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A WEAK CONVERGENCE THEOREM FOR TWO INFINITE
FAMILIES OF EXTENDED GENERALIZED HYBRID MAPPINGS
IN A BANACH SPACE AND APPLICATIONS

MAYUMI HOJO AND WATARU TAKAHASHI

ABSTRACT. Let E be a real Banach space and let C' be a nonempty subset of
E. A mapping T : C — E is called extended generalized hybrid [6] if there are
a,B,7,0 € R such that a+8+~v+d >0, a+ 8 >0 and

a|Tz — Ty|* + Bllz — Ty|I* + 1Tz — yl|* + 8]z — y[|* <0

for all z,y € C. In this paper, we prove a weak convergence theorem of Mann’s
type iteration for two infinite families of extended generalized hybrid mappings
in a Banach space satisfying Opial’s condition. This theorem generalizes a the-
orem by Hojo and Takahashi [8]. Using this result, we get well-known and new
weak convergence theorems in a Banach space. In particular, we obtain a weak
convergence theorem of Mann’s type iteration for two finite families of extended
generalized hybrid mappings in a Banach space.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty subset of H. A mapping
T :C — H is said to be nonexpansive if |Txz — Tyl|| < ||z — y|| for all z,y € C. In
2010, Kocourek, Takahashi and Yao [11] defined a broad class of nonlinear mappings
in a Hilbert space which covers nonexpansive mappings: Let C' be a nonempty subset
of H. A mapping T : C — H is called generalized hybrid [11] if there exist o, 5 € R
such that

(1.1) alTe = Ty|* + (1 - a)llz — Ty|* < Bl|Tz — y|* + (1 = B)]lz — y|*

for all z,y € C; see also [1]. Such a mapping T is called («, ()-generalized hy-
brid. Notice that the class of generalized hybrid mappings covers several well-known
mappings in a Hilbert space. For example, a (1,0)-generalized hybrid mapping is
nonexpansive. It is nonspreading [12, 13] for « =2 and § =1, i.e.,

2T — Ty||* < |Tx —yl* + | Ty — |, Va,yeC.
It is also hybrid [18] for a = % and 8 = %, ie.,
3| Ta — Tyll* < |z — yl|* + Tz — ylI* + 1Ty — 2|, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [9]. Hojo
and Takahashi [6] extended the concept of generalized hybrid mappings in a Hilbert
space to that in a Banach space as follows: Let £ be a Banach space and let C' be a
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nonempty subset of £. A mapping T : C' — F is called extended generalized hybrid
[6] if there are «, 8,7,0 € R such that « + 5 +~v+6 >0, a+ S >0 and

(1.2) al|Tz = Ty|* + Blla — Tyl* + 1Tz — y[|* + dllz — y[I* < 0

for all z,y € C. We call such a mapping («, 3,7, d)-extended generalized hybrid.
Hojo and Takahashi [7] proved the following weak convergence theorem for finding
a common fixed point of two extended generalized hybrid mappings in a Banach
space by using Mann’s type iteration [14]; see also [19].

Theorem 1.1 ([7]). Let E be a uniformly convexr Banach space which satisfies
Opial’s condition and let C' be a nonempty, closed and convexr subset of E. Let
a,,7,0 € R and o, ',7,0' € R. Let S and T be (a,B,7,0) and (/, 5,7, )-
extended generalized hybrid mappings of C into itself such that 5 < 0 and v < 0
and B <0 and v <0, respectively. Suppose that F(S) N F(T) # 0. Let {x,} be a
sequence in C' generated by 1 = x € C and

Tnt1 = nZn + (1 — ap) ('ynan +(1- vn)TJ:n), Vn € N,
where a,b,c,d € R, {y,} and {a,} satisfy the following:
0<a<a,<b<1l and 0<c<vy,<d<1, VneN.

Then, the sequence {x,} converges weakly to an element z € F(S) N F(T), where
F(S)N F(T) is the set of common fized points of S and T.

