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REFINED HERMITE-HADAMARD INEQUALITY AND
WEIGHTED LOGARITHMIC MEAN

KENJIRO YANAGI

ABSTRACT. Inspired by the recent works by R.Pal et al., and Furuichi-Minculete,
we give further refined inequalities for a convex Riemann integrable function, ap-
plying the refined Hermite Hadamard inequality. Our approach is different from
their one in [10]. As corollaries, we give the refined two types of inequalities on the
weighted logarithmic mean. At last we give corresponding operator inequalities.

1. INTRODUCTION

The inequalities on means attract many mathematicians for its developments.
See [6] for example. Recently, in ([10], Theorem 2.2), the weighted logarithmic
mean was introduced properly and the inequalities among weighted means were
shown as

(1.1) afyb < Ly(a,b) < a7y b,

where the weighted geometric mean afi,b = a'~"b?, the weighted arithmetic mean
a</yb=(1—wv)a+vband the weighted logarithmic mean [10]:

1 1—w v
1.2 Ly(a,b) = —a' ") + —— (a7 — b
(12) (0.0) = oy (@) + )
for a,b > 0 and v € (0,1). We easily find that L,/(a,b) = logzifogb’ (a #D),

with L /S(a, a) = a. This is the so-called logarithmic mean. We also find that
lin%] L,(a,b) = a and lin% Ly(a,b) = b. Thus the inequalities given in (1.1) recover
v—> v—r

the well-known relations:

a—> a+b
Vi < < .
ab_loga—logb_ 2’ (a,0>0)

R.Pal et al. obtained the inequalities given in (1.1) by their general result given
in ([10], Thorem 2.1) which can be regarded as the generalization of the famous
Hermite-Hadamard inequality with weight v € [0, 1]:

(1'3) f(a Vv b) S Cf,v<a7 b) § f(a) Vv f(b),
where
(1.4) Cf,v(a, b)
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(/01 fla 7ot b)dt> Vo (/01 fF(A=v)b—a)t+av, b)dt>

for a convex Riemann integrable function, a,b > 0 and v € [0,1]. By elemen-
tary calculations, we find that the inequalities given in (1.3) recover the standard
Hermite-Hadamard inequalities:

(1.5) f <a+b) < bia/abf(t)dtg fla) + f(b)

2 2

Recently Furuichi and Minculete [7] obtained refined Hermite-Hadamard inequality
and gave the extended inequalities for weighted logarithmic mean. In this paper we
extend the results of [7] by using the more refined Hermite-Hadamard inequality.

2. REFINED HERMITE HADAMARD INEQUALITY
We give the refined Hermite Hadamard inequality.
Theorem 2.1. Let f(x) be a convex function on [a,b]. Then for any n € NU {0}

<t [
2n—1

< @+ 70)+2 Y fla b}

k=1
where hy, = %2, By putting n =0 in (2.1), (1.5) is obtained.

(2.1) Zfa—l— 2k—1

The proof is omitted.
Proposition 2.2. The following properties hold.

2n1

(1) gy Zf<a+ 2k—1)h" 1) _2an<a+ 2k—1)h )
2" —1

® {f(a) IO +2 Y flo+ kh@}

2;11

fla)+f0)+2 > fla+khn 1)

k=1

1
1 hn 3 )
n+1l _

> %{f(cwrhn)+f(a+3hn)+~-'+f(a+(2n_1)h”)}

1 B, 3
= {f( 21>+f<a+2hn_1>
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+ --+f<a+2 2_1hn_1>}—LHS.

(2) Since
fa) + fla+2hn) > 2f(a + hy),
fla+2hy,) + f(a+4hy) > 2f(a+ 3hy),
fla+ (2" =2)hn) + f(b) = 2f(a + (2" = Dhn),
we obtain
LHS = oir{f(@) 27 (a+ ha) +2f(a+ 2hy) +2f(a+ 3hy)

o 2f(at (20 = ko) + £}

(@) + (@) + F(a+2h,) + 2 (a-+ 20) + Fla + 2h)

+f(a+4hy) 4+ fla+ (2" = 2)hy) + f(b) + f(b)}

= %{f(a) + f(b) + 2f(a + 2hy) + 2f (a + 4hy,)
+--4+2f(a+ (2" = 2)hy,)}

@+ SO 20+ ) + 26+ )

+o 4 2f(a+ 2" = Dh, 1)}
= RHS.

