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nonempty subset of E. A mapping T : C → E is called extended generalized hybrid
[6] if there are α, β, γ, δ ∈ R such that α+ β + γ + δ ≥ 0, α+ β > 0 and

(1.2) α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2 ≤ 0

for all x, y ∈ C. We call such a mapping (α, β, γ, δ)-extended generalized hybrid.
Hojo and Takahashi [7] proved the following weak convergence theorem for finding
a common fixed point of two extended generalized hybrid mappings in a Banach
space by using Mann’s type iteration [14]; see also [19].

Theorem 1.1 ([7]). Let E be a uniformly convex Banach space which satisfies
Opial’s condition and let C be a nonempty, closed and convex subset of E. Let
α, β, γ, δ ∈ R and α′, β′, γ′, δ′ ∈ R. Let S and T be (α, β, γ, δ) and (α′, β′, γ,′ δ′)-
extended generalized hybrid mappings of C into itself such that β ≤ 0 and γ ≤ 0
and β′ ≤ 0 and γ′ ≤ 0, respectively. Suppose that F (S) ∩ F (T ) ̸= ∅. Let {xn} be a
sequence in C generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)
(
γnSxn + (1− γn)Txn

)
, ∀n ∈ N,

where a, b, c, d ∈ R, {γn} and {αn} satisfy the following:

0 < a ≤ αn ≤ b < 1 and 0 < c ≤ γn ≤ d < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ F (S) ∩ F (T ), where
F (S) ∩ F (T ) is the set of common fixed points of S and T .

In this paper, we prove a weak convergence theorem of Mann’s type iteration
for two infinite families of extended generalized hybrid mappings in a Banach space
satisfying Opial’s condition. This theorem generalizes a theorem by Hojo and Taka-
hashi [8]. Using this result, we get well-known and new weak convergence theorems
in a Banach space. In particular, we obtain a weak convergence theorem of Mann’s
type iteration for two finite families of extended generalized hybrid mappings in a
Banach space.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the
topological dual space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩.
When {xn} is a sequence in E, we denote the strong convergence of {xn} to x ∈ E
by xn → x and the weak convergence by xn ⇀ x. The modulus δ of convexity of E
is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for all ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for all ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C → E
is nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. A mapping T : C → E is
quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx−y∥ ≤ ∥x−y∥ for all x ∈ C and y ∈ F (T ),
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where F (T ) is the set of fixed points of T . If C is a nonempty, closed and convex
subset of a strictly convex Banach space E and T : C → E is quasi-nonexpansive,
then F (T ) is closed and convex; see Itoh and Takahashi [10]. The duality mapping
J from E into 2E

∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for all x ∈ E. The following result is in [17].

Lemma 2.1 ([17]). Let E be a Banach space and let J be the duality mapping on
E. Then, for any x, y ∈ E,

∥x∥2 − ∥y∥2 ≥ 2⟨x− y, j⟩,

where j ∈ Jy.

Let E be a Banach space and let A ⊂ E × E. Then, A is accretive if for
(x1, y1), (x2, y2) ∈ A, there exists j ∈ J(x1 − x2) such that ⟨y1 − y2, j⟩ ≥ 0, where
J is the duality mapping of E. An accretive operator A ⊂ E × E is called m-
accretive if R(I + rA) = E for all r > 0, where I is the identity operator and
R(I + rA) is the range of I + rA. An accretive operator A ⊂ E × E is said to

satisfy the range condition if D(A) ⊂ R(I + rA) for all r > 0, where D(A) is
the closure of the domain D(A) of A. An m-accretive operator satisfies the range
condition. If C is a nonempty, closed and convex subset of a Banach space and T
is a nonexpansive mapping of C into itself, then A = I − T is an accretive operator
and C = D(A) ⊂ R(I + rA) for all r > 0; see [17, Theorem 4.6.4].

