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for any x, y ∈ C. Such a mapping is said to be (α, β, γ, δ, ε, ζ, η)-widely more
generalized hybrid. This class includes the class of all generalized hybrid mappings
and also the class of all k-pseudocontractions [3] for k ∈ [0, 1]. A mapping T from
C into H is called a k-pseudocontraction if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(x− Tx)− (y − Ty)∥2

for any x, y ∈ C. Any (α, β)-generalized hybrid mapping is (α, 1 − α,−β, β − 1,
0, 0, 0)-widely more generalized hybrid; any k-pseudocontraction is (1, 0, 0,−1, 0, 0,
−k)-widely more generalized hybrid. Furthermore they proved some fixed point
theorems [6–11,16–19] and some ergodic theorems [6, 7, 16–18].

There are some studies on Banach space related to these results. In [25] Taka-
hashi, Wong and Yao introduced the generalized nonspreading mapping and the
skew-generalized nonspreading mapping in a Banach space. Let E be a smooth
Banach space and let C be a nonempty subset of E. A mapping T from C into E
is said to be generalized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that

αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ε(ϕ(Ty, Tx)− ϕ(Ty, x)) + ζ(ϕ(y, Tx)− ϕ(y, x))

for any x, y ∈ C, where J is the duality mapping on E and

ϕ(u, v) = ∥u∥2 − 2⟨u, Jv⟩+ ∥v∥2.

Such a mapping is said to be (α, β, γ, δ, ε, ζ)-generalized nonspreading. A map-
ping T from C into E is said to be skew-generalized nonspreading if there exist
α, β, γ, δ, ε, ζ ∈ R such that

αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ε(ϕ(Ty, Tx)− ϕ(y, Tx)) + ζ(ϕ(Ty, x)− ϕ(y, x))

for any x, y ∈ C. Such a mapping is said to be (α, β, γ, δ, ε, ζ)-skew-generalized
nonspreading. These classes include the class of generalized hybrid mappings in
a Hilbert space, however, it does not include the class of widely more generalized
hybrid mappings.

Motivated these results, we introduced a new class of mappings [12–15] on Banach
space corresponding to the class of all widely more generalized hybrid mappings on
Hilbert space. Let E be a smooth Banach space and let C be a nonempty subset of
E. A mapping T from C into E is called a generalized pseudocontraction if there
exist α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2 ∈ R such that

α1ϕ(Tx, Ty) + α2ϕ(Ty, Tx) + β1ϕ(x, Ty) + β2ϕ(Ty, x)

+γ1ϕ(Tx, y) + γ2ϕ(y, Tx) + δ1ϕ(x, y) + δ2ϕ(y, x)

+ε1ϕ(Tx, x) + ε2ϕ(x, Tx) + ζ1ϕ(y, Ty) + ζ2ϕ(Ty, y)

≤ 0

for any x, y ∈ C. Such a mapping is called an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1,
ζ2)-generalized pseudocontraction. Let E∗ be the topological dual space of a strictly
convex, reflexive and smooth Banach space E and let C∗ be a nonempty subset of
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E∗. A mapping T ∗ from C∗ into E∗ is called a *-generalized pseudocontraction if
there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2 ∈ R such that

α1ϕ∗(T
∗x∗, T ∗y∗) + α2ϕ∗(T

∗y∗, T ∗x∗) + β1ϕ∗(x
∗, T ∗y∗) + β2ϕ∗(T

∗y∗, x∗)

+γ1ϕ∗(T
∗x∗, y∗) + γ2ϕ∗(y

∗, T ∗x∗) + δ1ϕ∗(x
∗, y∗) + δ2ϕ∗(y

∗, x∗)

+ε1ϕ∗(T
∗x∗, x∗) + ε2ϕ∗(x

∗, T ∗x∗) + ζ1ϕ∗(y
∗, T ∗y∗) + ζ2ϕ∗(T

∗y∗, y∗)

≤ 0

for any x∗, y∗ ∈ C∗, where

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩+ ∥y∗∥2

for any x∗, y∗ ∈ E∗. Such a mapping is called an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2,
ζ1, ζ2)-*-generalized pseudocontraction.

On the other hand, in [24] Takahashi and Takeuchi introduced a concept of
attractive point in a Hilbert space. Let H be a real Hilbert space, let C be a
nonempty subset of H and let T be a mapping from C into H. x ∈ H is called an
attractive point of T if

∥x− Ty∥ ≤ ∥x− y∥

for any y ∈ C. Let

A(T ) = {x ∈ H | ∥x− Ty∥ ≤ ∥x− y∥ for any y ∈ C}.

Furthermore they proved that the Baillon type ergodic theorem [2] for generalized
hybrid mappings without convexity of C.

In [25] Takahashi, Wong and Yao introduced some extensions of attractive point
and proved some attractive point theorems on Banach spaces. x ∈ E is an attractive
point of T if

ϕ(x, Ty) ≤ ϕ(x, y)

for any y ∈ C; x ∈ E is a skew-attractive point of T if

ϕ(Ty, x) ≤ ϕ(y, x)

for any y ∈ C. Let

A(T ) = {x ∈ E | ϕ(x, Ty) ≤ ϕ(x, y) for any y ∈ C};
B(T ) = {x ∈ E | ϕ(Ty, x) ≤ ϕ(y, x) for any y ∈ C}.