IN

3. MAIN RESULTS 1

We give the refined inequalities for (1.3) by repeating use of the refined Hermite
Hadamard inequalities given in (2.1).

Theorem 3.1. For every convex Riemann integrable function f : [a,b] — R and
v € [0,1], we have

(3.1) flaob) < RN (a,b) = Rgfg o(a,b)
1 1
< RY) (a,b) < RY) y(a,0) <--- < RY) (a,b)
< Cf,v(a, b)

IA

Rgczzn( b) < R??)n 1((1 b) << Rgf21)171(a7 b)

< RY) o(a,b) = RY)(a,b) < f(a) v F(b),
where by, = 0=, _ (1=v)b—a)
on 2n
(32) R (a,0)

_ 21]?:{ (1-0)f (a+(2k—1)h2"> +of <(1—v)a+vb+(2k—1)€2n>}
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1
= 3 20 Ven ) V@Y, megen b

and
(3.3) RY) (a,b)
= 2n1+1 (1= 0)f(a) + 07 () + F(1— v)a + b))
2" —1

Z{ (1 —v)f(a+ khy) +vf((1 —v)a+vb+ kly)}

_ W{f(a) Vo f(b) + fla7ub)}
2n—1

+2in > {f(av% b) Vo fa v, kv b)}

k=1
1
= 5 {(F(@) 0 1) 9112 (Fla v, b))
an—1
+ ; f(a \ b) Vv f(a Vg bldw) b)}
In the case of n =0 in (3.1), we have the results of ([7], Theorem 2.1).

Proof. Applying the refined Hermite Hadamard inequalities (2.1) on two intervals
[a, (1 —v)a + vb] and [(1 — v)a + vb, b], we obtain respectively

2" hy, 1 (1—v)a+vb
(3.4) 2% ];f <a + (2k — 1)2> < U(b/a f(x)dx

—a)

IN

1
e {f(a)+f((1 RS f<a+khn>}

k=1
and

2n
(3.5) %Z (1—va+vb+(2k—1)€>
k=

1 b
Ao a) /u_maﬂb fle)de

2" -1
< ;H{f((l—v) +ob)+ f(0)+2 ) f( 1—v)a+vb+k€)}

k=1

IN

Multiplying (1 — v) and v to the both sides in (3.4) and (3.5) respectively and
summing each side, we obtain

on

(3.6) 2%2 {(1 —)f <a+ (2k — 1)2”) +of ((1 —v)a +vb+ (2k — 1)2’”‘)}

k=1
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1—v (1—v)a+vb v b
S W w / f@de + T —a) /<1_v>a+vb J@)de

2n1+1 {f(a) 70 f(b) + f(a 70 b) Vo fa 70 b)}
2n_1
Z{l—v (a+khyp) +vf((1—v)a+vb+kl,)},

IN

which is equivalent to

(3.7) rY

Fon(a:b) < Cpofa.) < RY) (a.b)

by replacing the variables such as * = v(b — a)s + a in the first term and x =
(1 =v)(b—a)u+ (1 —v)a+ vb in the second term of the integral parts in (3.6).
Finally we estimate R; 1)} (@, b) and Rgc 3) ,»(a,b). By the same method in Proposition
2.2, it is easy to sow

R}{;n (a b)<R;gn(a b),

and
Rj?in( b) <R§3m (a,b).

Corollary 3.2. For a,b> 0 and v € (0,1), we have

on

1
(3.8) 27 ;(aﬁ (2212;11)1; b) \Y2) (aﬁ +(2k 2711)(} v) b)
< Lv(a, b)

2" —1
< Qi [(a Vo b) Vg2 (abob) + ) (afz) (aﬁwk(;nv)b)]
k=1

In the case of n =0 in (3.8), we have the results of ([7], Corollary 2.2).

Proof. Applying the convex function f(t) = e’ in Theorem 3.1, we have for a,b > 0

on
(39) i {(1 . v)e(l_(éﬁ;}l)v )ae (227?,”11)1117}

e {veuv<2k;z>¢1—v>>ae<v+<%;;>ﬁ—v>>b}
1

k=
v

)
{<1—v>ea+wb+eu-maeub}

2n—1
Z {1 —v) e aid + el v~ k(;v))“e(”k(;v) )b}.