In this paper, we prove a weak convergence theorem of Mann’s type iteration
for two infinite families of extended generalized hybrid mappings in a Banach space
satisfying Opial’s condition. This theorem generalizes a theorem by Hojo and Taka-
hashi [8]. Using this result, we get well-known and new weak convergence theorems
in a Banach space. In particular, we obtain a weak convergence theorem of Mann’s
type iteration for two finite families of extended generalized hybrid mappings in a
Banach space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let E be a real Banach space with norm || - || and let E* be the
topological dual space of E. We denote the value of y* € E* at x € E by (z,y").
When {xz,} is a sequence in E, we denote the strong convergence of {z,} toz € E
by x, — x and the weak convergence by z,, — x. The modulus § of convexity of E
is defined by

. T+y
o0 =int {1 ol < 1yl < 1,00 - 01> ]

for all € with 0 < ¢ < 2. A Banach space F is said to be uniformly convex if
d(e) > 0 for all € > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C' be a nonempty subset of a Banach space E. A mappingT :C — E
is nonexpansive if [Tz — Ty|| < ||z — y| for all z,y € C. A mapping T : C — E is
quasi-nonexpansive if F(T) # (0 and |Tz—y|| < ||lz—y] forallz € C and y € F(T),



A WEAK CONVERGENCE THEOREM IN A BANACH SPACE 51

where F(T') is the set of fixed points of 7. If C' is a nonempty, closed and convex
subset of a strictly convex Banach space FF and T : C' — E is quasi-nonexpansive,
then F(T) is closed and convex; see Itoh and Takahashi [10]. The duality mapping
J from E into 2F" is defined by

Ju={2" € E*: (z,a") = ||z|* = [|2*]*}
for all x € E. The following result is in [17].

Lemma 2.1 ([17]). Let E be a Banach space and let J be the duality mapping on
E. Then, for any z,y € F,

where j € Jy.

Let E be a Banach space and let A C E x E. Then, A is accretive if for
(x1,9y1), (z2,y2) € A, there exists j € J(x1 — x2) such that (y; — y2,5) > 0, where
J is the duality mapping of E. An accretive operator A C E x E is called m-
accretive if R(I +rA) = FE for all r > 0, where I is the identity operator and
R(I 4+ rA) is the range of I + rA. An accretive operator A C E x E is said to
satisfy the range condition if D(A) c R(I + rA) for all » > 0, where D(A) is
the closure of the domain D(A) of A. An m-accretive operator satisfies the range
condition. If C'is a nonempty, closed and convex subset of a Banach space and T
is a nonexpansive mapping of C' into itself, then A = I — T is an accretive operator
and C = D(A) C R(I +rA) for all » > 0; see [17, Theorem 4.6.4].

Let F be a Banach space and let C' be a nonempty subset of £. Then, a mapping
T :C — FE is said to be firmly nonexpansive [3] if

for all z,y € C, where j € J(Tx—Ty); see also [2, 5]. It is known that the resolvent
of an accretive operator satisfying the range condition in a Banach space is a firmly
nonexpansive mapping of the closure of the domain into itself. In fact, let C' = D(A)
and r > 0. Define the resolvent J,. of A as follows:

Jrx={z€ D(A):x € z+rAz}
for all x € D(A). It is known that such J,z is a singleton; see [17]. We have that

for x1,x90 € D(A), x1 = z1 + 1y1, y1 € Az; and x3 = 23 + 1Y2, Y2 € Azs. Since A is
accretive, we have that (y; — y2,7) > 0, where j € J(z1 — 22). So, we have

1 — 21 Ty — 22 .