In [1] Atsushiba, Iemoto, Kubota and Takeuchi introduced a concept of acute
point as an extension of attractive point in a Hilbert space. Let H be a real Hilbert
space, let C be a nonempty subset of H and let T be a mapping from C into H and
k ∈ [0, 1]. x ∈ H is called a k-acute point of T if

∥x− Ty∥2 ≤ ∥x− y∥2 + k∥y − Ty∥2

for any y ∈ C. Let

Ak(T ) = {x ∈ H | ∥x− Ty∥2 ≤ ∥x− y∥2 + k∥y − Ty∥2 for any y ∈ C}.
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Furthermore, using a concept of acute point, they proved convergence theorems
without convexity of C.

We introduced some extensions of acute point [12–15]. Let E be a smooth Banach
space, let C be a nonempty subset of E, let T be a mapping from C into E and let
k, ℓ ∈ R. x ∈ E is called a (k, ℓ)-acute point of T if

ϕ(x, Ty) ≤ ϕ(x, y) + kϕ(y, Ty) + ℓϕ(Ty, y)

for any y ∈ C. x ∈ E is called a (k, ℓ)-skew-acute point of T if

ϕ(Ty, x) ≤ ϕ(y, x) + kϕ(y, Ty) + ℓϕ(Ty, y)

for any y ∈ C. Let

Ak,ℓ(T )

= {x ∈ E | ϕ(x, Ty) ≤ ϕ(x, y) + kϕ(y, Ty) + ℓϕ(Ty, y) for any y ∈ C};
Bk,ℓ(T )

= {x ∈ E | ϕ(Ty, x) ≤ ϕ(y, x) + kϕ(y, Ty) + ℓϕ(Ty, y) for any y ∈ C}.

Furthermore we proved some fixed point and acute point theorems [12, 14], and
some convergence theorems [13, 15]. However, acute point theorems require more
assumptions on parameters than fixed point theorems.

In this paper we generalize the concept of acute point and we introduce some
acute point type theorems that holds under the same assumptions as fixed point
theorems. Furthermore we show that fixed point theorems are derived from acute
point type theorems.

2. Preliminaries

We know that the following hold; for instance, see [4, 5, 22].

(T1) Let E be a Banach space, let E∗ be the topological dual space of E and let
J be the duality mapping on E defined by

J(x) = {x∗ ∈ E∗ | ∥x∥2 = ⟨x, x∗⟩ = ∥x∗∥2}

for any x ∈ E. Then E is strictly convex if and only if J is injective, that
is, x ̸= y implies J(x) ∩ J(y) = ∅.

(T2) Let E be a Banach space, let E∗ be the topological dual space of E and
let J be the duality mapping on E. Then E is reflexive if and only if J is
surjective, that is,

∪
x∈E J(x) = E∗.

(T3) Let E be a Banach space and let J be the duality mapping on E. Then E
is smooth if and only if J is single-valued.

(T4) Let E be a Banach space and let J be the duality mapping on E. If J is
single-valued, then J is norm-to-weak* continuous.

(T5) Let E be a Banach space and let J be the duality mapping on E. Then E
is strictly convex if and only if

1− ⟨x, y∗⟩ > 0

for any x, y ∈ E with x ̸= y and ∥x∥ = ∥y∥ = 1 and for any y∗ ∈ J(y).
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(T6) Let E be a Banach space and let E∗ be the topological dual space of E.
Then E is reflexive if and only if E∗ is reflexive.

(T7) Let E be a Banach space and let E∗ be the topological dual space of E.
If E∗ is strictly convex, then E is smooth. Conversely, E is reflexive and
smooth, then E∗ is strictly convex.

(T8) Let E be a Banach space and let E∗ be the topological dual space of E.
If E∗ is smooth, then E is strictly convex. Conversely, E is reflexive and
strictly convex, then E∗ is smooth.

Let E be a smooth Banach space, let J be the duality mapping on E and let ϕ
be the mapping from E × E into [0,∞) defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for any x, y ∈ E. Since by (T3) J is single-valued, ϕ is well-defined. It is obvious
that x = y implies ϕ(x, y) = 0. Conversely, by (T5)

(T9) If E is also strictly convex, then ϕ(x, y) = 0 implies x = y.

Let E be a strictly convex and smooth Banach space. By (T1) an (T3) J is a
bijective mapping from E onto J(E). In particular, if E is also reflective, then by
(T2) J is a bijective mapping from E onto E∗. Suppose that E is strictly convex,
reflective and smooth. Let ϕ∗ be the mapping from E∗ ×E∗ into [0,∞) defined by

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩+ ∥y∗∥2

for any x∗, y∗ ∈ E∗. Then

ϕ∗(x
∗, y∗) = ϕ(J−1y∗, J−1x∗)(2.1)

holds. Therefore

(T9)∗ ϕ∗(x
∗, y∗) = 0 if and only if x∗ = y∗.

Let ℓ∞ be the Banach space consists of all bounded sequences and µ ∈ (ℓ∞)∗.
Sometimes we denote by µnxn the value µ({xn}∞n=1). If µ ∈ (ℓ∞)∗ satisfies µ(e) =
∥µ∥ = 1, where e = {1}∞n=1, then µ is called a mean. If a mean µ satisfies µnxn+1 =
µnxn, then µ is called a Banach limit. We know that there exists some Banach
limits. If {xn}∞n=1 ∈ ℓ∞ and µ is a mean, then the following holds:

inf{xn | n ∈ N} ≤ µnxn ≤ sup{xn | n ∈ N}.

