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(i) It is assumed that the model has nodes arranged according to a certain
rule. Let I denote the set of all nodes, which is called the node set. We
assume that I is a countable set metrized by a metric d.

(ii) Each node has a value and it is renewed by learning. V is the space of
values of nodes. We assume that V is a real linear normed space with a
norm ∥ · ∥. A mapping m : I → V transforming each node i to its value
m(i) is called a model function.

(iii) X is the input set. Let X be a subset of V . x ∈ X is called an input.
(iv) The learning process is as follows. If an input is given, then the value

of each node is renewed to a new value by the input. If an initial model
function m0 and a sequence x0, x1, x2, . . . ∈ X of inputs are given, then
the model functions m1,m2,m3, . . . are generated sequentially according
to

mk+1(i) = (1− αmk,xk
(i))mk(i) + αmk,xk

(i)xk, k = 0, 1, 2, . . . ,

where αmk,xk
is the learning rate which satisfies 0 ≤ αmk,xk

≤ 1.

2. An absorbing class

In this paper, we restrict our considerations to a fundamental self-organizing
map with real-valued nodes and a one-dimensional array of nodes. We assume
that V = R, a set of values of nodes, where R is the set of all real numbers.

We consider a model

(I = {1, 2, . . . , N}, V = R, X ⊂ R, {mk(·)}∞k=0).

(i) Let I = {1, 2, . . . , N} be the node set with metric d(i, j) = |i− j|.
(ii) Assume V = R, that is, each node is R-valued.
(iii) x0, x1, x2, . . . ∈ X ⊂ R is an input sequence.
(iv) We assume a learning process defined by the following procedures.

Learning process LA with learning radius r = 1 is as follows.
(a) Areas of learning:

(2.1) I(mk, xk) = {i∗ ∈ I | |mk(i
∗)− xk| = inf

i∈I
|mk(i)− xk|}

and N1(i) = {j ∈ I | |j − i| ≤ 1}. (b) Learning-rate factor: 0 < α < 1.
(c) Learning: let N1(I(mk, xk)) = ∪i∗∈I(mk,xk)N1(i

∗) and {mk} is defined
by the following. For a given initial model function m0 and each k =
0, 1, 2, . . ., if i ∈ N1(I(mk, xk)) then

(2.2) mk+1(i) = (1− α)mk(i) + αxk,

otherwise mk+1(i) = mk(i).

By repeating learning, the values of all the nodes gradually have certain regu-
larity such as monotonicity. The following is a well-known property [6].

Theorem 2.1. We consider a self-organizing map model

({1, 2, . . . , N},R, X ⊂ R, {mk(·)}∞k=0)
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with Learning process LA(r = 1). For model functions m1, m2, . . ., the following
statements hold.

(i) if mk is increasing on I = {1, 2, . . . , N}, that is mk(i) ≤ mk(i+1) for all
i, then mk+1 is increasing on I;

(ii) if mk is decreasing on I, that is mk(i) ≥ mk(i + 1) for all i, then mk+1

is decreasing on I;
(iii) if mk is strictly increasing on I, that is mk(i) < mk(i+ 1) for all i, then

mk+1 is strictly increasing on I;
(iv) if mk is strictly decreasing on I, that is mk(i) > mk(i+ 1) for all i, then

mk+1 is strictly decreasing on I.

A property like monotonicity is called an absorbing state or a closed class of
states in a self-organizing map model in the sense that once a model function is
in this state, it does not become any other state for any input.

3. A numerical example for a transition of model function

By Theorem 2.1, model function mk turn to a monotone state from a non-
monotone state after a sufficient number of renewals.

Figure 1. The histogram of input values and an exponential distribution

for generating them.

Example 3.1. We give a numerical example of a learning process in a one-
dimensional arrayed self-organizing map model with 100 real-valued nodes. Fig-
ure 2 shows the transition of the values of nodes in the model with a learning
process from random inputs which are generated by an exponential distribution
with its mean 2 shown in Figure 1. The initial values of nodes shown in the
left of Figure 2 (step 0), are generated by the discrete uniform distribution on
{0, 1, . . . , 12}. We can observe that model function turns to be monotone gradu-
ally in Figure 2.

4. Local behavior of model function

In this section, we discuss local behavior when a model function gradually
monotonizes in the learning process and describe some conditions for a model
function to monotonize. As observed in Example 3.1, usually, the position of the
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Figure 2. The transition of the values of nodes (iteration steps: step

0, 2500, 70000, 140000). The horizontal axis and the vertical axis represent

the node index and the value of each node, respectively.

node which has the minimum value or the maximum value transitions gradually
from the inside to the one end. The following result give the behavior just before
a model function becomes monotone, and give a condition on state of model
function and input for monotonization.