r T

Furthermore, we have that

r1 — 21 T2 — 22 .
< - 7]>ZO
T T
<:><x1—21—(1:2—2’2),j>20

= (z1— 22,7) > |21 — 22||%.
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From z; = J,z1 and 29 = J,x2, we have that J,. is a firmly nonexpansive mapping
of C into itself; see also [3], [4] and [20]. Let E be a Banach space and let C' be a
nonempty subset of £. A mapping T : C — FE is called extended generalized hybrid
if it satisfies (1.2), that is, there are «, 3,7,d € R such that a + 8+~ + 3§ > 0,
a+f>0and

af| Tz — Ty|* + Bllz — Ty|* + 7| Tz — y|* + ]lz —y|* <0

for all z,y € C. We call such a mapping («, 3,7, 0)-extended generalized hybrid. We
can also show that, in a Banach space, an («, 3,7, §)-extended generalized hybrid
mapping is nonexpansive for « = 1, § = v = 0 and § = —1, nonspreading for
a=2 =v=—-1and § = 0, and hybrid for a« =3, § = v = —1 and § =
—1. Nonexpansive mappings, nonspreading mappings and hybrid mappings in a
Banach space are deduced from firmly nonexpansive mappings as follows: Let T" be
a firmly nonexpansive mapping of C' into E. Then we have that for xz,y € C' and
je J(Tx—Ty),
1Tz = Ty|* < (x -y, ).
From Theorem 2.1 we have that
ITe~Ty|* < (x —y,J)
(2.1) = 0<2(c—Tzx— (y—Ty),J)
= 0 < |z —y|f* = [Tz - Ty|?
= Tz = Ty|]” < ||z - yl*
Futhermore, we have that for x,y € C and j € J(Txz — Ty),
ITe=Ty|? < (x -y, )
—0<2(z—Tzx—(y—Ty),7)
= 0 < |l = Ty|? = |Tz — Ty|* + | Tz — y|* — || Tz — Tyl
=0 < [lz = Ty|* + |y — Ta|* — 2||Tz - Ty|?
= 2|Tz —Ty|* < ||z — Ty|* + |ly — T
Therefore, using (2.1) and (2.2), we have that
| Tz=Ty|* < {x -y, )
= 3||Tz — Ty|* < |la = Ty|* + [ly — Tz||* + |z — y|*.
Hojo and Takahashi [6] proved the following result.

Lemma 2.2 ([6]). Let E be a Banach space, let C' be a nonempty, closed and convex
subset of E. Then an extended generalized hybrid mapping which has a fized point
1S qUASI-NONETPansive.

The following result was proved by Xu [21].
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Lemma 2.3 ([21]). Let E be a uniformly convex Banach space and let r > 0. Then

there exists a strictly increasing, continuous and convex function g : [0,00) — [0, 00)
such that g(0) = 0 and

e+ (1 =yl < plle)? + (1= wllyll* = w1 = wa(lz - yl)
for all x,y € B, and p with 0 < <1, where B, ={z € E : ||z|| < r}.

Let E be a Banach space. Then, E satisfies Opial’s condition [15] if for any {x,}
of E such that x, — x and x # y,

liminf ||z, — z| < liminf ||z, —y|.
n—oo n—oo

Let E be a Banach space. Let C' be a nonempty, closed and convex subset of F.
Let T: C — E be a mapping. Then, p € C is called an asymptotic fized point of T
[16] if there exists {z,,} C C such that z, — p and lim, o |2y, — Tzy,|| = 0. We
denote by F(T) the set of asymptotic fixed points of T. A mapping T : C — E is
said to be demiclosed if F(T) = F(T). We know the following result from Hojo and
Takahashi [6].

Lemma 2.4 ([6]). Let E be a Banach space satisfying Opial’s condition and let C
be a nonempty, closed and convex subset of E. Let o, 3,7, € R and let T be an
(a, 8,7, 0)-extended generalized hybrid mapping of C into E which satisfies f < 0
and v < 0. Then F(T) = F(T), i.e., T is demiclosed.

If E is a Banach space satisfying Opial’s condition, then nonexpansive map-
pings, nonspreading mappngs and hybrid mappings are quasi-nonexpansive and
demiclosed.

3. WEAK CONVERGENCE THEOREMS

In this section, we first prove a weak convergence theorem of Mann’s type iteration
[14] for an infinite family of extended generalized hybrid mappings in a Banach space
satisfying Opial’s condition.