The following lemma is introduced in [25]; see also [12–15].

Lemma 2.1. Let E be a Banach space, let E∗ be the topological dual space of E,
let {xn | n ∈ N} be a bounded sequence in E and let µ be a mean on ℓ∞. Then there
exists a unique z0 ∈ co{xn | n ∈ N} such that µn⟨xn, x∗⟩ = ⟨z0, x∗⟩ for any x∗ ∈ E∗.

The following lemmas are shown in [13–15].

Lemma 2.2. Let E be a smooth Banach space, let C be a nonempty subset of E,
let D be a nonempty convex subset of E, let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1,
ε2, ζ1, ζ2)-generalized pseudocontraction from C into D and let λ ∈ [0, 1]. Then T is
a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2, (1−λ)γ1+λβ2,
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λβ1 + (1 − λ)γ2, (1 − λ)δ1 + λδ2, λδ1 + (1 − λ)δ2, (1 − λ)ε1 + λζ2, λζ1 + (1 − λ)ε2,
(1− λ)ζ1 + λε2, λε1 + (1− λ)ζ2)-generalized pseudocontraction from C into D.

Lemma 2.3. Let E∗ be the topological dual space of a strictly convex, reflexive
and smooth Banach space E, let C∗ be a nonempty subset of E∗, let D∗ be a
nonempty convex subset of E∗, let T ∗ be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1,
ζ2)-*-generalized pseudocontraction from C∗ into D∗ and let λ ∈ [0, 1]. Then T ∗ is
a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2, (1−λ)γ1+λβ2,
λβ1 + (1 − λ)γ2, (1 − λ)δ1 + λδ2, λδ1 + (1 − λ)δ2, (1 − λ)ε1 + λζ2, λζ1 + (1 − λ)ε2,
(1− λ)ζ1 + λε2, λε1 + (1− λ)ζ2)-*-generalized pseudocontraction from C∗ into D∗.

Lemma 2.4. Let E be a strictly convex, reflexive and smooth Banach space, let E∗

be the topological dual space of E, let C and D be nonempty subsets of E and let
T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction from
C into D. Put T ∗ = JTJ−1, where J is the duality mapping on E. Then T ∗ is an
(α2, α1, β2, β1, γ2, γ1, δ2, δ1, ε2, ε1, ζ2, ζ1)-*-generalized pseudocontraction from J(C)
into J(D).

3. Generalized acute and skew-acute point

Let E be a smooth Banach space, let C be a nonempty subset of E, let T be a
mapping from C into E and let k, ℓ, s ∈ R. x ∈ E is called a (k, ℓ, s)-generalized
acute point of T if

s(ϕ(x, Ty)− ϕ(x, y)) ≤ kϕ(y, Ty) + ℓϕ(Ty, y)(3.1)

for any y ∈ C. x ∈ E is called a (k, ℓ, s)-generalized skew-acute point of T if

s(ϕ(Ty, x)− ϕ(y, x)) ≤ kϕ(y, Ty) + ℓϕ(Ty, y)(3.2)

for any y ∈ C. Let

Ak,ℓ,s(T )

= {x ∈ E | s(ϕ(x, Ty)− ϕ(x, y)) ≤ kϕ(y, Ty) + ℓϕ(Ty, y) for any y ∈ C};
Bk,ℓ,s(T )

= {x ∈ E | s(ϕ(Ty, x)− ϕ(y, x)) ≤ kϕ(y, Ty) + ℓϕ(Ty, y) for any y ∈ C}.

It is obvious that

Ak1,ℓ1,s1(T ) ⊂ Ak2,ℓ2,s2(T ), Bk1,ℓ1,s2(T ) ⊂ Bk2,ℓ2,s2(T )

for any k1, k2, ℓ1, ℓ2 ∈ R and for any s1, s2 ∈ (0,∞) with k1
s1

≤ k2
s2

and ℓ1
s1

≤ ℓ2
s2
;

Ak1,ℓ1,s1(T ) ⊃ Ak2,ℓ2,s2(T ), Bk1,ℓ1,s2(T ) ⊃ Bk2,ℓ2,s2(T )

for any k1, k2, ℓ1, ℓ2 ∈ R and for any s1, s2 ∈ (−∞, 0) with k1
s1

≤ k2
s2

and ℓ1
s1

≤ ℓ2
s2
.

Furthermore

Ak,ℓ,0(T ) = Bk,ℓ,0(T ) = E

for any (k, ℓ) ∈ [0,∞)× [0,∞);

Ak,ℓ,0(T ) = Bk,ℓ,0(T ) = ∅



GENERALIZED ACUTE POINT THEOREMS 79

for any (k, ℓ) ∈ (−∞, 0]× (−∞, 0] \ {(0, 0)}; otherwise,

Ak,ℓ,0(T ) = E or ∅, Bk,ℓ,0(T ) = E or ∅;

however, it is generally unknown which case holds. In this way, Ak,ℓ,0(T ) and
Bk,ℓ,0(T ) may be empty. However, in later discussions, under some assumptions,
such cases will be properly ruled out.

