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spaces. Convexity in metric spaces was first introduced by Takahashi in [17]. For
detail on the topic, we refere to [1].

Recently, Marrero [14, 15] used the Eisenfeld-Lakshmikantham measure of non-
convexity in reflexive Banach space to prove some fixed point results including the
Browder-Göhde-Kirk fixed point theorem without the convexity requirement on the
underlying set.

We use in this paper the measure of nonconvexity for obtaining fixed point results
in metric spaces. We prove some fixed point theorems for nonexpansive and γ-
condensing maps in strictly convex metric spaces with convex round balls having
the so-called property (R), where γ is a measure of non-compactness.

2. Preliminaries

In this section, we recall basic definitions and results from the paper [6]. All the
way through this section (X, d) denotes a metric space.

Definition 2.1. (1) A set K ⊂ X is said to be convex if for each x, y ∈ K and
for each t ∈ [0, 1], there exists z ∈ K such that

d (x, z) = td (x, y) and d (z, y) = (1− t) d (x, y) .

(2) The space X is said to be strictly convex if for each x, y ∈ X and for each
t ∈ [0, 1], there exists a unique z ∈ X such that

d (x, z) = td (x, y) and d (z, y) = (1− t) d (x, y) .

It is easy to show that the intersection
∩

α∈I Kα of a family of convex sets in a
strictly convex metric space is convex itself. The convex hull of K ⊂ X is the set

co (K) =
∩

{C ⊂ X : K ⊂ C and C is convex} .

co (K) will denote the closure of the convex hull of K. The following properties are
easy to prove.

(i) co (K) is convex and K ⊂ co (K);
(ii) co (K) = K if and only if K is convex;

(iii) co (K) = K if and only if K is closed and convex.

It should be noted that closed balls in strictly convex metric space are not nec-
essarily convex sets. So, one requires the following condition in addition.

Definition 2.2. A strictly convex metric space (X, d) is said to be strictly convex
metric space with convex round balls if for all x, y, w ∈ X, x ̸= y and for all t ∈ (0, 1),
there exists z ∈ X such that

d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y),

d (w, z) < max {d (w, x) , d (w, y)} .

The above strict inequality shows that if x and y belong to

S (w, r) = {a ∈ X : d (a,w) = r} , r > 0,

then z does not belong to S(w, r), that is, S (w, r) does not contain straight lines.
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Lemma 2.3. Let (X, d) be a strictly convex metric space with convex round balls.
Then the closed ball B (a, r) = {y ∈ X : d (a, y) ⩽ r} is a convex set for every r > 0
and every a ∈ X.

Remark 2.4. The condition:
For all x, y, w ∈ X (x ̸= y) and for all t ∈ (0, 1), there exists z ∈ X such that

d (x, z)= td (x, y) and d (z, y)=(1− t) d (x, y) and d (w, z)≤ max {d (w, x) , d (w, y)}
is equivalent with the condition of convexity of closed balls.

A trivial example of a strictly convex metric space that is not a strictly convex
metric space with convex round balls is X = {x} with d(x, x) = 0. For a nontrivial
example see [7, Section 3].

Definition 2.5. A convex set K in X is said to have normal structure if for each
bounded and convex set C ⊂ K that contains more than one point, there is some
point y ∈ C such that

ry (C) := sup {d (x, y) : x ∈ C} < δ (C) := sup {d (x, y) : x, y ∈ C} .

Lemma 2.6. Every convex and compact set in a strictly convex metric space X
with convex round balls has normal structure.

3. Main results

Throughout this section (X, d) will be a metric space.
On the lines of Nadler [16], we adopt that:

(1) B(X) = {A : A is a non-empty closed and bounded subset of X},
(2) for A,B ∈ B(X) and x ∈ X,

d(x,A) = inf{d(x, a) : a ∈ A}

and

H(A,B) = max {sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}} .

It is well known that B(X) is a metric space with the distance H which is known
as the Hausdorff-Pompeiu metric on B(X).

Definition 3.1. [9] The Eisenfeld-Lakshmikantham measure of nonconvexity (E-L
measure of nonconvexity, for short) of a bounded subset K of X is defined by

µ (K) = sup
x∈co (K)

inf
y∈K

d (x, y) = H(K, co (K)),

where H is the Hausdorff-Pompeiu distance.

The following properties of µ can be derived in a fairly straightforward manner
from its definition. Let K,K1 ∈ B (X) and K denote the closure of K. Then:

(i) µ (K) = 0 if and only if K is convex;
(ii) µ

(
K
)
= µ (K);

(iii) µ (K) ≤ δ (K);
(iv) |µ (K)− µ (K1)| ≤ 2H (K,K1).
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Definition 3.2. A convex metric space (X, d) is said to have property (R) if ev-
ery decreasing sequence of nonempty closed bounded convex subsets of X has a
nonempty intersection.

Lemma 3.3. Let X be a strictly convex metric space with convex round balls having
property (R). Then for any K ⊂ X,

C (K) = {x ∈ K : rx (K) = r (K)}

is nonempty, closed and convex, where r (K) = inf {rx (K) : x ∈ C} .