Lemma 3.1. Let E be a uniformly convexr Banach and let C' be a nonempty, closed
and convex subset of E. Let {T;} be a family of quasi-nonexpansive and demiclosed
mappings of C into E such that N2, F(T;) # 0 and let {§;} C (0,1) be a family of
real numbers such that Zji1 & = 1. Define

Tx = ijzj, Vo e C.
j=1

Then T is well-defined and quasi-nonezpansive. Furthermore, F(T) = N32, F(Tj)
and T is demiclosed.

Proof. Let yy € NG, (Tj). Since Tj is quasi-nonexpansive, we have that

1Tl < 1Tjz = yoll + llyoll < llz = woll + llvoll
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for all z € C. For a family {¢;} C (0,1) of real numbers such that 322, &; = 1,
define

oo
Tr = Z §Tjx
j=1

for all € C; see Bruck [3]. Then, Tw = > 222, §;Tjz converges absolutely for all
x € C and then T is well-defined. Since Tj is quasi-nonexpansive, it is obvious that
T is quasi-nonexpansive. We show that 7" is demiclosed. Let {z,} be a sequence of C
such that z,,— Tz, — Oand z,, — v. Let w € ﬁ;’ilF(Tj) Foranye > 0and i,k € N

with i # k, we take m € N such that i,k < m and H Z;’imﬂ &(Tjzy, — w)” <e.
We have from Lemma 2.1 that, for j(z, —w) € J(z, — w),
|zn — w|? = ||zn — Ty + Tzp — w||?

< ||Tzn — w]* + 2(2n — Tan, j(2n — w))

j=1
j=1
< (H igj(zjn = w)H + 5)2 + 2(wn — T, j(2n — w))
j=1

n 2
< || D& (Twn — )| +2re + €2+ 2a — Twa, j(aa — w)),
j=1

where 7 = sup{||Tjz, — w|| : j € N}. From Theorem 2.3, there exists a strictly
increasing, continuous and convex function g : [0,00) — [0, 00) such that g(0) =0
and

lna + (1 = wyl® < pllzl® + (1 = wlyl* = n(1 = wg(llz - yl)
for all z,y € B, and p with 0 < p < 1, where B, = {z € E : ||z]| < r}. Set

_ &
0= g5 Then we have that

| 6@ -
j=1

= H(fZ + &) (o(Tizn — w) + (1 — o) (Thzn — w)) + i &(Tjzy — w)H2
ik

< G+ &) o (Tizn —w) + (1= 0)(Tewn — w)|* + ) &l Tjzn — wlf?
JFik

< (& + ) (0l|Tizn — ] + (1 = 0) [ Thn — w]?)
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— (& + &)1 = 0)g(|Tiwn — Tiwnl) + > &l Tjan — wlf?
ik
< (& + &) (ollen — w]® + (1 — o) |z, — wl]?)

— (& + &)1 = 0)g(|Tixn — Thwnl) + > &llan — w]?
ik

=" gillan — w]|? — (& + &) (1 — 0)g(|| Ty — Tranl))
Jj=1
< |lwn —wl|® = (& + &)o(1 — 0)g(| Ty — Thaal).

Then, we have that
n 2
|20 —w|? < H ij(Tj:L'n - w)” + 2re + €2 + 2(xy — Ty, j(Ty — w))
j=1

< Jlan —wl® = (& + &) (1 = 0)g(|Tian — Tianl)
+ 2(xy — Ty, j (0 —w)) + 2re + 2
and hence
&+ &)o(1—0)g(|Tizn — Tranl]) < 20z — T, j(xn — w)) + 2re + 2.
Since limy, o0 ||Zn, — T'zy|| = 0, we have that

(& + &k)o(1 — o) limsup g(|| Tz, — Trxnl]) < 2re + g2
n—oo

Since € > 0 is arbitrary, we have that
(& + &k)o (1 — o) limsup g(||Tizn — Tianl|) < 0.
n—oo