Let E be a Banach space and let C be a nonempty subset of E. Then, a mapping
T : C → E is said to be firmly nonexpansive [3] if

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩,

for all x, y ∈ C, where j ∈ J(Tx−Ty); see also [2, 5]. It is known that the resolvent
of an accretive operator satisfying the range condition in a Banach space is a firmly
nonexpansive mapping of the closure of the domain into itself. In fact, let C = D(A)
and r > 0. Define the resolvent Jr of A as follows:

Jrx = {z ∈ D(A) : x ∈ z + rAz}

for all x ∈ D(A). It is known that such Jrx is a singleton; see [17]. We have that

for x1, x2 ∈ D(A), x1 = z1 + ry1, y1 ∈ Az1 and x2 = z2 + ry2, y2 ∈ Az2. Since A is
accretive, we have that ⟨y1 − y2, j⟩ ≥ 0, where j ∈ J(z1 − z2). So, we have

⟨x1 − z1
r

− x2 − z2
r

, j⟩ ≥ 0.

Furthermore, we have that

⟨x1 − z1
r

− x2 − z2
r

, j⟩ ≥ 0

⇐⇒ ⟨x1 − z1 − (x2 − z2), j⟩ ≥ 0

⇐⇒ ⟨x1 − x2, j⟩ ≥ ∥z1 − z2∥2.
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From z1 = Jrx1 and z2 = Jrx2, we have that Jr is a firmly nonexpansive mapping
of C into itself; see also [3], [4] and [20]. Let E be a Banach space and let C be a
nonempty subset of E. A mapping T : C → E is called extended generalized hybrid
if it satisfies (1.2), that is, there are α, β, γ, δ ∈ R such that α + β + γ + δ ≥ 0,
α+ β > 0 and

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2 ≤ 0

for all x, y ∈ C. We call such a mapping (α, β, γ, δ)-extended generalized hybrid. We
can also show that, in a Banach space, an (α, β, γ, δ)-extended generalized hybrid
mapping is nonexpansive for α = 1, β = γ = 0 and δ = −1, nonspreading for
α = 2, β = γ = −1 and δ = 0, and hybrid for α = 3, β = γ = −1 and δ =
−1. Nonexpansive mappings, nonspreading mappings and hybrid mappings in a
Banach space are deduced from firmly nonexpansive mappings as follows: Let T be
a firmly nonexpansive mapping of C into E. Then we have that for x, y ∈ C and
j ∈ J(Tx− Ty),

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩.

From Theorem 2.1 we have that

∥Tx−Ty∥2 ≤ ⟨x− y, j⟩
⇐⇒ 0 ≤ 2⟨x− Tx− (y − Ty), j⟩(2.1)

=⇒ 0 ≤ ∥x− y∥2 − ∥Tx− Ty∥2

⇐⇒ ∥Tx− Ty∥2 ≤ ∥x− y∥2.

Futhermore, we have that for x, y ∈ C and j ∈ J(Tx− Ty),

∥Tx−Ty∥2 ≤ ⟨x− y, j⟩
⇐⇒ 0 ≤ 2⟨x− Tx− (y − Ty), j⟩
⇐⇒ 0 ≤ 2⟨x− Tx, j⟩+ 2⟨Ty − y, j⟩(2.2)

=⇒ 0 ≤ ∥x− Ty∥2 − ∥Tx− Ty∥2 + ∥Tx− y∥2 − ∥Tx− Ty∥2

⇐⇒ 0 ≤ ∥x− Ty∥2 + ∥y − Tx∥2 − 2∥Tx− Ty∥2

⇐⇒ 2∥Tx− Ty∥2 ≤ ∥x− Ty∥2 + ∥y − Tx∥2.

Therefore, using (2.1) and (2.2), we have that

∥Tx−Ty∥2 ≤ ⟨x− y, j⟩
=⇒ 3∥Tx− Ty∥2 ≤ ∥x− Ty∥2 + ∥y − Tx∥2 + ∥x− y∥2.

Hojo and Takahashi [6] proved the following result.

Lemma 2.2 ([6]). Let E be a Banach space, let C be a nonempty, closed and convex
subset of E. Then an extended generalized hybrid mapping which has a fixed point
is quasi-nonexpansive.

The following result was proved by Xu [21].
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Lemma 2.3 ([21]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,∞) → [0,∞)
such that g(0) = 0 and

∥µx+ (1− µ)y∥2 ≤ µ∥x∥2 + (1− µ)∥y∥2 − µ(1− µ)g(∥x− y∥)

for all x, y ∈ Br and µ with 0 ≤ µ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a Banach space. Then, E satisfies Opial’s condition [15] if for any {xn}
of E such that xn ⇀ x and x ̸= y,

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥.