The following lemmas are important property characterizing them.

Lemma 3.1. Let E be a smooth Banach space, let C be a nonempty subset of E,
let T be a mapping from C into E and let k, ℓ, s ∈ R. Then Ak,ℓ,s(T ) is closed and
convex.

Proof. Since

ϕ(u, v) = ϕ(u,w) + ϕ(w, v) + 2⟨u− w, Jw − Jv⟩(3.3)

for any u, v, w ∈ E, (3.1) is equivalent to

2s⟨x, Jy − JTy⟩ ≤ (k − s)ϕ(y, Ty) + ℓϕ(Ty, y) + 2s⟨y, Jy − JTy⟩.

Therefore Ak,ℓ,s(T ) is closed and convex. □

Lemma 3.2. Let E be a smooth Banach space, let C be a nonempty subset of E,
let T be a mapping from C into E and let k, ℓ, s ∈ R. Then Bk,ℓ,s(T ) is closed.

Proof. (3.2) is equivalent to

2s⟨y − Ty, Jx⟩ ≤ kϕ(y, Ty) + (ℓ− s)ϕ(Ty, y) + 2s⟨y − Ty, Jy⟩

from (3.3). Furthermore by (T4) J is norm-to-weak* continuous. Therefore Bk,ℓ,s(T )
is closed. □

Let E∗ be the topological dual space of a strictly convex, reflexive and smooth
Banach space E, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗

into E∗ and let k, ℓ, s ∈ R. x∗ ∈ E∗ is called a (k, ℓ, s)-generalized-*-acute point of
T ∗ if

s(ϕ∗(x
∗, T ∗y∗)− ϕ∗(x

∗, y∗)) ≤ kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)(3.4)

for any y∗ ∈ C∗. x∗ ∈ E∗ is called a (k, ℓ, s)-generalized-*-skew-acute point of T ∗ if

s(ϕ∗(T
∗y∗, x∗)− ϕ∗(y

∗, x∗)) ≤ kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)(3.5)

for any y∗ ∈ C∗. Let

A ∗
k,ℓ,s(T

∗)

=

{
x∗ ∈ E∗

∣∣∣∣ s(ϕ∗(x
∗, T ∗y∗)− ϕ∗(x

∗, y∗)) ≤ kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)
for any y∗ ∈ C∗

}
;

B∗
k,ℓ,s(T

∗)

=

{
x∗ ∈ E∗

∣∣∣∣ s(ϕ∗(T
∗y∗, x∗)− ϕ∗(y

∗, x∗)) ≤ kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)
for any y∗ ∈ C∗

}
.
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Lemma 3.3. Let E∗ be the topological dual space of a strictly convex, reflective and
smooth Banach space E, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping
from C∗ into E∗ and let k, ℓ, s ∈ R. Then A ∗

k,ℓ,s(T
∗) is closed and convex.

Proof. (3.4) is equivalent to

2s⟨J−1y∗ − J−1T ∗y∗, x∗⟩
≤ (k − s)ϕ∗(y

∗, T ∗y∗) + ℓϕ∗(T
∗y∗, y∗) + 2s⟨J−1y∗ − J−1T ∗y∗, y∗⟩

from (3.3) and (2.1), A ∗
k,ℓ,s(T

∗) is closed and convex. □

Lemma 3.4. Let E∗ be the topological dual space of a strictly convex, reflexive and
smooth Banach space E, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping
from C∗ into E∗ and let k, ℓ, s ∈ R. Then B∗

k,ℓ,s(T
∗) is closed.

Proof. (3.5) is equivalent to

2s⟨J−1x∗, y∗ − T ∗y∗⟩
≤ kϕ∗(y

∗, T ∗y∗) + (ℓ− s)ϕ∗(T
∗y∗, y∗) + 2s⟨J−1y∗, y∗ − T ∗y∗⟩

from (3.3) and (2.1). Furthermore by (T4) J−1 is norm-to-weak* continuous. There-
fore B∗

k,ℓ,s(T
∗) is closed. □

Lemma 3.5. Let E be a strictly convex, reflective and smooth Banach space, let
C be a nonempty subset of E, let T be a mapping from C into E, let T ∗ = JTJ−1

and let k, ℓ, s ∈ R. Then

A ∗
k,ℓ,s(T

∗) = J(Bℓ,k,s(T )), B∗
k,ℓ,s(T

∗) = J(Aℓ,k,s(T )).

In particular, J(Bk,ℓ,s(T )) is closed and convex and J(Ak,ℓ,s(T )) is closed.

Proof. Let x∗ ∈ A ∗
k,ℓ,s(T

∗). Then

s(ϕ∗(x
∗, T ∗y∗)− ϕ∗(x

∗, y∗)) ≤ kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)

for any y∗ ∈ J(C). From (2.1)

s(ϕ(J−1T ∗y∗, J−1x∗)− ϕ(J−1y∗, J−1x∗))

≤ kϕ(J−1T ∗y∗, J−1y∗) + ℓϕ(J−1y∗, J−1T ∗y∗)

for any y∗ ∈ J(C). Since J−1T ∗ = TJ−1, putting y = J−1y∗, we obtain

s(ϕ(Ty, J−1x∗)− ϕ(y, J−1x∗)) ≤ ℓϕ(y, Ty) + kϕ(Ty, y).