Since (& + &)o(1 — o) > 0, we have that limsup,, . ¢(||Tizn — Tkxn||) < 0 and
then

lim g(|[Tirn — Tea) = 0.

n—oo

From the properties of g, we have that

lim ||Tixy, — Thxy| = 0.

n—o0

For any € > 0 and ¢ € N, we take m € N such that

o0
| > &mm - T <.
j=m+1
Then we have that
|zn — Tizn|| = |vn — Top + Tap — Tizy||

< zn = Tap|| + [|Tzn — Tizy||

o0
= llow = Taall + | 3 &(Tjan — Tiza)
j=1
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m
< Nlow = Taall + | Y (T — Tiaa) | + <.
j=1

From ||z, — Txy| — 0 and Tz, — Tjz,, — 0 for all j € N, we have that

limsup ||z, — Tiz,| < e.
n—oo

Since € > 0 is arbitrary, we have that
(3.1) lim |z, — Tizn|| =0, VieN.
n—oo

Since x;, — v and T; is demiclosed for all i € N, we have that v € N7, F/(T}). Finally,
to prove that 7' is demiclosed, we show that F'(T') = N32, F/(T}). In fact, it is obvious
that N5, F'(T;) C F(T). We show that F'(T) C N3, F(Tj). For yo € N2, F(T})

and w € F(T), we have that

oo oo
w—yo=Tw—yo =Y &Tjw—yo =Y &(Tjw—yo)
j=1 j=1

and hence

oo o0
lw = yoll <Y &l T5w —woll <D &llw —woll = l[w — woll-
j=1 =1

Then, ||Tjw — yo|| = |Jw — yol| for all j € N. Assume that Tjw — yo # Tpw — yo for

some 7,k € N. Since F is a strictly convex Banach space, there exists § > 0 such
that

HT(Tiw —yo) + (1 = 7)(Thw — yO)H = ||lw—yo|| — 4,

where 7 = &-%&k' Then, we have that, for any m € N with ¢, k < m,

|Seimu-w|

= |66+ )T =) + (1= YT = )+ 3 €T — )|
JFuLk

< (& + &)IIT(Tiw = yo) + (1 = 7)(Thw — yo)ll + D &l|Tjw — ol
JFLk
< (& + &) (lw = yoll = 0) + > &llw — woll

JFik

= &llw—yoll — (& + &)d

j=1
< flw = woll — (& + &)o.
Since w — yg = Z;’il & (Tjw — yo), we have that

[lw = yoll < lw —woll = (&1 + &)9.
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This is a contradiction. Therefore, we have that T;w —yg = Tpw —yo for all 7,k € N.
From w —yo = 372, &(Tjw — yo), we have that w — yo = Tjw — yo for all i € N
and hence w = Tjw for all ¢ € N. This implies that F(T") C N2, F(T}). Therefore,
F(T) = N3, F(T}) and then T is demiclosed. O

Lemma 3.2. Let FE be a uniformly convex Banach space which satisfies Opial’s
condition and let C' be a nonempty, closed and convex subset of E. Let S and T be
quasi-nonexpansive and demiclosed mappings of C into itself such that

F(S)NF(T) # 0.
Let {x,} be a sequence generated by x1 = x € C' and
Tl = ApZp + (1 — )\n)(unSmn +(1- ,un)Tmn), Vn €N,
where a,b,c,d € R, {\,} and {p,} satisfy the following:
0<a<X A <b<l and O0<c<pu, <d<1l, VnelN
Then, the sequence {x,} converges weakly to an element z € F(S) N F(T).

Proof. Since S and T are quasi-nonexpansive, we have that F'(S) N F(T) is closed
and convex. Put

Ty = pnS + (1 — pn)T
for all n € N and let w be a point of F'(S) N F(T'). We have that
[Trnwn — w|| = [[(#nS + (1 = pn)T)zn — wl|
(3.2) < pin|Szn — wll + (1= pn) | Tn — w]]
< pnllzn —wl + (1 = pn) [[n — w]|

= ||zn — wl|.
Using (3.2), we have that
|Zns1 — w| = [[Anzn + (1 = M) Tnzn — w|
(3.3) < Aallzn —w| + (1 = X)) | Ty, — w|

< Mallzn —w|| + (1 = M) ||z — wl|
= ||@y — w].