Let E be a Banach space. Let C be a nonempty, closed and convex subset of E.
Let T : C → E be a mapping. Then, p ∈ C is called an asymptotic fixed point of T
[16] if there exists {xn} ⊂ C such that xn ⇀ p and limn→∞ ∥xn − Txn∥ = 0. We

denote by F̂ (T ) the set of asymptotic fixed points of T . A mapping T : C → E is

said to be demiclosed if F̂ (T ) = F (T ). We know the following result from Hojo and
Takahashi [6].

Lemma 2.4 ([6]). Let E be a Banach space satisfying Opial’s condition and let C
be a nonempty, closed and convex subset of E. Let α, β, γ, δ ∈ R and let T be an
(α, β, γ, δ)-extended generalized hybrid mapping of C into E which satisfies β ≤ 0

and γ ≤ 0. Then F̂ (T ) = F (T ), i.e., T is demiclosed.

If E is a Banach space satisfying Opial’s condition, then nonexpansive map-
pings, nonspreading mappngs and hybrid mappings are quasi-nonexpansive and
demiclosed.

3. Weak Convergence Theorems

In this section, we first prove a weak convergence theorem of Mann’s type iteration
[14] for an infinite family of extended generalized hybrid mappings in a Banach space
satisfying Opial’s condition.

Lemma 3.1. Let E be a uniformly convex Banach and let C be a nonempty, closed
and convex subset of E. Let {Tj} be a family of quasi-nonexpansive and demiclosed
mappings of C into E such that ∩∞

j=1F (Tj) ̸= ∅ and let {ξj} ⊂ (0, 1) be a family of

real numbers such that
∑∞

j=1 ξj = 1. Define

Tx =

∞∑
j=1

ξjTjx, ∀x ∈ C.

Then T is well-defined and quasi-nonexpansive. Furthermore, F (T ) = ∩∞
j=1F (Tj)

and T is demiclosed.

Proof. Let y0 ∈ ∩∞
j=1F (Tj). Since Tj is quasi-nonexpansive, we have that

∥Tjx∥ ≤ ∥Tjx− y0∥+ ∥y0∥ ≤ ∥x− y0∥+ ∥y0∥
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for all x ∈ C. For a family {ξj} ⊂ (0, 1) of real numbers such that
∑∞

j=1 ξj = 1,
define

Tx =
∞∑
j=1

ξjTjx

for all x ∈ C; see Bruck [3]. Then, Tx =
∑∞

j=1 ξjTjx converges absolutely for all
x ∈ C and then T is well-defined. Since Tj is quasi-nonexpansive, it is obvious that
T is quasi-nonexpansive. We show that T is demiclosed. Let {xn} be a sequence of C
such that xn−Txn → 0 and xn ⇀ v. Let w ∈ ∩∞

j=1F (Tj). For any ε > 0 and i, k ∈ N
with i ̸= k, we take m ∈ N such that i, k ≤ m and

∥∥∥∑∞
j=m+1 ξj(Tjxn − w)

∥∥∥ ≤ ε.

We have from Lemma 2.1 that, for j(xn − w) ∈ J(xn − w),

∥xn − w∥2 = ∥xn − Txn + Txn − w∥2

≤ ∥Txn − w∥2 + 2⟨xn − Txn, j(xn − w)⟩

=
∥∥∥ ∞∑

j=1

ξjTjxn − w
∥∥∥2 + 2⟨xn − Txn, j(xn − w)⟩

=
∥∥∥ ∞∑

j=1

ξj(Tjxn − w)
∥∥∥2 + 2⟨xn − Txn, j(xn − w)⟩

≤
(∥∥∥ m∑

j=1

ξj(Tjxn − w)
∥∥∥+ ε

)2
+ 2⟨xn − Txn, j(xn − w)⟩

≤
∥∥∥ m∑

j=1

ξj(Tjxn − w)
∥∥∥2 + 2rε+ ε2 + 2⟨xn − Txn, j(xn − w)⟩,

where r = sup{∥Tjxn − w∥ : j ∈ N}. From Theorem 2.3, there exists a strictly
increasing, continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0
and