IN

{e(lfv)a+vb - ea} {eb - e(lfv)a+vb}

IN

2n+1
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Replacing e and e® with a and b respectively, we obtain the inequalities (3.8) for

b>a>0andve(01). O

We give the inequalities on the weighted identric mean which was defined in [10]
as

1 (1—2v)(aTwb) = b=a
(310) IU(CL, b) = g(a Vo b) v(-v)(b-a) T (1—v)a , VE (07 1)
a

v

1
It is easy to check that I} ;5(a, b) recovers the usual identric mean I(a,b) = 1 (Z—Z) -

with lim,_,0 I, (a,b) = a and lim,_1 I,,(a,b) = b.

Corollary 3.3. For a,b>0 andv € (0,1), we have

an 3
(.11) {(mz))m(a Vo 0) []@ 15 Do s b)}
k=1
< I,(a,b)

on 1

277.
< —1)v v\a — —v
= kI |1 {((l Y7(22kn 11) b)ﬁ ( §7v (zkzi)(} ) b)}

In the case of n =0 in (3.11), we have the results of ([7], Corollary 2.3).

Proof. We apply the convex function f(t) = —logt in Theorem 3.1. Since

—(1—v)log { <1 - <2];;11)”> a+ (21;;11)“1)}

T = TE R AN ST TEEN
~ —log { (1 - (2’;;11)“) a+ (2];;11)”1)}1_”

{ <1 _y G- DA-v) _22(11 - U)> a+ <v ;2D =v) _22(11 — U)) b}v :

we have
2" 1—v
1 (2k — 1)v (2k — 1)v
k=1

K””‘W)H(HW%}”
= gL ) ]

{@w_%Qggwy+@+%2ggwyy
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e

2n
= — logkl;Il {(a \V4 (2o by (a Voot (k=11 —0) b)}

Since

—(1—wv)loga —vlogb—log((1 —v)a + vb)

2 kv kv
-2 (1—-w)l 11— — —b
> {a-vmes((1-5) o+ 50)

o (10 HL= Yo (o B ), )

we have

(3.13) loga'™"b*((1 — v)a + vb)

B 2n+1

Sl 8
{(1 v k(12nv)> a+ <v+ k(12nv)> b}U,

1 v v
- _2710@ b2 ((1 - v)a +vb)'/?

m—1 1—v
1 kv kv
| 122 i
on 0g1i[{< 2n>a+2nb}
(

{(1-o- M2 o (o4 20 0L

21’1,

= _k)g{(aﬁvb)ﬂlﬂ(ava)H(QV’;;{ D@V, kav b)} :

k=1

We calculate the following

1—-w
(3.14) —m{(a Vo b)log(a 7y b) —as7y, b—aloga+ a}

v
(1 —=v)(b—a)
(1—2v)((1—v)a+wvbd) (1—v)a

— —log{(l —v)a+vb} v(l—v)(b—a) pa- v)(b a)q vlb—a) — 1

{blogb —b — (a 7y b) log(a Vv b) + a7, b}
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(1—2v)((1—v)a+wvb)

1 i\
= - log g{(l — 'U)a + 'Ub)} v(1—v)(b—a) a(le .

Thus we complete the proof for any a,b > 0 by the similar way to the proof of
Corollary 3.2. O

4. MAIN RESULTS 2

We give the refined inequalities for (1.3) by repeating use of the refined Hermite
Hadamard inequalities given in (2.1). The obtained inequalities are different from
the inequalities in Theorem 3.1.