Theorem 4.1. We consider a self-organizing map model

({1, 2, . . . , N}, V ⊂ R, X ⊂ R, {mk(·)}∞k=0)

with Learning process LA(r = 1, 0 < α < 1). It is assumed that

(4.1) m(1) > m(2), m(2) < m(3) < · · · < m(N)

and

m(i) ̸= m(j) for i ̸= j

hold for the model function m after several updates. Let m′ be the updated model
function of m when learning from input x. Then, the following holds.

(i) If m(1) ≥ m(3), then m′ does not increasing on {1, 2, . . . , N} for any x.
(ii) If m(1) < m(3), then m′ is strictly increasing on {1, 2, . . . , N} if and only

if input x satisfies inequality

(4.2) max

{
m(1) +m(3)

2
,
(
1− 1

α

)
m(2) +

1

α
m(1)

}
< x ≤ m(3) +m(4)

2
.

A proof of Theorem 4.1 is in [5].
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We give a condition on state of model function and input for the node which
takes the extreme value of the model function to shift by one node to the left or
the right.

Theorem 4.2. We consider a self-organizing map model

({1, 2, . . . , N}, V ⊂ R, X ⊂ R, {mk(·)}∞k=0)

with Learning process LA(r = 1, 0 < α < 1). It is assumed that

(4.3) m(1) > m(2) > · · · > m(q), m(q) < m(q + 1) < · · · < m(N)

and

m(i) ̸= m(j) for i ̸= j

hold for the model function m after several updates and some node q, where
3 ≤ q ≤ N − 2. Let m′ be the updated model function of m using input x.

Then, the extreme point of the model function shifts to the left by one node,
that is,

(4.4) m′(1) > m′(2) > · · · > m′(q − 1) and m′(q − 1) < m′(q) < · · · < m′(N)

hold if and only if m and x satisfy at least one of the following conditions (i)-(iv).

(i) For s− = max{s ≥ 0 | m(q − s) < m(q + 1)}, s− = 1 and

max

{
m(q − 1) +m(q + 1)

2
,
(
1− 1

α

)
m(q) +

1

α
m(q − 1)

}
< x <

m(q + 1) + min{m(q − 2), m(q + 2)}
2

;(4.5)

(ii) s− = 1, m(q − 2) > m(q + 2) and

(4.6)
(
1− 1

α

)
m(q) +

1

α
m(q − 1) < x =

m(q + 1) +m(q + 2)

2
;

(iii) s− ≥ 2 and

max

{
m(q − s−) +m(q + 1)

2
,
(
1− 1

α

)
m(q) +

1

α
m(q − 1)

}
< x ≤ m(q + 1) + min{m(q − s− − 1), m(q + 2)}

2
.(4.7)

If s− = q − 1, replace the right side of (4.7) with m(q+1)+m(q+2)
2 ;

(iv) s− ≥ 3 and

(4.8)
(
1− 1

α

)
m(q) +

1

α
m(q − 1) < x =

m(q − s−) +m(q + 1)

2
.

Moreover, the extreme point of the model function shifts to the right by one
node, that is,

(4.9) m′(1) > m′(2) > · · · > m′(q+1) and m′(q+1) < m′(q+2) < · · · < m′(N)

hold if and only if m and x satisfy at least one of the following conditions (v)-
(viii).
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(v) For s+ = max{s ≥ 0 | m(q + s) < m(q − 1)}, s+ = 1 and

max

{
m(q + 1) +m(q − 1)

2
,
(
1− 1

α

)
m(q) +

1

α
m(q + 1)

}
< x <

m(q − 1) + min{m(q + 2), m(q − 2)}
2

;(4.10)

(vi) s+ = 1, m(q − 2) < m(q + 2) and

(4.11)
(
1− 1

α

)
m(q) +

1

α
m(q + 1) < x =

m(q − 1) +m(q − 2)

2
;

(vii) s+ ≥ 2 and

max

{
m(q + s+) +m(q − 1)

2
,
(
1− 1

α

)
m(q) +

1

α
m(q + 1)

}
< x ≤ m(q − 1) + min{m(q + s+ + 1), m(q − 2)}

2
.(4.12)

If s+ = N − q, replace the right side of (4.12) with m(q−1)+m(q−2)
2 ;

(viii) s+ ≥ 3 and

(4.13)
(
1− 1

α

)
m(q) +

1

α
m(q + 1) < x =

m(q + s+) +m(q − 1)

2
.