∥µx+ (1− µ)y∥2 ≤ µ∥x∥2 + (1− µ)∥y∥2 − µ(1− µ)g(∥x− y∥)

for all x, y ∈ Br and µ with 0 ≤ µ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}. Set

σ = ξi
ξi+ξk

. Then we have that

∥∥∥ m∑
j=1

ξj(Tjxn − w)
∥∥∥2

=
∥∥∥(ξi + ξk)

(
σ(Tixn − w) + (1− σ)(Tkxn − w)

)
+

m∑
j ̸=i,k

ξj(Tjxn − w)
∥∥∥2

≤ (ξi + ξk)∥σ(Tixn − w) + (1− σ)(Tkxn − w)∥2 +
m∑

j ̸=i,k

ξj∥Tjxn − w∥2

≤ (ξi + ξk)
(
σ∥Tixn − w∥2 + (1− σ)∥Tkxn − w∥2

)
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− (ξi + ξk)σ(1− σ)g(∥Tixn − Tkxn∥) +
m∑

j ̸=i,k

ξj∥Tjxn − w∥2

≤ (ξi + ξk)
(
σ∥xn − w∥2 + (1− σ)∥xn − w∥2

)
− (ξi + ξk)σ(1− σ)g(∥Tixn − Tkxn∥) +

m∑
j ̸=i,k

ξj∥xn − w∥2

=

m∑
j=1

ξj∥xn − w∥2 − (ξi + ξk)σ(1− σ)g(∥Tixn − Tkxn∥)

≤ ∥xn − w∥2 − (ξi + ξk)σ(1− σ)g(∥Tixn − Tkxn∥).

Then, we have that

∥xn − w∥2 ≤
∥∥∥ m∑

j=1

ξj(Tjxn − w)
∥∥∥2 + 2rε+ ε2 + 2⟨xn − Txn, j(xn − w)⟩

≤ ∥xn − w∥2 − (ξi + ξk)σ(1− σ)g(∥Tixn − Tkxn∥)
+ 2⟨xn − Txn, j(xn − w)⟩+ 2rε+ ε2

and hence

(ξi + ξk)σ(1− σ)g(∥Tixn − Tkxn∥) ≤ 2⟨xn − Txn, j(xn − w)⟩+ 2rε+ ε2.

Since limn→∞ ∥xn − Txn∥ = 0, we have that

(ξi + ξk)σ(1− σ) lim sup
n→∞

g(∥Tixn − Tkxn∥) ≤ 2rε+ ε2.

Since ε > 0 is arbitrary, we have that

(ξi + ξk)σ(1− σ) lim sup
n→∞

g(∥Tixn − Tkxn∥) ≤ 0.

Since (ξi + ξk)σ(1 − σ) > 0, we have that lim supn→∞ g(∥Tixn − Tkxn∥) ≤ 0 and
then

lim
n→∞

g(∥Tixn − Tkxn∥) = 0.

From the properties of g, we have that

lim
n→∞

∥Tixn − Tkxn∥ = 0.

For any ε > 0 and i ∈ N, we take m ∈ N such that∥∥∥ ∞∑
j=m+1

ξj(Tjxn − Tixn)
∥∥∥ ≤ ε.

Then we have that

∥xn − Tixn∥ = ∥xn − Txn + Txn − Tixn∥
≤ ∥xn − Txn∥+ ∥Txn − Tixn∥

= ∥xn − Txn∥+
∥∥∥ ∞∑

j=1

ξj(Tjxn − Tixn)
∥∥∥
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≤ ∥xn − Txn∥+
∥∥∥ m∑

j=1

ξj(Tjxn − Tixn)
∥∥∥+ ε.

From ∥xn − Txn∥ → 0 and Tjxn − Tixn → 0 for all j ∈ N, we have that

lim sup
n→∞

∥xn − Tixn∥ ≤ ε.

Since ε > 0 is arbitrary, we have that

(3.1) lim
n→∞

∥xn − Tixn∥ = 0, ∀i ∈ N.