Proof. Let

K (n, x) =

{
y ∈ K : d (x, y) ≤ r (K) +

1

n

}
for x ∈ K and set Ln =

∩
x∈K K (n, x). Then {Ln} is a decreasing sequence of

nonempty (by property (R)) closed convex sets and so

∞∩
n=1

Ln = C (K)

is nonempty, closed and convex. □

Recall that a self map T : X → X of a metric space (X, d) is called nonexpansive
if d(Tx, Ty) ≤ d(x, y) holds for all x, y ∈ X.

Theorem 3.4. Let X be a strictly convex metric space with convex round balls
having property (R). Let K ⊂ X be a nonempty bounded closed convex set having
normal structure and T : K → K a nonexpansive map. Then T has a fixed point.

Proof. Let

Γ = {C ⊂ K : C is nonempty closed convex and T (C) ⊆ C} .

Then from Zorn’s Lemma and property (R), Γ has a minimal element K0. We shall
show that K0 is a singleton. Let x ∈ C (K0) (note that C (K0) is nonempty by
Lemma 3.3). Then

d (Tx, Ty) ≤ d (x, y) ≤ rx (K0) = r (K0)

for all y ∈ K0 and so T (K0) ⊆ B (Tx, r (K0)). Since

T (K0 ∩B (Tx, r (K0))) ⊆ K0 ∩B (Tx, r (K0)) ,

by the minimality of K0, we have

K0 ⊂ B (Tx, r (K0)) .

So rTx (K0) ≤ r (K0). But r (K0) ≤ rx (K0) for x ∈ K0. Therefore, rTx (K0) =
r (K0) and so Tx ∈ C (K0). This implies that T (C (K0)) ⊆ C (K0). By Lemma 3.3,
C (K0) ∈ Γ.

If z, w ∈ C (K0), then

d (z, w) ≤ rz (K0) = r (K0) .



MEASURE OF NONCONVEXITY AND FIXED POINTS 183

Since K0 has a normal structure, and there exists x ∈ K0 such that

δ (C (K0)) ≤ rx (K0) < δ (K0) .

This contradicts the minimality of K0. Thus δ (K0) = 0. This implies that K0 is a
singleton. □

Lemma 3.5. Let {An}∞n=1 be a decreasing sequence of nonempty closed bounded
subsets of a convex metric space X with limn→∞ µ (An) = 0 and let A∞ =

∩∞
n=1An.

Then A∞ =
∩∞

n=1 co (An).

Proof. Clearly,

A∞ =

∞∩
n=1

An ⊆
∞∩
n=1

co (An) .

On the other hand, let x ∈
∩∞

n=1 co (An). Then x ∈ co (An) for all n. Since
limn→∞ µ (An) = 0, for each ϵ > 0 there is N such that µ(An) < ϵ for n > N .
For such n, infy∈An d(x, yn) < ϵ, so one can choose yn ∈ An satisfying d(x, yn) < ϵ.
Hence, yn → x as n → ∞. Each An is closed and so x ∈ An for each n, i.e.,
x ∈

∩∞
n=1An = A∞. As a result, we have

A∞ =

∞∩
n=1

co (An) .

□

Recall that a subset K of a metric space (X, d) is called a Chebyshev set if for
each x ∈ X there is a unique y ∈ K such that d(x, y) = d(x,K).

Theorem 3.6. Let (X, d) be a strictly convex metric space with convex round balls
having property (R) and let µ be the E-L measure of nonconvexity. Let K ⊂ X be
a nonempty closed set and x0 ∈ X \K. If limn→∞ µ (K (n, x0)) = 0, where

K (n, x0) =

{
x ∈ K : d (x0, x) ≤ d+

1

n

}
and d = d (x0,K) ,

then K is a Chebyshev set.

Proof. Since {K (n, x0)} is a decreasing sequence of nonempty closed bounded sets
with limn→∞ µ (K (n, x0)) = 0, property (R) guarantees that

K∞ =
∞∩
n=1

K (n, x0) = PK (x0) = {x ∈ K : d (x0, x) = d}

is nonempty and convex.
For uniqueness, let x, y ∈ PK (x0) with x ̸= y. Then d (x0, x) = d and d (x0, y) =

d. It follows that there exists z ∈ K such that

d (x, z) = td (x, y) and d (z, y) = (1− t) d (x, y) .
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From the condition of convex round balls, we have

d (x0, z) < max {d (x0, x) , d (x0, y)} = d = d (x0,K) .

This is a contradiction. Hence K is Chebyshev. □

Definition 3.7. Let K be a nonempty closed bounded subset of a strictly con-
vex metric space (X, d). A map T : K → K is said to have property (C) if
limn→∞ µ (An) = 0, where µ is the E-L measure of nonconvexity in X and {An}∞n=1

is the decreasing sequence of nonempty, closed and bounded subset of X defined by

A1 = T (K), An+1 = T (An) (n ∈ N) .

Definition 3.8. Let K be a nonempty bounded subset of a strictly convex metric
space (X, d) with E-L measure of nonconvexity µ. A map T : K → K is called a
µ-contraction (with constant α) if

µ (T (A)) ≤ αµ (A)

for some α ∈ (0, 1) and every A ⊂ K.