Therefore J−1x∗ ∈ Bℓ,k,s(T ) and hence A ∗
k,ℓ,s(T

∗) = J(Bℓ,k,s(T )).

B∗
k,ℓ,s(T

∗) = J(Aℓ,k,s(T )) can be shown similarly.

Furthermore, by Lemma 3.3 J(Bk,ℓ,s(T )) is closed and convex and by Lemma 3.4
J(Ak,ℓ,s(T )) is closed. □

Lemma 3.6. Let E be a strictly convex and smooth Banach space, let C be a
nonempty subset of E, let T be a mapping from C into E and let k, ℓ, s ∈ R. Then
the following hold.

(1) If (k, ℓ) ∈ (−∞, s] × (−∞, 0] \ {(s, 0)}, then C ∩ Ak,ℓ,s(T ) is a subset of the
set of all fixed points of T ;
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(2) If (k, ℓ) ∈ (−∞, 0] × (−∞, s] \ {(0, s)}, then C ∩ Bk,ℓ,s(T ) is a subset of the
set of all fixed points of T .

Proof. Let x ∈ C ∩ Ak,ℓ,s(T ). Then (3.1) holds for any y ∈ C. Putting y = x, we
obtain (s− k)ϕ(x, Tx)− ℓϕ(Tx, x) ≤ 0. If (k, ℓ) ∈ (−∞, s]× (−∞, 0] \ {(s, 0)}, then
by (T9) we obtain x = Tx.

Let x ∈ C ∩Bk,ℓ,s(T ). Then (3.2) holds for any y ∈ C. Putting y = x, we obtain
−kϕ(x, Tx) + (s − ℓ)ϕ(Tx, x) ≤ 0. If (k, ℓ) ∈ (−∞, 0] × (−∞, s] \ {(0, s)}, then by
(T9) we obtain x = Tx. □
Lemma 3.7. Let E∗ be a strictly convex and smooth topological dual space of a
Banach space, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗ into
E∗ and let k, ℓ ∈ R. Then the following hold.

(1) If (k, ℓ) ∈ (−∞, s] × (−∞, 0] \ {(s, 0)}, then C ∩ A ∗
k,ℓ,s(T

∗) is a subset of the
set of all fixed points of T ∗;

(2) If (k, ℓ) ∈ (−∞, 0]× (−∞, s] \ {(0, 1)}, then C ∩ B∗
k,ℓ,s(T

∗) is a subset of the
set of all fixed points of T ∗.

Proof. Let x∗ ∈ C∗∩A ∗
k,ℓ,s(T

∗). Then (3.4) holds for any y∗ ∈ C∗. Putting y∗ = x∗,

by we obtain (s−k)ϕ∗(x
∗, T ∗x∗)−ℓϕ∗(T

∗x∗, x∗) ≤ 0. If (k, ℓ) ∈ (−∞, s]× (−∞, 0]\
{(s, 0)}, then by (T9)∗ we obtain x∗ = T ∗x∗.

Let x∗ ∈ C∗ ∩B∗
k,ℓ,s(T

∗). Then (3.5) holds for any y∗ ∈ C∗. Putting y∗ = x∗, by

we obtain −kϕ∗(x
∗, T ∗x∗) + (s− ℓ)ϕ∗(T

∗x∗, x∗) ≤ 0. If (k, ℓ) ∈ (−∞, 0]× (−∞, s] \
{(0, s)}, then by (T9)∗ we obtain x∗ = T ∗x∗. □

4. Generalized acute and skew-acute point theorems

Theorem 4.1. Let E be a reflexive and smooth Banach space, let C be a nonempty
subset of E and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseu-
docontraction from C into itself. Suppose that there exists z ∈ C such that {Tnz |
n ∈ N ∪ {0}} is bounded and suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0.

Then there exists a (−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2), (1−λ)(α1+β1)+λ(α2+
γ2))-generalized acute point.

Proof. Suppose that there exists z ∈ C such that {Tnz | n ∈ N ∪ {0}} is bounded.
By Lemma 2.2 T is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2,
(1 − λ)γ1 + λβ2, λβ1 + (1 − λ)γ2, (1 − λ)δ1 + λδ2, λδ1 + (1 − λ)δ2, (1 − λ)ε1 + λζ2,
λζ1+(1−λ)ε2, (1−λ)ζ1+λε2, λε1+(1−λ)ζ2)-generalized pseudocontraction. From
(3.3) we obtain

((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)
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+((1− λ)β1 + λγ2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)δ1 + λδ2)ϕ(x, y) + (λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

= ((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

−((1− λ)α1 + λα2)ϕ(x, Ty)

+((1− λ)(α1 + β1) + λ(α2 + γ2))(ϕ(x, y) + ϕ(y, Ty) + 2⟨x− y, Jy − JTy⟩)
+(λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)δ1 + λδ2)ϕ(x, y) + (λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

= ((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

−((1− λ)α1 + λα2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2))ϕ(x, y)

+(λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩.