Since xn ⇀ v and Ti is demiclosed for all i ∈ N, we have that v ∈ ∩∞
j=1F (Tj). Finally,

to prove that T is demiclosed, we show that F (T ) = ∩∞
j=1F (Tj). In fact, it is obvious

that ∩∞
j=1F (Tj) ⊂ F (T ). We show that F (T ) ⊂ ∩∞

j=1F (Tj). For y0 ∈ ∩∞
j=1F (Tj)

and w ∈ F (T ), we have that

w − y0 = Tw − y0 =
∞∑
j=1

ξjTjw − y0 =
∞∑
j=1

ξj(Tjw − y0)

and hence

∥w − y0∥ ≤
∞∑
j=1

ξj∥Tjw − y0∥ ≤
∞∑
j=1

ξj∥w − y0∥ = ∥w − y0∥.

Then, ∥Tjw − y0∥ = ∥w − y0∥ for all j ∈ N. Assume that Tiw − y0 ̸= Tkw − y0 for
some i, k ∈ N. Since E is a strictly convex Banach space, there exists δ > 0 such
that ∥∥∥τ(Tiw − y0) + (1− τ)(Tkw − y0)

∥∥∥ = ∥w − y0∥ − δ,

where τ = ξi
ξi+ξk

. Then, we have that, for any m ∈ N with i, k ≤ m,∥∥∥ m∑
j=1

ξj(Tjw − y0)
∥∥∥

=
∥∥∥(ξi + ξk)(τ(Tiw − y0) + (1− τ)(Tkw − y0)) +

m∑
j ̸=i,k

ξj(Tjw − y0)
∥∥∥

≤ (ξi + ξk)∥τ(Tiw − y0) + (1− τ)(Tkw − y0)∥+
m∑

j ̸=i,k

ξj∥Tjw − y0∥

≤ (ξi + ξk)(∥w − y0∥ − δ) +
m∑

j ̸=i,k

ξj∥w − y0∥

=
m∑
j=1

ξj∥w − y0∥ − (ξi + ξk)δ

≤ ∥w − y0∥ − (ξi + ξk)δ.

Since w − y0 =
∑∞

j=1 ξj(Tjw − y0), we have that

∥w − y0∥ ≤ ∥w − y0∥ − (ξ1 + ξi)δ.
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This is a contradiction. Therefore, we have that Tiw−y0 = Tkw−y0 for all i, k ∈ N.
From w − y0 =

∑∞
j=1 ξj(Tjw − y0), we have that w − y0 = Tiw − y0 for all i ∈ N

and hence w = Tiw for all i ∈ N. This implies that F (T ) ⊂ ∩∞
j=1F (Tj). Therefore,

F (T ) = ∩∞
j=1F (Tj) and then T is demiclosed. □

Lemma 3.2. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let S and T be
quasi-nonexpansive and demiclosed mappings of C into itself such that

F (S) ∩ F (T ) ̸= ∅.

Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = λnxn + (1− λn)
(
µnSxn + (1− µn)Txn

)
, ∀n ∈ N,

where a, b, c, d ∈ R, {λn} and {µn} satisfy the following:

0 < a ≤ λn ≤ b < 1 and 0 < c ≤ µn ≤ d < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ F (S) ∩ F (T ).

Proof. Since S and T are quasi-nonexpansive, we have that F (S) ∩ F (T ) is closed
and convex. Put

Tn = µnS + (1− µn)T

for all n ∈ N and let w be a point of F (S) ∩ F (T ). We have that

∥Tnxn − w∥ = ∥(µnS + (1− µn)T )xn − w∥
≤ µn∥Sxn − w∥+ (1− µn)∥Txn − w∥(3.2)

≤ µn∥xn − w∥+ (1− µn)∥xn − w∥
= ∥xn − w∥.

Using (3.2), we have that

∥xn+1 − w∥ = ∥λnxn + (1− λn)Tnxn − w∥
≤ λn∥xn − w∥+ (1− λn)∥Tnxn − w∥(3.3)

≤ λn∥xn − w∥+ (1− λn)∥xn − w∥
= ∥xn − w∥.

Then limn→∞ ∥xn − w∥ exists. Thus we have that the sequence {xn} is bounded.
This implies that {Tnxn} is bounded. Let

r = max{sup
n∈N

∥xn − w∥, sup
n∈N

∥Tnxn − w∥}.