Then lim, o ||z, — w]|| exists. Thus we have that the sequence {x,} is bounded.
This implies that {T},x,} is bounded. Let

r = max{sup ||z, — w||,sup || Tnx, — w| }.
neN neN

Then, from Theorem 2.3, there exists a strictly increasing, continuous and convex
function g : [0,00) — [0, 00) such that g(0) = 0 and

x4+ (1= yll* < pllel? + (1= w)llyll? = 1t = gz - yl)
for all ,y € B, and p with 0 < p < 1, where B, = {z € E : ||z|| < r}. Then we
have that for w € F(S)N F(T) and n € N,

241 = ] = [ An@n + (1 = X)) Tpzn — w||
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= [[An(zn —w) + (1 = Ap)(Tnzn — w)||2

< Anllzn = wl? + (1 = A) I Tnzn — wl* = Aa(l = An)g(llzn — Tazal)
< Anllwn — wH + (1= ) llzn wH2 = A1 = A)g(llzn — Townl])

= [lzn — wH2 An (L= An)g(l|zn — Toanl|)

and hence
An(L = An)g(lrn — Toznl]) < |lzn — w||2 —[[Znt1 — wH2.
Since lim,, oo |7, — w]||? exists, we have from 0 < a < A\, < b < 1 that
lim g(||xy, — Thznl||) = 0.
n—oo
From the properties of g, we have

(3.4) lim |z, — Thz,| = 0.

n—o0

We have from Lemma 2.1 that, for w € F(S)N F(T),
|n — wH2 = [|#n — Than + Tnzn — w||2
<N Tnwn — wl|* + 2(zn — Tnn, j(zn — w))
= [|pnSzn + (1 — pp) Ty, — wH2 + 2(xy, — Tpxp, J(zy — w))
< pin| Sz — wl® + (1 = ) | Tz — w|®
— b (L = pn)g(|[Szp — Tanll) + 2(zn — Tpan, J (20 — w))
< pinllzn — wl® + (1 = pp) [l — wlf?
— pn(1 = pn)g(|Szn — Tnll) + 2(zn — Totn, j(2n — w))
= llen — wl* = pn (1 = )9 (1820 — Tnll) + 2z — Tnwn, j(zn — w))
and hence
pn(1 = )20 = Trall) < 2 = Tt (o — ),

Since x,, — Tpxy, — 0 and {x,} is bounded, we have from 0 < ¢ < p,, < d < 1 that
Sz, — Tx, — 0. Then we have that

|z — Sxn|| = |20 — Tnxn + Thxn — Szy||
< |lzp — Thzp|| + || Thxn — Sy |
= [|2n — Toznll + (1 — pn) | T2n — Sy
— 0.

Similarly, we have that ||z, — Tz,| — 0.

Since {zy} is bounded, there exists a subsequence {x,,} of {z,} such that z,, —
v for some v € C. Since S and T are demiclosed, we have that v is a point
of F(S)N F(T). Let {x,,} and {z,,} be two subsequences of {z,} such that
Ty, — u and x,;, — v. We have that u,v € F(S)N F(T). Suppose u # v. From
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u,v € F(S)N F(T), we know that lim, o ||z, — u| and lim, o ||z, — v|| exist.
Since E satisfies Opial’s condition, we have that

lim |z, —u|| = lim ||z, —ul|
n—oo 71— 00

< lim ||zp, — | = lim ||z, — |
1—00 n—oo
— Tim [z, — vl < lim [lz, — ]
j—o0 j—oo
= lim ||z, — ul.
n—oo
This is a contradiction. Thus we must have u = v. This implies that {x,,} converges
weakly to a point of F'(S) N F(T). This completes the proof. O

Using Lemmas 3.1 an 3.2, we can prove the following weak convergence theorem
for two infinite families of extended generalized hybrid mappings in Banach spaces.

