ f−1([f(x⋆k)− ϵΓ(k),∞)) ̸= ∅

holds for all j ∈ N. Here, we pick a point uj from this intersection for each j ∈ N
and define them as the sequence {uj} ⊂ f−1([f(x⋆k)− ϵΓ(k),∞)). Then, we have

∥x⋆ − uj∥ ≤ rk +
1

j

for all j ∈ N. Since Assumption (A5) guarantees that the functional f satisfies the
Hölder condition of order p > 0 with modulus µ > 0, we have

f(x⋆k)− f⋆ ≤ f(uj)− f⋆ + ϵΓ(k)

≤ µ ∥uj − x⋆∥p + ϵΓ(k)

≤ µ

(
rk +

1

j

)p

+ ϵΓ(k)



EFFICIENCY OF INEXACT FIXED POINT QUASICONVEX SUBGRADIENT METHOD 43

for all j ∈ N. The arbitrariness of j ∈ N in the above inequality implies that the
statement of this proposition holds. This completes the proof. □

The following theorem gives the convergence rate in terms of the degree of ap-
proximation to the fixed point set with respect to the averaged norm. Similarly to
Theorem 3.4, this theorem is an extension of the existing result [5, Theorem Ap-
pendix G.2].

Theorem 3.6. Let {xk} be the sequence generated by Algorithm 1, and let Assump-
tions (A1–7) hold. Suppose that f⋆ < f(xk) − ϵk for all k ∈ N and

∑∞
k=1 v

2
k < ∞.

Then, a constant M ≥ 0 and a monotone increasing function R : [0,∞)2 → [0,∞)
exist such that R(0, 0) = 0 and

1

k

k∑
j=1

∥xj − T (xj)∥2 ≤
M

k
+R

(
sup
j∈N

∥rTj ∥, Rf

)
holds for all k ∈ N.

Proof. Assumption (A6) guarantees the existence of a number k0 ∈ N such that

0 <
1

2
lim inf
j→∞

αj < αk <
1

2

(
1 + lim sup

j→∞
αj

)
< 1

for all k ≥ k0. For the later discussion, we define these lower and upper bounds
as α := lim infk→∞ αk and ᾱ := (1 + lim supk→∞ αk)/2, respectively. Fix k ∈ N
arbitrarily, and let us consider the case of k ≥ k0. Using the convexity of ∥·∥2, we
have

∥xj − T (xj)∥2 = 4

∥∥∥∥12 (xj − T̃j(xj − vj g̃j)
)
+

1

2

(
T̃j(xj − vj g̃j)− T (xj)

)∥∥∥∥2(3.3)

≤ 2
∥∥∥xj − T̃j(xj − vj g̃j)

∥∥∥2 + 2
∥∥∥T̃j(xj − vj g̃j)− T (xj)

∥∥∥2 .
for all j ∈ N. Here, by using the Cauchy-Schwarz inequality, the term ∥T̃j(xj −
vj g̃j) − T (xj)∥2 appearing on the right side of the above inequality for j ∈ N can
be expanded into∥∥∥T̃j(xj − vj g̃j)− T (xj)

∥∥∥2 = ∥∥T (xj − vj g̃j)− T (xj) + rTj
∥∥2

≤ ∥T (xj − vj g̃j)− T (xj)∥2

+
∥∥rTj ∥∥ (∥T (xj − vj g̃j)− T (xj)∥+

∥∥rTj ∥∥)
≤ v2j ∥g̃j∥

2 +
∥∥rTj ∥∥ (vj ∥g̃j∥+ ∥∥rTj ∥∥)

≤ v2j (1 +Rf )
2 +

∥∥rTj ∥∥ (vj(1 +Rf ) +
∥∥rTj ∥∥) .

Together with inequality (3.3), we have

∥xj − T (xj)∥2 ≤ 2
∥∥∥xj − T̃j(xj − vj g̃j)

∥∥∥2 + 2v2j (1 +Rf )
2

+ 2
∥∥rTj ∥∥ (vj(1 +Rf ) +

∥∥rTj ∥∥)



44 K. HISHINUMA AND H. IIDUKA

for j ∈ N. Summing the above inequalities for j ∈ {1, 2, . . . , k} and dividing both
sides by k, we obtain

1

k

k∑
j=1

∥xj − T (xj)∥2 ≤
2

k

k∑
j=1

∥∥∥xj − T̃j(xj − vj g̃j)
∥∥∥2 + 2(1 +Rf )

2

k

∞∑
j=1

v2j(3.4)

+ 2 sup
j∈N

(∥∥rTj ∥∥ (vj(1 +Rf ) +
∥∥rTj ∥∥))