Then, from Theorem 2.3, there exists a strictly increasing, continuous and convex
function g : [0,∞) → [0,∞) such that g(0) = 0 and

∥µx+ (1− µ)y∥2 ≤ µ∥x∥2 + (1− µ)∥y∥2 − µ(1− µ)g(∥x− y∥)

for all x, y ∈ Br and µ with 0 ≤ µ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}. Then we
have that for w ∈ F (S) ∩ F (T ) and n ∈ N,

∥xn+1 − w∥2 = ∥λnxn + (1− λn)Tnxn − w∥2
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= ∥λn(xn − w) + (1− λn)(Tnxn − w)∥2

≤ λn∥xn − w∥2 + (1− λn)∥Tnxn − w∥2 − λn(1− λn)g(∥xn − Tnxn∥)
≤ λn∥xn − w∥2 + (1− λn)∥xn − w∥2 − λn(1− λn)g(∥xn − Tnxn∥)
= ∥xn − w∥2 − λn(1− λn)g(∥xn − Tnxn∥)

and hence

λn(1− λn)g(∥xn − Tnxn∥) ≤ ∥xn − w∥2 − ∥xn+1 − w∥2.

Since limn→∞ ∥xn − w∥2 exists, we have from 0 < a ≤ λn ≤ b < 1 that

lim
n→∞

g(∥xn − Tnxn∥) = 0.

From the properties of g, we have

(3.4) lim
n→∞

∥xn − Tnxn∥ = 0.

We have from Lemma 2.1 that, for w ∈ F (S) ∩ F (T ),

∥xn − w∥2 = ∥xn − Tnxn + Tnxn − w∥2

≤ ∥Tnxn − w∥2 + 2⟨xn − Tnxn, j(xn − w)⟩
= ∥µnSxn + (1− µn)Txn − w∥2 + 2⟨xn − Tnxn, J(xn − w)⟩
≤ µn∥Sxn − w∥2 + (1− µn)∥Txn − w∥2

− µn(1− µn)g(∥Sxn − Txn∥) + 2⟨xn − Tnxn, J(xn − w)⟩
≤ µn∥xn − w∥2 + (1− µn)∥xn − w∥2

− µn(1− µn)g(∥Sxn − Txn∥) + 2⟨xn − Tnxn, j(xn − w)⟩
= ∥xn − w∥2 − µn(1− µn)g(∥Sxn − Txn∥) + 2⟨xn − Tnxn, j(xn − w)⟩

and hence

µn(1− µn)g(∥Sxn − Txn∥) ≤ 2⟨xn − Tnxn, j(xn − w)⟩.

Since xn − Tnxn → 0 and {xn} is bounded, we have from 0 < c ≤ µn ≤ d < 1 that
Sxn − Txn → 0. Then we have that

∥xn − Sxn∥ = ∥xn − Tnxn + Tnxn − Sxn∥
≤ ∥xn − Tnxn∥+ ∥Tnxn − Sxn∥
= ∥xn − Tnxn∥+ (1− µn)∥Txn − Sxn∥
→ 0.

Similarly, we have that ∥xn − Txn∥ → 0.
Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

v for some v ∈ C. Since S and T are demiclosed, we have that v is a point
of F (S) ∩ F (T ). Let {xni} and {xnj} be two subsequences of {xn} such that
xni ⇀ u and xnj ⇀ v. We have that u, v ∈ F (S) ∩ F (T ). Suppose u ̸= v. From
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u, v ∈ F (S) ∩ F (T ), we know that limn→∞ ∥xn − u∥ and limn→∞ ∥xn − v∥ exist.
Since E satisfies Opial’s condition, we have that

lim
n→∞

∥xn − u∥ = lim
i→∞

∥xni − u∥

< lim
i→∞

∥xni − v∥ = lim
n→∞

∥xn − v∥

= lim
j→∞

∥xnj − v∥ < lim
j→∞

∥xnj − u∥

= lim
n→∞

∥xn − u∥.

This is a contradiction. Thus we must have u = v. This implies that {xn} converges
weakly to a point of F (S) ∩ F (T ). This completes the proof. □

Using Lemmas 3.1 an 3.2, we can prove the following weak convergence theorem
for two infinite families of extended generalized hybrid mappings in Banach spaces.