Theorem 4.1. For every conver Riemann integralble function f : [a,b] — R and
v € [0,1], we have

a+b
(41) f(T) < T;i)}(a, b) = TJ(CTQ)J,O(G” b)
< 1"%3}71(@()) < 7”%3,72(@» b) <--- < T;}Zm(a, b)
1 b
< - a/ f(z)dx
< ) <P, b < <o) e
fla)+ f(b
< ng,o(a,b) = Tﬁ),(a,b) < (@) 5 ( ),
where hy, = (62; ¢ by = (1 - v2)£b - a)’

_ zlni{vf <a+(2k—1)h;) +(1—v)f <(1—v)a+vb+(2k—1)€2")}

k=1
1 —
= 5n 2 fav, oo b) Vo fla v @y b)
k=1 2t 2l
and
(4.3) r?) (a,0)
- inﬁ{”f(a) + (1 =v)f(b) + f(1 —v)a+vb)}
2" —1
+2in > {vf((a+khy) + (1 =) f((1—v)a+vb+ kly)}
k=1
= s B . f@) + fla )
2n—1

1
ton ; fa v, k- b) Vo fla s b)

on
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= S AUO) Vo S@) Vi (e 70 0)
2n—1
+> flav, Lk b) Vo fla v b))

k=1

Proof. Multiplying v and (1 — v) to the both sides in (3.4) and (3.5) respectively
and summing each side, we obtain

(44 zlki{ (“* Qk_l)hz>+(1—U)f<(1—U)a+vb+(2k—1)€2">}

1 (1—v)a+vb 1 b
d d
i e [ e

1—v)a+vb

IN

IN

271“ {8 T0 J(a) + /(@70 B) + (L v)f(a vy b))
2n—1

Z{vf (a+ khy) + (1 —0)f((1 —v)a + vb+ kby)},

which is equivalent to

1
(4.5) r;ﬂ)jm(a b) — a/ f(z)dz < r;ﬂ)}n(a b).

Finally we estimate rgc ) ,(a,b) and T](c71))7n(a, b). By the same method in Proposition

2.2, it is easy to sow

ng);,n—l(a’ b) < T](c%l)),n(a’ b),
and

rﬁ)) (a,b) < T}an 1(a,b).

Corollary 4.2. For a,b> 0 and v € (0,1), we have

27'L
1
(4.6) on ;(aﬁw (zk;}l)ﬁ—u) b) Vo (af (221;111)1; b)
b—a
< =
< Liplab) logb —loga
21
< oo |[(6V0a) 2 (atub) + ; (0t 20-0b) Vo (af 1 b)

Proof. After we apply the convex function f(t) = e’ in Theorem 4.1, we replace %
and €’ with a and b respectively. Then we obtain the inequalities (4.6) for b > a > 0
and v € (0,1). O
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Corollary 4.3. Fora,b >0 and v € (0,1), we have

on 3w
(4'7) {(bﬁva)ﬁl/z(a Vo b) H(a ver% b)ﬁv(a V;Tz{ b)}
k= 1
b
< Tylab) = 6(;)
< H{av i D@ e D)}

on+1

Proof. Applying the convex function f(¢

) = —logt in Theorem 4.1, we obtain in-
equalities (4.7) for b > a > 0 and v € (0,1

). O

5. RELATED RESULTS

Our obtained results in this paper can be extended to the operator inequalities.
We give operator inequalities corresponding to Corollary 3.2 and 4.2. For strictly
positive operators A and B, the weighted geometric operator mean and arithmetic
operator mean are defined as

Af,B = A2 (A_WBA_W)U AY2 A7, B=(1—v)A+B.

It is known that an operator mean M (A, B) is associated with the representing
function f(t) = m(1,t) with a mean m(a, b) for positive numbers a, b, in the follow-
ing

M(A,B) = AV2f (A*1/2BA*1/2> AL/2

in the general operator mean theory by Kubo-Ando [8]. Thus it is understood that
the weighted logarithmic operator mean A¢, B is defined by through the representing
function L,(1,t) for v € (0,1).

Theorem 5.1. For any v € (0,1) and strictly positive operators A and B, we have

2”1
1
6 S|ty B) 90 (4, g B)
2 =1 on+1 on+1
< A¢,B
2" —1

Proof. After we divide a in the both sides of the inequalities (3.8) and we put
g = t, we replace t by A"Y2BA~1/2 and multiply AY/2 from the both sides. Then
we obtain the results. O
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Theorem 5.2. For any v € (0,1) and strictly positive operators A and B, we have

271
1
(5.2) e (Af | er-na-w B) Vv (Aff (2k—1)1)B)
2 =1 VR onF1
< Al,B
1 2n—1
< g [(BteA) Vip2 (A7 B) + % (A8, -0 B) Vo (At gy B)
Proof. We obtain the results by the same method of Theorem 5.1. O
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