Remark 3.9. When K is closed, every µ-contraction T : K → K has property (C).
Indeed, if {An}∞n=1 is as in Definition 3.7, then µ (An) ≤ αnµ (K) (n ∈ N) implies
that limn→∞ µ (An) = 0.

Proposition 3.10. Let X be a strictly convex metric space with convex round
balls having property (R). Let K ⊂ X be a nonempty closed bounded set and let
T : K → K have property (C). Then K contains a nonempty closed convex set A
such that T (A) ⊂ A.

Proof. Let {An}∞n=1 be a decreasing sequence of nonempty closed bounded subset
of X defined by

A1 = T (K), An+1 = T (An) (n ∈ N) .
The set A∞ =

∩∞
n=1An is closed with T (A∞) ⊂ A∞. Since T has property (C), we

have limn→∞ µ (An) = 0. By property (R) and Lemma 3.5, A∞ is nonempty and
convex. □

Theorem 3.11. Let (X, d) be a strictly convex metric space with convex round balls
having property (R). Let K ⊂ X be a nonempty closed bounded set having normal
structure and T : K → K a nonexpansive map having property (C). Then T has a
fixed point.

Proof. By Proposition 3.10, there exists a nonempty closed convex subset A of K
with T (A) ⊂ A. Since T is nonexpansive, by Theorem 3.4, T has a fixed point. □

In what follows, we will use the (Kuratowski) measure of noncompactness of a
bounded subset K of a metric space (X, d) defined by

γ (K) = inf {ϵ > 0 : K can be covered by a finite number of sets of diameter ≤ ϵ} .

It is well known that the function γ in a complete metric space (X, d) have the
following properties:



MEASURE OF NONCONVEXITY AND FIXED POINTS 185

(i) 0 ≤ γ (K) ≤ δ (K);
(ii) γ (K) = 0 if and only if K is precompact (that is, K is compact);
(iii) γ (K) = γ

(
K
)
;

(iv) γ (K1 ∪K2) = max {γ (K1) , γ (K2)} for K1,K2 ⊂ X.

Definition 3.12. Let K be a nonempty and bounded subset of a metric space
(X, d), and let γ stands for the measure of noncompactness inX. A map T : K → K
is called γ-condensing provided that

γ (T (A)) < γ (A)

for every A ⊂ K with T (A) ⊂ A and γ (A) > 0.

Theorem 3.13. Let (X, d) be a strictly convex complete metric space with convex
round balls. Let K ⊂ X be a nonempty closed bounded convex set and suppose
T : K → K is γ-condensing and nonexpansive. Then T has a fixed point.

Proof. Fix x ∈ K and let Γ denote the family of all closed convex subsets C of K
for which x ∈ C and T : C → C. Now set

B =
∩
C∈Γ

C, D = co (T (B) ∪ {x}) .

Since x ∈ B and T : B → B, it must be the case that D ⊆ B. This implies that
T (D) ⊆ T (B) ⊆ D. Since x ∈ D, it follows that D ∈ Γ. Therefore B ⊆ D, from
which we conclude that B = D.

We now have T (D) = T (B) ⊆ D and

γ (D) = γ
(
co (T (B) ∪ {x})

)
= γ (T (B) ∪ {x}) = γ (T (B)) = γ (T (D)) .

Since T is γ-condensing, this can only happen if γ (D) = 0, that is, if D is compact.
Therefore T is a nonexpansive map of the compact convex set D into itself, so by
Theorem 3.4, T must have a fixed point. □

Theorem 3.14. Let (X, d) be a strictly convex complete metric space with convex
round balls having property (R). Let γ be the measure of noncompactness in X and
let K ⊂ X be a nonempty closed bounded set. Assume that the map T : K → K is
nonexpansive, γ-condensing and has property (C). Then T has a fixed point.

Proof. By Proposition 3.10 and Theorem 3.13, T has a fixed point. □
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[12] D. Göhde, Zum Prinzip der kontraktiven Abbildung, (in German) Math. Nachr. 30 (1965),

251–258.

[13] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math.

Monthly, 72 (1965), 1004–1006.

[14] I. Marrero, A note on reflexivity and nonconvexity, Nonlinear Anal. 74 (2011), 6890–6894.

[15] I. Marrero, Weak compactness and the Eisenfeld-Lakshmikantham measure of nonconvexity,

Fixed Point Theory Appl. 5 (2012), 1–7.

[16] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 20 (2) (1969), 457–488.

[17] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Semin.

Rep. 22 (1970), 142–149.

Manuscript received 12 June 2020

revised 22 August 2020

T. S. Alahmadi

Department of Mathematics, King Abdulaziz University, P. O. B. 80203, Jeddah 21589, Saudi

Arabia

E-mail address: tagreed-saleh@hotmail.com

Z. Kadelburg

University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Beograd, Serbia

E-mail address: kadelbur@matf.bg.ac.rs

N. Shahzad

Department of Mathematics, King Abdulaziz University, P. O. B. 80203, Jeddah 21589, Saudi

Arabia

E-mail address: nshahzad@kau.edu.sa