Theorem 3.3. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let a;, b;,c;,d; €
R for alli € N and let {S;} be a sequence of (a;, b;, ¢;, d;)-extended generalized hybrid
mappings of C into itself such that b; < 0 and ¢; < 0 for all t € N. Let {&} be
a family of real numbers in (0,1) such that Y2, & = 1. Let oy, B5,7;,0; € R for
all j € N and let {T;} be a sequence of (¢, Bj,7;,0;5)-extended generalized hybrid
mappings of C into itself such that B; < 0 and v; <0 for all j € N. Let {o;} be a
family of real numbers in (0,1) such that 2;11 o; = 1. Suppose that

Q= P, F(S) 1 (M2, F(Ty)) #0.
Let {xy,} be a sequence in C generated by 1 =z € C and

i1 = M\Zn + (1= Ap) (un ZfiSi + (1 — un) ZUﬂ}-)xn, Vn e N,
i=1 j=1

where a,b,c,d € R and {\,}, {pn} C (0,1) satisfy the following:
0<a< A, <b<1l and 0<c<pu,<d<1, VneN.

Then, the sequence {x,} converges weakly to an element z € ).

Proof. Since S; is quasi-nonexpansive from Lemma 2.2, we have that F'(.S;) is closed
and convex. Therefore, NY°, F'(.S;) is closed and convex. For a family {&} C (0,1)
of real numbers such that ) ;°, & = 1, define

00
=1

for all x € C. Then we havs from Lemma 3.1 that S is well defined and quasi-
nonexpansive. Furthermore, we have from Lemma 3.1 that F(S) = N2, F(S;) and
S is demiclosed. Similarly, for a family {o;} C (0,1) of real numbers such that
> 52105 =1, define

o
Ty = Z ojTx
j=1
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forall z € C'. We havs from Lemma 3.1 that T is well defined and quasi-nonexpansive.
Furthermore, we have that F(T) = N?2,F(T;) and T is demiclosed. Thus, for
x1 =z € C, the sequence {x,} in Theorem 3.3 is as follows:

Tt = Antn + (1= An) (#ns r(1- MH)T):C”, Vn € N.
Using Lemmas 3.1 an 3.2, we have the desired result. O

Using Theorem 3.3, we obtain the following weak convergence theorem for two
finite families of extended generalized hybrid mappings in a Banach space satisfying
Opial’s condition.

Theorem 3.4. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C' be a nonempty, closed and convex subset of E. Let a;,b;,c;,d; €
R for all i € {1,2,...,M} and let {S;}}1, be a sequence of (a;,b;,ci,d;)-extended
generalized hybrid mappings of C into itself such that b; < 0 and ¢; < 0 for all
i€{1,2,...,M}. Let {&} be a family of real numbers in (0,1) such that Zf\il & =
1. Let aj,f5,75,0; € R for all j € {1,2,...,N} and let {T} }N be a sequence of
(0, Bj,vj,05)-extended generalized hybmd mappings of C' into ztself such that B; <0
and v; < 0 for all j € N. Let {o;} be a family of real numbers in (0,1) such that
Zé-v:l oj = 1. Suppose that

Q =AM, F(S) N (M) F(T)) 0.

Let {xy,} be a sequence generated by x1 = x € C' and

Tpil = ApTp + <,UHZ§ZS + 1_Mn ZU] )wm Vn € N,

where a,b,c,d € R and {\,}, {un} C (0,1) satisfy the followz'ng:
0<a< A <b<l and 0<c<pu,<d<l1l, VneN.

Then, the sequence {z,} converges weakly to an element z € ).