Theorem 3.3. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let ai, bi, ci, di ∈
R for all i ∈ N and let {Si} be a sequence of (ai, bi, ci, di)-extended generalized hybrid
mappings of C into itself such that bi ≤ 0 and ci ≤ 0 for all i ∈ N. Let {ξi} be
a family of real numbers in (0, 1) such that

∑∞
i=1 ξi = 1. Let αj , βj , γj , δj ∈ R for

all j ∈ N and let {Tj} be a sequence of (αj , βj , γj , δj)-extended generalized hybrid
mappings of C into itself such that βj ≤ 0 and γj ≤ 0 for all j ∈ N. Let {σj} be a
family of real numbers in (0, 1) such that

∑∞
j=1 σj = 1. Suppose that

Ω := ∩∞
i=1F (Si) ∩ (∩∞

j=1F (Tj)) ̸= ∅.
Let {xn} be a sequence in C generated by x1 = x ∈ C and

xn+1 = λnxn + (1− λn)
(
µn

∞∑
i=1

ξiSi + (1− µn)
∞∑
j=1

σjTj

)
xn, ∀n ∈ N,

where a, b, c, d ∈ R and {λn}, {µn} ⊂ (0, 1) satisfy the following:

0 < a ≤ λn ≤ b < 1 and 0 < c ≤ µn ≤ d < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ Ω.

Proof. Since Si is quasi-nonexpansive from Lemma 2.2, we have that F (Si) is closed
and convex. Therefore, ∩∞

i=1F (Si) is closed and convex. For a family {ξi} ⊂ (0, 1)
of real numbers such that

∑∞
i=1 ξi = 1, define

Sx =
∞∑
i=1

ξiSix

for all x ∈ C. Then we havs from Lemma 3.1 that S is well defined and quasi-
nonexpansive. Furthermore, we have from Lemma 3.1 that F (S) = ∩∞

i=1F (Si) and
S is demiclosed. Similarly, for a family {σj} ⊂ (0, 1) of real numbers such that∑∞

j=1 σj = 1, define

Tx =
∞∑
j=1

σjTjx
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for all x ∈ C. We havs from Lemma 3.1 that T is well defined and quasi-nonexpansive.
Furthermore, we have that F (T ) = ∩∞

j=1F (Tj) and T is demiclosed. Thus, for

x1 = x ∈ C, the sequence {xn} in Theorem 3.3 is as follows:

xn+1 = λnxn + (1− λn)
(
µnS + (1− µn)T

)
xn, ∀n ∈ N.

Using Lemmas 3.1 an 3.2, we have the desired result. □

Using Theorem 3.3, we obtain the following weak convergence theorem for two
finite families of extended generalized hybrid mappings in a Banach space satisfying
Opial’s condition.

Theorem 3.4. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let ai, bi, ci, di ∈
R for all i ∈ {1, 2, . . . ,M} and let {Si}Mi=1 be a sequence of (ai, bi, ci, di)-extended
generalized hybrid mappings of C into itself such that bi ≤ 0 and ci ≤ 0 for all
i ∈ {1, 2, . . . ,M}. Let {ξi} be a family of real numbers in (0, 1) such that

∑M
i=1 ξi =

1. Let αj , βj , γj , δj ∈ R for all j ∈ {1, 2, . . . , N} and let {Tj}Nj=1 be a sequence of

(αj , βj , γj , δj)-extended generalized hybrid mappings of C into itself such that βj ≤ 0
and γj ≤ 0 for all j ∈ N. Let {σj} be a family of real numbers in (0, 1) such that∑N

j=1 σj = 1. Suppose that

Ω := ∩M
i=1F (Si) ∩ (∩N

j=1F (Tj)) ̸= ∅.

Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = λnxn + (1− λn)
(
µn

M∑
i=1

ξiSi + (1− µn)
N∑
j=1

σjTj

)
xn, ∀n ∈ N,

where a, b, c, d ∈ R and {λn}, {µn} ⊂ (0, 1) satisfy the following:

0 < a ≤ λn ≤ b < 1 and 0 < c ≤ µn ≤ d < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ Ω.

Proof. From ξMSM = ξM
2 SM + ξM

22
SM + · · · , we have that

M∑
j=1

ξjTj =
M−1∑
j=1

ξjSj +
ξM
2

SM +
ξM
22

SM + · · · .

From σNTN = σN
2 TN + σN

22
TN + · · · , we have that

N∑
j=1

σjTj =
N−1∑
j=1

σjTj +
σN
2

TN +
σN
22

TN + · · · .