Next, let us evaluate the term
∑k

j=k0
∥xj − T̃j(xj − vj g̃j)∥2. From Lemma 3.2, we

have

∥xj+1 − x⋆∥2 ≤ ∥xj − x⋆∥2 − αj(1− αj)
∥∥∥xj − T̃j(xj − vj g̃j)

∥∥∥2 + (1− αj)v
2
j (1 +Rf )

2

+ (1− αj)
(
2vjRfM1 +

∥∥rTj ∥∥ (2M2 +
∥∥rTj ∥∥))

for all j ∈ {k0, k0 + 1, . . . , k}. Here, αj ∈ (α, ᾱ) ⊂ (0, 1) holds for all j ∈ {k0, k0 +
1, . . . , k}. Hence, the above inequality implies that

∥xj+1 − x⋆∥2 ≤ ∥xj − x⋆∥2 − α(1− ᾱ)
∥∥∥xj − T̃j(xj − vj g̃j)

∥∥∥2 + (1 +Rf )
2v2j

+ 2vjRfM1 +
∥∥rTj ∥∥ (2M2 +

∥∥rTj ∥∥)
≤ ∥xk0 − x⋆∥2 − α(1− ᾱ)

j∑
j=k0

∥∥∥xj − T̃j(xj − vj g̃j)
∥∥∥2

+ (1 +Rf )
2

j∑
j=k0

v2j

+ (j − k0 + 1) sup
j≥k0

(
2vjRfM1 +

∥∥rTj ∥∥ (2M2 +
∥∥rTj ∥∥))

for all j ∈ {k0, k0 + 1, . . . , k}. Thus, we have

k∑
j=k0

∥∥∥xj − T̃j(xj − vj g̃j)
∥∥∥2 ≤ ∥xk0 − x⋆∥2

α(1− ᾱ)
+

(1 +Rf )
2

α(1− ᾱ)

∞∑
j=1

v2j

+
k

α(1− ᾱ)
sup
j∈N

(
2vjRfM1 +

∥∥rTj ∥∥ (2M2 +
∥∥rTj ∥∥)) .

Together with inequality (3.4), we obtain

1

k

k∑
j=1

∥xj − T (xj)∥2 ≤
2

k

(
k0−1∑
j=1

∥∥∥xj − T̃j(xj − vj g̃j)
∥∥∥2

+
∥xk0 − x⋆∥2

α(1− ᾱ)
+ (1 +Rf )

2

(
1 +

1

α(1− ᾱ)

) ∞∑
j=1

v2j

)
+ 2 sup

j∈N

(∥∥rTj ∥∥ (vj(1 +Rf ) +
∥∥rTj ∥∥))

+
2

α(1− ᾱ)
sup
j∈N

(
2vjRfM1 +

∥∥rTj ∥∥ (2M2 +
∥∥rTj ∥∥)) .
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Since the assumption of this theorem ensures the convergence of
∑∞

j=1 v
2
j , the co-

efficient of 1/k is finite and constant with respect to k. Hence, we define the larger

of this value and
∑k0−1

j=1 ∥xj − T (xj)∥2 (for the case where k < k0) as M . Further-
more, the remaining part of the right side of the above inequality is bounded from
above by the value related to supj∈N∥rTj ∥ and Rf . In particular, it becomes zero if

supj∈N∥rTj ∥ = Rf = 0. Therefore, the desired inequality holds. This completes the
proof. □

4. Numerical examples

We examined the behavior of Algorithm 1 under different step-size rules, noise
levels, and errors. We applied it to the following N -dimensional constrained qua-
siconvex optimization, called the Cobb-Douglas production efficiency problem [5,
Problem 4.1], [6, Problem (6.1)].

Problem 4.1 ([5, Problem 4.1]). Suppose that H := Rn. Let a0, c0 > 0, and let
a, c ∈ (0,∞)n such that

∑n
i=1 ai = 1. Furthermore, let bi ∈ [0,∞)n, p

i
∈ [0,∞)n,

and pi ∈ (0,∞]n for i = 1, 2, . . . ,m. Then, we would like to

minimize f(x) :=

−a0
∏n

j=1 x
aj
j

⟨c,x⟩+c0
(x ∈ [0,∞)n),

0 (otherwise),

subject to p
i
≤ ⟨bi, x⟩ ≤ pi (i = 1, 2, . . . ,m),

x ∈ [0,M ]n,

where M > 0.

Here, the objective functional is quasiconvex [6, Section 6], and the subgradient
g ∈ ∂̄⋆

ϵk
f(x) for an arbitrarily given point x ∈ H can be computed [9, Lemma 4].