Proof. From &Sy = §M Su + §M LSy + - -+, we have that

Set - Z@S TN
7=1

From onTn = TN + 3TN + - -+, we have that
ZUJT—ZUJT+ +22TN+”'
Thus, we have the desired result from Theorem 3.3. O

Using Theorem 3.3, we also obtain the following weak convergence theorem by
Hojo and Takahashi [8].
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Theorem 3.5 ([8]). Let E be a uniformly convexr Banach space which satisfies
Opial’s condition and let C' be a nonempty, closed and convexr subset of E. Let
aj, B5,75,0; € R for all j € N} and let {T;} be an infinite family of (o, By, 74, 6;)-
extended generalized hybrid mappings of C into itself such that 8; < 0 and v; <0
for all j € N}. Let {0} be a family of real numbers in (0,1) such that 372, oj = 1.
Suppose that N5, F'(T;) # 0. Let {x,} be a sequence in C' generated by x1 =z € C
and

Tnt1 = A\ + (1 = Ap) ZUjTjiL‘n, Vn € N,
j=1
where a,b € R and {\,} C (0,1) satisfy the following:
O<a< A, <b<1l, VneN.

Then, the sequence {xy} converges weakly to an element z € ﬂ;’ilF(Tj)

Proof. Putting S; =T}, § = 0; and p, = % for all n € N in Theorem 3.3, we have
that for any 1 = x € C,

o0
Tl = AnZn + (1= Ap) Zajzjn, Vn € N.
j=1

Thus, we have the desired result from Theorem 3.3. O

Using Theorems 3.3 and 3.4, we can also prove the following weak convergence
theorems in a Banach space.

Theorem 3.6. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty, closed and convex subset of E. Let {S;} be a
sequence of monexpansive mappings of C into itself. Let {&} be a family of real
numbers in (0,1) such that > o0 & = 1. Let {T}} be a sequence of nonspreading
mappings of C into itself. Let {o;} be a family of real numbers in (0,1) such that
>0 =1. Suppose that

j=1
Q= N2 F(S) N (NF2F(T))) # 0.
Let {z} be a sequence in C' generated by v1 =z € C and

Tnt1 = MZn + (1 — Ap) (un ZfiSi + (1 — n) ZUjT]):):n, Vn €N,
i=1 j=1

where a,b,c,d € R and {\,}, {pn} C (0,1) satisfy the following:
0<a< A, <b<1l and O0<c<pu,<d<1l, VneN.

Then, the sequence {z,} converges weakly to an element z € ).

Proof. Nonexpansive mappings and nonspreading mappings are contained in the
class of extended generalized hybrid mappings satisfying the conditions of Theorem
3.3. In particular, nonexpansive mappings and nonspreading mappings in a Banach
space satisfying Opial’s condition are quasi-nonexpansive and demiclosed. Then,
we obtain the desired result from Theorem 3.3. ]
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Theorem 3.7. Let E be a uniformly convex Banach space which satisfies Opial’s

condition and let C' be a nonempty, closed and convexr subset of E. Let {Si}ij\il

be a sequence of nonexpansive mappings of C into itself. Let {&} be a family of

real numbers in (0,1) such that M & = 1. Let {Tj}ﬁvz1 be a sequence of hybrid

mappings of C into itself. Let {o;} be a family of real numbers in (0,1) such that
N

ijl oj = 1. Suppose that

Q=Y F(S) N (N F(T))) # 0.

Let {x),} be a sequence generated by x1 = x € C' and
M N
Tntl = AnZn + (1= Ap) (un Z&Si + (1 — pp) ZajTj)xn, Vn €N,
i=1 j=1

where a,b,c,d € R and {\,}, {un} C (0,1) satisfy the following:
0<a<A<b<l and 0<c<pu,<d<l1l, VneN.

Then, the sequence {z,} converges weakly to an element z € ).

Proof. Nonexpansive mappings and hybrid mappings are contained in the class of
extended generalized hybrid mappings satisfying the conditions of Theorem 3.4. In
particular, nonexpansive mappings and hybrid mappings in a Banach space satisfy-
ing Opial’s condition are quasi-nonexpansive and demiclosed. Then, we obtain the
desired result from Theorem 3.4. 0
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