Since

(1− λ)(α1 + β1 + δ1) + λ(α2 + β2 + δ2) ≥ −((1− λ)γ1 + λγ2);

λγ1 + (1− λ)β2 ≥ −(λα1 + (1− λ)α2);

λδ1 + (1− λ)δ2 ≥ −(λβ1 + (1− λ)γ2);

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

we obtain

((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

−((1− λ)α1 + λα2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2))ϕ(x, y)

+(λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)
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+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩
≥ ((1− λ)α1 + λα2)(ϕ(Tx, Ty)− ϕ(x, Ty))

+(λα1 + (1− λ)α2)(ϕ(Ty, Tx)− ϕ(Ty, x))

+((1− λ)γ1 + λβ2)(ϕ(Tx, y)− ϕ(x, y))

+(λβ1 + (1− λ)γ2)(ϕ(y, Tx)− ϕ(y, x))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩.

Therefore

((1− λ)α1 + λα2)(ϕ(Tx, Ty)− ϕ(x, Ty))

+(λα1 + (1− λ)α2)(ϕ(Ty, Tx)− ϕ(Ty, x))

+((1− λ)γ1 + λβ2)(ϕ(Tx, y)− ϕ(x, y))

+(λβ1 + (1− λ)γ2)(ϕ(y, Tx)− ϕ(y, x))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩
≤ 0.

Replacing x by Tnz, we obtain

((1− λ)α1 + λα2)(ϕ(T
n+1z, Ty)− ϕ(Tnz, Ty))

+(λα1 + (1− λ)α2)(ϕ(Ty, T
n+1z)− ϕ(Ty, Tnz))

+((1− λ)γ1 + λβ2)(ϕ(T
n+1z, y)− ϕ(Tnz, y))

+(λβ1 + (1− λ)γ2)(ϕ(y, T
n+1z)− ϕ(y, Tnz))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨Tnz − y, Jy − JTy⟩
≤ 0.

Applying a Banach limit µ to both sides of this inequality, we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))µn⟨Tnz − y, Jy − JTy⟩
≤ 0.
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By Lemma 2.1 there exists a unique z0 ∈ co{Tnz | n ∈ N} such that

µn⟨Tnz − y, Jy − JTy⟩ = ⟨z0 − y, Jy − JTy⟩.

Therefore we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨z0 − y, Jy − JTy⟩
≤ 0.

for any y ∈ C. From (3.3) we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨z0 − y, Jy − JTy⟩
= ((1− λ)(α1 + β1) + λ(α2 + γ2))ϕ(z0, T y)

−((1− λ)(α1 + β1) + λ(α2 + γ2))ϕ(z0, y)

+((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

≤ 0.

Therefore we obtain

((1− λ)(α1 + β1) + λ(α2 + γ2))ϕ(z0, T y)− ϕ(z0, y))

≤ −((1− λ)ζ1 + λε2)ϕ(y, Ty)− (λε1 + (1− λ)ζ2)ϕ(Ty, y)

and hence z0 is a (−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2), (1−λ)(α1+β1)+λ(α2+γ2))-
generalized acute point. □

Theorem 4.2. Let E∗ be the topological dual space of a strictly convex, reflexive and
smooth Banach space E, let C∗ be a nonempty subset of E∗ and let T ∗ be an (α1, α2,
β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized pseudocontraction from C∗ into itself.
Suppose that there exists z∗ ∈ C∗ such that {(T ∗)nz∗ | n ∈ N∪ {0}} is bounded and
suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0.

Then there exists a (−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2), (1−λ)(α1+β1)+λ(α2+
γ2))-generalized *-acute point.

Proof. By Lemma 2.3 T ∗ is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+
(1−λ)β2, (1−λ)γ1+λβ2, λβ1+(1−λ)γ2, (1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2,
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λζ1 + (1 − λ)ε2, (1 − λ)ζ1 + λε2, λε1 + (1 − λ)ζ2)-*-generalized pseudocontraction.
From (2.1) and (3.3) we obtain

ϕ∗(u
∗, v∗) = ϕ∗(u

∗, w∗) + ϕ∗(w
∗, v∗) + 2⟨J−1w∗ − J−1v∗, u∗ − w∗⟩(4.1)

for any u∗, v∗, w∗ ∈ E∗. Similarly to the proof of Theorem 4.1 we obtain

((1− λ)α1 + λα2)(ϕ∗(T
∗x∗, T ∗y∗)− ϕ∗(x

∗, T ∗y∗))

+(λα1 + (1− λ)α2)(ϕ∗(T
∗y∗, T ∗x∗)− ϕ∗(T

∗y∗, x∗))

+((1− λ)γ1 + λβ2)(ϕ∗(T
∗x∗, y∗)− ϕ∗(x

∗, y∗))

+(λβ1 + (1− λ)γ2)(ϕ∗(y
∗, T ∗x∗)− ϕ∗(y

∗, x∗))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨J−1y∗ − J−1T ∗y∗, x∗ − y∗⟩
≤ 0.

Replacing x∗ by (T ∗)nz∗, we obtain

((1− λ)α1 + λα2)(ϕ∗((T
∗)n+1z∗, T ∗y∗)− ϕ∗((T

∗)nz∗, T ∗y∗))

+(λα1 + (1− λ)α2)(ϕ∗(T
∗y∗, (T ∗)n+1z∗)− ϕ∗(T

∗y∗, (T ∗)nz∗))

+((1− λ)γ1 + λβ2)(ϕ∗((T
∗)n+1z∗, y∗)− ϕ∗((T

∗)nz∗, y∗))

+(λβ1 + (1− λ)γ2)(ϕ∗(y
∗, (T ∗)n+1z∗)− ϕ∗(y

∗, (T ∗)nz∗))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨J−1y∗ − J−1T ∗y∗, (T ∗)nz∗ − y∗⟩
≤ 0.