Proof. Let s− = 0. If q ∈ I(m,x) or q − 1 ∈ I(m,x), then m′(q − 1) > m′(q). If
q + 1 ∈ I(m,x) and q, q − 1 ̸∈ I(m,x), then it follows from x < m(q − 1) that

m′(q − 1)−m′(q) = m(q − 1)− (1− α)m(q)− αx

> m(q − 1)− (1− α)m(q)− αm(q − 1)

= (1− α)(m(q − 1)−m(q)) > 0.

Therefore m′(q − 1) > m′(q). If i ∈ I(m,x) and q − 2, q − 1, q + 1 ̸∈ I(m,x),
where i ≥ q + 2, then m′(q − 1) > m′(q). If q − 2 ∈ I(m,x) and q − 1 ̸∈ I(m,x),
then it follows from x > m(q − 1) that

m′(q − 1)−m′(q) = (1− α)m(q − 1) + αx−m(q)

> m(q − 1)−m(q) > 0.

Therefore m′(q− 1) > m′(q). If i ∈ I(m,x) and q− 2 ̸∈ I(m,x), where i ≥ q− 3,
then m′(q − 1) > m′(q). Thus, if s− = 0, then (4.4) does not hold for any input
x.

Let s− = 1. If q ∈ I(m,x) or q − 1 ∈ I(m,x), then m′(q − 1) > m′(q). If
q−2 ∈ I(m,x) and q+1 ̸∈ I(m,x), then it follows from x > m(q+1) > m(q−1)
that

m′(q − 1)−m′(q) = (1− α)m(q − 1) + αx−m(q)

> (1− α)m(q − 1) + αm(q − 1)−m(q)

= m(q − 1)−m(q) > 0.

Therefore m′(q− 1) > m′(q). If i ∈ I(m,x) and q− 2 ̸∈ I(m,x), where i ≤ q− 3,
then m′(q− 1) > m′(q). If i ∈ I(m,x) and q+1, q− 2 ̸∈ I(m,x), where i ≥ q+2,
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then m′(q − 1) > m′(q). Thus, if s− = 1 and I(m,x) ̸= {q + 1}, {q + 1, q + 2},
then (4.4) does not hold for any input x.

If s− = 1 and I(m,x) = {q + 1}, then m′(q) > m′(q − 1) is equivalent to
x > (1− 1

α)m(q)+ 1
αm(q−1). Therefore, s− = 1 and (4.5) implym′(q) > m′(q−1).

Since x < m(q + 2), we obtain m′(q + 3)−m′(q + 2) > m(q + 3)−m(q + 2) > 0.
Thus, s− = 1 and (4.5) imply (4.4).

If s− = 1 and I(m,x) = {q+1, q+2}, thenm(q+2) < m(q−2). Moreover, (4.6)
implies m′(q) > m′(q−1). Since x < m(q+3), we obtain m′(q+4)−m′(q+3) >
m(q + 4) − m(q + 3) > 0. Thus s− = 1, m(q + 2) < m(q − 2) and (4.6) imply
(4.4).

Let s− ≥ 2. If q ∈ I(m,x) or q − 1 ∈ I(m,x), then m′(q − 1) > m′(q). If
q − 2 ∈ I(m,x) and q − 1, q + 1 ̸∈ I(m,x), since x > m(q − 1),

m′(q − 1)−m′(q) = (1− α)m(q − 1) + αx−m(q)

> m(q − 1)−m(q) > 0.

Therefore m′(q − 1) > m′(q). If i ∈ I(m,x) and q − 2, q + 1 ̸∈ I(m,x), where
i ≤ q − 3, then m′(q − 1) > m′(q). If i ∈ I(m,x), where i ≥ q + 2, then
m′(q − 1) > m′(q). If I(m,x) = {q − 2, q + 1}, then m′(q − 1) > m′(q).

If s− ≥ 2 and I(m,x) = {q + 1}, by the same argument of the case of s− = 1,

max

{
m(q − s−) +m(q + 1)

2
,
(
1− 1

α

)
m(q) +

1

α
m(q − 1)

}
< x <

m(q + 1) + min{m(q − s− − 1), m(q + 2)}
2

implies (4.4). If s− ≥ 2 and I(m,x) = {q + 1, i∗}, where

m(i∗) = min{m(q − s− − 1),m(q + 2)},

then (
1− 1

α

)
m(q) +

1

α
m(q − 1)

< x =
m(q + 1) + min{m(q − s− − 1), m(q + 2)}

2

implies (4.4). Therefore, if s− ≥ 2 and (4.7) hold, then (4.4) holds.
Moreover, if s− ≥ 3 and I(m,x) = {q − s−, q + 1}, then (4.8) implies (4.4).
Thus, (4.4) holds if and only if m and x satisfy at least one of (i)-(iv).
By the same argument, we obtain the latter statement. □
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