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and look for minimal elements of them with respect to appropriate order relations
on 2Y .

The aim of this paper is to present new type minimal element theorems with
some kind of weak uniqueness property. In contrast to [12], we introduce new type
order relations on X × 2Y which depend on nonlinear scalarizing functions for sets
and equivalent classes on 2Y .

The organization of this paper is as follows. First, we introduce some types of
nonlinear scalarizing technique for sets [2, 3, 4] which are generalization of Tammer-
Weidner’s scalarizing functions for the vector-valued case [9, 10]. Next, we give
some minimal element theorems for set-valued map. There are some previous works
([8, 12, 21, 24] and their references therein), however, we present new type minimal
element theorems. Next, we derive several types of Ekeland’s variational principles,
Caristi’s fixed point theorems and Takahashi’s minimization theorems for set-valued
map which are generalizations of [1]. Lastly, we prove the equivalences between the
above theorems. We remark that all existence theorems proved in this paper are
special case of Brezis-Browder’s theorem.

2. Mathematical preliminaries

2.1. Mathematical terminology and notation. Throughout of this paper, let
Y be a topological vector space and 0Y the origin of Y . For a set A ⊂ Y , intA and
clA denote the topological interior and the topological closure of A, respectively. We
denote V by the family of nonempty subsets of Y . The sum of two sets V1, V2 ∈ V
and the product of α ∈ R and V ∈ V are defined by

V1 + V2 := {v1 + v2 | v1 ∈ V1, v2 ∈ V2} αV := {αv | v ∈ V }.

In this paper, we assume that C ⊂ Y is a closed convex cone, that is, clC = C,
C +C ⊂ C and t ·C ⊂ C for all t ∈ [0,∞). For a nonempty set X and F : X → V,
we denote F (X) :=

∪
x∈X

F (x). Let PX and PY be projections of X × Y onto X and

Y , respectively, that is,

PX(x, y) = x PY (x, y) = y

for every (x, y) ∈ X × Y .

2.2. Preliminaries in vector optimization. A cone C is called pointed if C ∩
(−C) = {0Y } and solid if intC ̸= ∅.

Definition 2.1. For a, b ∈ Y and a solid convex cone C ⊂ Y , we define

a ≤C b by b− a ∈ C a ≤intC b by b− a ∈ intC.

Proposition 2.2. For x ∈ Y and y ∈ Y , the following statements hold:

(i) x ≤C y implies that x+ z ≤C y + z for all z ∈ Y ,
(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0,
(iii) ≤C is reflexive and transitive. Moreover, if C is pointed, ≤C is antisym-

metric and hence a partial order.
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We say that a point a ∈ A ⊂ Y is a minimal [resp. weak minimal] point of A if
there is no â ∈ A \ {a} such that â ≤C a [resp. â ≤intC a]. The above definition is
equivalent to

A ∩ (a− C) = {a} [resp. A ∩ (a− intC) = ∅].
We denote Min(A;C)[resp. wMin(A; intC)] by the set of minimal [resp. weak min-
imal] points of A with respect to C [resp. intC], respectively. We can easily see
that

Min(A;C) ⊂ wMin(A; intC) ⊂ A.

2.3. Preliminaries in set optimization. We consider several types of binary
relationships on V by using a solid convex cone C ⊂ Y .

Definition 2.3 ([15]). For A, B ∈ V and a solid closed convex cone C ⊂ Y , we
define

(weak type) A ≤w
C B by B −A ⊂ C (A ≤w

intC B by B −A ⊂ intC),

(lower type) A ≤l
C B by B ⊂ A+ C (A ≤l

intC B by B ⊂ A+ intC),

(upper type) A ≤u
C B by A ⊂ B − C (A ≤u

intC B by A ⊂ B − intC),

(strong type) A ≤s
C B by 0Y ∈ B −A− C ⇐⇒ 0Y ∈ A−B + C

(A ≤s
intC B by 0Y ∈ B −A− intC ⇐⇒ 0Y ∈ A−B + intC).