Thus, we have the desired result from Theorem 3.3. □

Using Theorem 3.3, we also obtain the following weak convergence theorem by
Hojo and Takahashi [8].
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Theorem 3.5 ([8]). Let E be a uniformly convex Banach space which satisfies
Opial’s condition and let C be a nonempty, closed and convex subset of E. Let
αj , βj , γj , δj ∈ R for all j ∈ N} and let {Tj} be an infinite family of (αj , βj , γj , δj)-
extended generalized hybrid mappings of C into itself such that βj ≤ 0 and γj ≤ 0
for all j ∈ N}. Let {σj} be a family of real numbers in (0, 1) such that

∑∞
j=1 σj = 1.

Suppose that ∩∞
j=1F (Tj) ̸= ∅. Let {xn} be a sequence in C generated by x1 = x ∈ C

and

xn+1 = λnxn + (1− λn)

∞∑
j=1

σjTjxn, ∀n ∈ N,

where a, b ∈ R and {λn} ⊂ (0, 1) satisfy the following:

0 < a ≤ λn ≤ b < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ ∩∞
j=1F (Tj).

Proof. Putting Sj = Tj , ξj = σj and µn = 1
2 for all n ∈ N in Theorem 3.3, we have

that for any x1 = x ∈ C,

xn+1 = λnxn + (1− λn)

∞∑
j=1

σjTjxn, ∀n ∈ N.

Thus, we have the desired result from Theorem 3.3. □

Using Theorems 3.3 and 3.4, we can also prove the following weak convergence
theorems in a Banach space.

Theorem 3.6. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let {Si} be a
sequence of nonexpansive mappings of C into itself. Let {ξi} be a family of real
numbers in (0, 1) such that

∑∞
i=1 ξi = 1. Let {Tj} be a sequence of nonspreading

mappings of C into itself. Let {σj} be a family of real numbers in (0, 1) such that∑∞
j=1 σj = 1. Suppose that

Ω := ∩∞
i=1F (Si) ∩ (∩∞

j=1F (Tj)) ̸= ∅.

Let {xn} be a sequence in C generated by x1 = x ∈ C and

xn+1 = λnxn + (1− λn)
(
µn

∞∑
i=1

ξiSi + (1− µn)
∞∑
j=1

σjTj

)
xn, ∀n ∈ N,

where a, b, c, d ∈ R and {λn}, {µn} ⊂ (0, 1) satisfy the following:

0 < a ≤ λn ≤ b < 1 and 0 < c ≤ µn ≤ d < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ Ω.

Proof. Nonexpansive mappings and nonspreading mappings are contained in the
class of extended generalized hybrid mappings satisfying the conditions of Theorem
3.3. In particular, nonexpansive mappings and nonspreading mappings in a Banach
space satisfying Opial’s condition are quasi-nonexpansive and demiclosed. Then,
we obtain the desired result from Theorem 3.3. □
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Theorem 3.7. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let {Si}Mi=1

be a sequence of nonexpansive mappings of C into itself. Let {ξi} be a family of

real numbers in (0, 1) such that
∑M

i=1 ξi = 1. Let {Tj}Nj=1 be a sequence of hybrid

mappings of C into itself. Let {σj} be a family of real numbers in (0, 1) such that∑N
j=1 σj = 1. Suppose that

Ω := ∩M
i=1F (Si) ∩ (∩N

j=1F (Tj)) ̸= ∅.

Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = λnxn + (1− λn)
(
µn

M∑
i=1

ξiSi + (1− µn)
N∑
j=1

σjTj

)
xn, ∀n ∈ N,

where a, b, c, d ∈ R and {λn}, {µn} ⊂ (0, 1) satisfy the following:

0 < a ≤ λn ≤ b < 1 and 0 < c ≤ µn ≤ d < 1, ∀n ∈ N.

Then, the sequence {xn} converges weakly to an element z ∈ Ω.

Proof. Nonexpansive mappings and hybrid mappings are contained in the class of
extended generalized hybrid mappings satisfying the conditions of Theorem 3.4. In
particular, nonexpansive mappings and hybrid mappings in a Banach space satisfy-
ing Opial’s condition are quasi-nonexpansive and demiclosed. Then, we obtain the
desired result from Theorem 3.4. □
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