Applying a Banach limit µ to both sides of this inequality, we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))µn⟨J−1y∗ − J−1T ∗y∗, (T ∗)nz∗ − y∗⟩
≤ 0.

By Lemma 2.1 there exists a unique z∗0 ∈ co{(T ∗)nz∗ | n ∈ N} such that

µn⟨J−1y∗ − J−1T ∗y∗, (T ∗)nz∗ − y∗⟩ = ⟨J−1y∗ − J−1T ∗y∗, z∗0 − y∗⟩.

Therefore we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨J−1y∗ − J−1T ∗y∗, z∗0 − y∗⟩
≤ 0.
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for any y∗ ∈ C∗. By (4.1) we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨J−1y∗ − J−1T ∗y∗, z∗0 − y∗⟩
= ((1− λ)(α1 + β1) + λ(α2 + γ2))ϕ∗(z

∗
0 , T

∗y∗)

−((1− λ)(α1 + β1) + λ(α2 + γ2))ϕ∗(z
∗
0 , y

∗)

+((1− λ)ζ1 + λε2)ϕ∗(y
∗, T ∗y∗) + (λε1 + (1− λ)ζ2)ϕ∗(T

∗y∗, y∗)

≤ 0.

Therefore we obtain

((1− λ)(α1 + β1) + λ(α2 + γ2))(ϕ∗(z
∗
0 , T

∗y∗)− ϕ∗(z
∗
0 , y

∗))

≤ −((1− λ)ζ1 + λε2)ϕ∗(y
∗, T ∗y∗)− (λε1 + (1− λ)ζ2)ϕ∗(T

∗y∗, y∗)

and hence z∗0 is a (−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2), (1−λ)(α1+β1)+λ(α2+γ2))-
generalized *-acute point. □

By Theorem 4.2 we obtain the following.

Theorem 4.3. Let E be a strictly convex, reflexive and smooth Banach space, let
C be a nonempty subset of E and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1,
ζ2)-generalized pseudocontraction from C into itself. Suppose that there exists z ∈ C
such that {Tnz | n ∈ N ∪ {0}} is bounded and suppose that there exists λ ∈ [0, 1]
such that

(1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) ≥ 0;

λ(α2 + γ2) + (1− λ)(α1 + β1) ≥ 0;

λ(β2 + δ2) + (1− λ)(γ1 + δ1) ≥ 0;

(1− λ)ε2 + λζ1 ≥ 0;

λζ2 + (1− λ)ε1 ≥ 0.

Then there exists a (−(λε2+(1−λ)ζ1),−((1−λ)ζ2+λε1), (1−λ)(α2+β2)+λ(α1+
γ1))-generalized skew-acute point.

Proof. Let T ∗ = JTJ−1. By Lemma 2.4 T ∗ is an (α2, α1, β2, β1, γ2, γ1, δ2, δ1, ε2,
ε1, ζ2, ζ1)-*-generalized pseudocontraction from J(C) into itself. By Theorem 4.2,
T ∗ has a (−((1 − λ)ζ2 + λε1),−(λε2 + (1 − λ)ζ1), (1 − λ)(α2 + β2) + λ(α1 + γ1))-
generalized *-acute point z∗0 ∈ co{(T ∗)nJz | n ∈ N}. By Lemma 3.5 J−1z∗0 is a
(−(λε2 + (1− λ)ζ1),−((1− λ)ζ2 + λε1), (1− λ)(α2 + β2) + λ(α1 + γ1))-generalized
skew-acute point of T . □

Remark 4.1. In the proof by using the concept of acute or skew-acute point we
needed the assumption (1 − λ)(α1 + β1) + λ(α2 + γ2) > 0 or (1 − λ)(α2 + β2) +
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λ(α1 + γ1) > 0 in addition to

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

or

(1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) ≥ 0;

λ(α2 + γ2) + (1− λ)(α1 + β1) ≥ 0;

λ(β2 + δ2) + (1− λ)(γ1 + δ1) ≥ 0;

(1− λ)ε2 + λζ1 ≥ 0;

λζ2 + (1− λ)ε1 ≥ 0;

see [14]. However, by using the concept of generalized acute and skew-acute point
we do not need the assumptions (1−λ)(α1+β1)+λ(α2+ γ2) > 0 and (1−λ)(α2+
β2) + λ(α1 + γ1) > 0.

5. Fixed point theorems

In this section we show that fixed point theorems, introduced in [14], are derived
from generalized acute and skew-acute point theorems.

Theorem 5.1. Let E be a strictly convex, reflexive and smooth Banach space, let
C be a nonempty, closed and convex subset of E and let T be an (α1, α2, β1, β2,
γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction from C into itself. Suppose
that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0

and suppose that one of the following holds:

(1) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) > 0 and λε1 + (1− λ)ζ2 ≥ 0;
(2) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) ≥ 0 and λε1 + (1− λ)ζ2 > 0.

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n ∈
N ∪ {0}} is bounded.

Furthermore, if (1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) > 0 or λ(α1 +
β1 + γ1 + δ1) + (1− λ)(α2 + β2 + γ2 + δ2) > 0, then the fixed point of T is unique.