Furthermore, we can construct a firmly nonexpansive mapping whose fixed point
set coincides with the intersection of all constraint sets [5, Section 4]. Hence, we
can use Algorithm 1 to solve this problem.

We used a Mac Pro (Late 2013) computer with a 3 GHz 8 Cores Intel Xeon E5
CPU and 32GB 1800MHz DDR3 ECC memory. The experimental code was written
in Python 3.7 with NumPy 1.18.1. To construct a firmly nonexpansive mapping
expressing the desired constraint set, we used the fpmlib1 toolbox for Python 3.

The parameters of Problem 4.1were set as follows: n := 100; m := 100; a0, c0 ∈
(0, 10], ã ∈ (0, 1]n, c ∈ (0, 10]n were chosen randomly; a := ã/

∑n
i=1 ai; bi ∈

[0, 1)n, p
i
∈ [0, 25 ∥bi∥), pi ∈ (75 ∥bi∥ , 100 ∥bi∥] were chosen randomly for each

i = 1, 2, . . . ,m; and M := 100. These parameter settings are the same as those
used in [5, Subsection 4.2]. (Refer to [5] for a detailed evaluation of the behavior of
the exact fixed point quasiconvex subgradient method.)

We ran Algorithm 1 under the following conditions:

C1: vk := 10−3, rfk := 0 and rTk := 0 for all k ∈ N;
C2: vk := 10−3, ∥rfk∥ ≤ 10−3 and ∥rTk ∥ ≤ 10−3 for all k ∈ N;

1fpmlib: https://github.com/kazh98/fpmlib
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D1: vk := 10−3/k, rfk := 0 and rTk := 0 for all k ∈ N;
D2: vk := 10−3/k, ∥rfk∥ ≤ 10−3 and ∥rTk ∥ ≤ 10−3 for all k ∈ N;
D3: vk := 10−3/k, ∥rfk∥ ≤ 10−3 and ∥rTk ∥ ≤ 10−3/k for all k ∈ N.

Conditions C1 and D1 mean that no noise or error affects Algorithm 1, and the algo-
rithm coincides with the existing exact fixed point quasiconvex subgradient method.
Condition C2 expresses the case where Algorithm 1 runs with a constant step size
and with noise added to it. Since the added noise is bounded, Assumptions (A7)
and (A8) are satisfied. Hence, we can use Theorem 3.4 in this case. However, the
constant sequence {vk} violates the assumption

∑∞
k=1 v

2
k < ∞ of Theorem 3.6 in

this case. Condition D2 and D3 express the case where Algorithm 1 runs with a
diminishing step-size and with added noise. Condition D2, unfortunately, violates
the assumption of Theorem 3.6 because of its decreasing step size. In contrast to
Condition D2, Condition D3 overcomes this violation by introducing a new assump-
tion of decreasing added noise. In addition, we set the other parameters αk := 10−16

and ϵk := 0 for all k ∈ N.
We evaluated the behavior of Algorithm 1 from two viewpoints: the objective

functional value f(xk) and the degree of approximation to the fixed point set
∥xk − T (xk)∥ in each iteration k ∈ N. We gave x0 := 0 as the initial point.

First, let us see the results for constant step size (Figure 1). The x-axes of

Figure 1. Experimental results for a constant step size

these graphs show the number of iterations, while the y-axes show the measured
values. Conditions C1 and C2 stably decrease both the objective functional value
and the degree of approximation to the fixed point set until about 100 iterations.
However, the values begin to oscillate after that. This behavior is reasonable because
Theorem 3.4 states that the error term is proportional to the step size vk (and it
does not converge to zero in the case of a constant step size).

Figure 2 shows the results in the case of a diminishing step size. Under Con-
dition D3, both the objective functional value and the degree of approximation to
the fixed point set decrease, similarly to the existing case (Condition D1). Under
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Figure 2. Experimental results for a diminishing step size

Condition D2, the objective functional value diverges and the degree of approxima-
tion to the fixed point set oscillates. These results imply that Assumption (A8) is
important for obtaining stable convergence.

5. Conclusion

This paper discussed the efficiency of the fixed point quasiconvex subgradient
method under the condition that errors and noise appear in the computation. The
convergence rate analysis showed how much improvement can be expected relative
to the number of iterations in terms of both the objective functional value and the
degree of approximation to the fixed point set. The numerical examples showed that
the proposed algorithm behaves in accordance with the convergence rate analysis,
and it revealed the importance of the assumption used in the convergence rate
analyses.
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