Proof. If T has a fixed point z, then {Tnz | n ∈ N ∪ {0}} is bounded.
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Conversely, suppose that there exists z ∈ C such that {Tnz | n ∈ N ∪ {0}}
is bounded. By Theorem 4.1 there exits z0 ∈ co{Tnz | n ∈ N} ⊂ C such that
it is a (−((1 − λ)ζ1 + λε2),−(λε1 + (1 − λ)ζ2), (1 − λ)(α1 + β1) + λ(α2 + γ2))-
generalized acute point. Furthermore, if (1) holds, then −((1 − λ)ζ1 + λε2) <
(1 − λ)(α1 + β1) + λ(α2 + γ2) and −(λε1 + (1 − λ)ζ2) ≤ 0; if (2) holds, then
−((1− λ)ζ1 + λε2) ≤ (1− λ)(α1 + β1) + λ(α2 + γ2) and −(λε1 + (1− λ)ζ2) < 0. By
Lemma 3.6 (1) z0 is a fixed point of T .

Suppose that z1 and z2 are fixed points of T . Then we obtain

((1− λ)α1 + λα2)ϕ(Tz1, T z2) + (λα1 + (1− λ)α2)ϕ(Tz2, T z1)

+((1− λ)β1 + λγ2)ϕ(z1, T z2) + (λγ1 + (1− λ)β2)ϕ(Tz2, z1)

+((1− λ)γ1 + λβ2)ϕ(Tz1, z2) + (λβ1 + (1− λ)γ2)ϕ(z2, T z1)

+((1− λ)δ1 + λδ2)ϕ(z1, z2) + (λδ1 + (1− λ)δ2)ϕ(z2, z1)

+((1− λ)ε1 + λζ2)ϕ(Tz1, z1) + (λζ1 + (1− λ)ε2)ϕ(z1, T z1)

+((1− λ)ζ1 + λε2)ϕ(z2, T z2) + (λε1 + (1− λ)ζ2)ϕ(Tz2, z2)

= ((1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2))ϕ(z1, z2)

+(λ(α1 + β1 + γ1 + δ1) + (1− λ)(α2 + β2 + γ2 + δ2))ϕ(z2, z1)

≤ 0.

By assumption (1−λ)(α1+β1+γ1+ δ1)+λ(α2+β2+γ2+ δ2) ≥ 0 and λ(α1+β1+
γ1+ δ1)+(1−λ)(α2+β2+γ2+ δ2) ≥ 0 hold. Furthermore, if (1−λ)(α1+β1+γ1+
δ1)+λ(α2+β2+γ2+δ2) > 0 or λ(α1+β1+γ1+δ1)+(1−λ)(α2+β2+γ2+δ2) > 0,
then by (T9) we obtain z1 = z2 and hence the fixed point of T is unique. □

Theorem 5.2. Let E be a strictly convex, reflexive and smooth Banach space, let
C be a nonempty subset of E satisfying J(C) is closed and convex and let T be an
(α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction from C into
itself. Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) ≥ 0;

λ(α2 + γ2) + (1− λ)(α1 + β1) ≥ 0;

λ(β2 + δ2) + (1− λ)(γ1 + δ1) ≥ 0;

(1− λ)ε2 + λζ1 ≥ 0;

λζ2 + (1− λ)ε1 ≥ 0

and suppose that one of the following holds:

(1) (1− λ)(α2 + β2 + ζ2) + λ(α1 + γ1 + ε1) > 0 and λε2 + (1− λ)ζ1 ≥ 0;
(2) (1− λ)(α2 + β2 + ζ2) + λ(α1 + γ1 + ε1) ≥ 0 and λε2 + (1− λ)ζ1 > 0.

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n ∈
N ∪ {0}} is bounded.

Furthermore, if (1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) > 0 or λ(α2 +
β2 + γ2 + δ2) + (1− λ)(α1 + β1 + γ1 + δ1) > 0, then the fixed point of T is unique.

Proof. If T has a fixed point z, then {Tnz | n ∈ N ∪ {0}} is bounded.
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Conversely, suppose that there exists z ∈ C such that {Tnz | n ∈ N ∪ {0}} is
bounded. By Theorem 4.3 there exits z0 ∈ J−1(co{(T ∗)nJz | n ∈ N}) ⊂ C such
that it is a (−(λε2 + (1− λ)ζ1),−((1− λ)ζ2 + λε1), (1− λ)(α2 + β2) + λ(α1 + γ1))-
generalized skew-acute point. Furthermore, if (1) holds, then −(λε2 + (1− λ)ζ1) ≤
0 and −((1 − λ)ζ2 + λε1) < (1 − λ)(α2 + β2) + λ(α1 + γ1); if (2) holds, then
−(λε2 + (1− λ)ζ1) < 0 and −((1− λ)ζ2 + λε1) ≤ (1− λ)(α2 + β2) + λ(α1 + γ1). By
Lemma 3.6 (2) z0 is a fixed point of T .

Furthermore, if (1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) > 0 or λ(α1 +
β1 + γ1 + δ1) + (1 − λ)(α2 + β2 + γ2 + δ2) > 0, then we can show similarly to the
proof of Theorem 5.1 that the fixed point of T is unique. □
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