Remark 1. In [15], they firstly defined the following set relation:

(type 1) A ≤(1)
C B by B −A ⊂ C.

After, Jahn-Ha[14] added reflexivity condition to the above definition. Also in [15],
they firstly defined the following type 6 set relation

(type 6) A ≤(6)
C B by A ∩ (B − C) ̸= ∅ ⇐⇒ (A+ C) ∩B ̸= ∅.

We can easily show that type 6 set relation is equivalent to strong type set relation

0Y ∈ B −A− C ⇐⇒ A ∩ (B − C) ̸= ∅ ⇐⇒ (A+ C) ∩B ̸= ∅,

0Y ∈ B −A− intC ⇐⇒ A ∩ (B − intC) ̸= ∅ ⇐⇒ (A+ intC) ∩B ̸= ∅.

Proposition 2.4 ([2, 16]). For A, B ∈ V, the following statements hold.

(i) A ≤w
C B implies A ≤l

C B and A ≤l
C B implies A ≤s

C B.
(ii) A ≤w

C B implies A ≤u
C B and A ≤u

C B implies A ≤s
C B.

(iii) A ≤l
C B and A ≤u

C B are not comparable, that is, A ≤l
C B does not imply

A ≤u
C B and A ≤u

C B does not imply A ≤l
C B.

Proposition 2.5 ([16]). For A, B ∈ V and y ∈ Y , the following statements hold.

(i) A ≤w
C B implies (A+ y) ≤w

C (B + y).
(ii) A ≤w

C B implies αA ≤w
C αB for α ≥ 0.

(iii) ≤w
C is transitive.

Remark 2. Since there are some D ∈ V such that D − D ̸⊂ C, we have that
A ≤w

C B does not imply (A+D) ≤w
C (B +D) for all A,B,D ∈ V.
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Proposition 2.6 ([12, 16]). For A, B, D ∈ V, the following statements hold.

(i) A ≤l
C B implies (A + D) ≤l

C (B + D) and A ≤u
C B implies (A + D) ≤u

C

(B +D).
(ii) For α ≥ 0, A ≤l

C B implies αA ≤l
C αB and A ≤u

C B implies αA ≤u
C αB.

(iii) ≤l
C and ≤u

C are reflexive and transitive.

Proposition 2.7 (see also [16]). For A,B,D ∈ V, the following statements hold.

(i) A ≤s
C B implies (A+D) ≤s

C (B +D).
(ii) A ≤s

C B implies αA ≤s
C αB for α ≥ 0.

(iii) ≤s
C is reflexive.

Definition 2.8 ([18]). It is said that A ∈ V is

(i) C-closed
[
(−C)-closed

]
if A+ C [A− C] is a closed set,

(ii) C-bounded
[
(−C)-bounded

]
if for each neighborhood U of zero in Y there

is some positive number t such that

A ⊂ tU + C [A ⊂ tU − C],

(iii) C-compact
[
(−C)-compact

]
if any cover of A the form {Uα + C| Uα are

open} [{Uα − C| Uα are open}] admits a finite subcover.

Every C-compact set is C-closed and C-bounded.

Definition 2.9 ([13]). It is said that A ∈ V is C-proper
[
(−C)-proper

]
if

A+ C ̸= Y [A− C ̸= Y ].

We denote VC by the family of C-proper subsets of Y and V−C the family of (−C)-
proper subsets of Y , respectively.

Remark 3. It sometimes happens that ≤l
C is equivalent to ≤l

intC . Thus when

we need to distinguish between ≤l
C and ≤l

intC , we assume C-closedness of A ∈ V.
Similarly, when we need to distinguish between ≤u

C and ≤u
intC , we assume (−C)-

closedness of B ∈ V (see example [2]).

Introducing the equivalence relations

A ∼l B ⇐⇒ A ≤l
C B and B ≤l

C A,

A ∼u B ⇐⇒ A ≤u
C B and B ≤u

C A,

we can generate a partial ordering on the set of equivalence classes which are denoted
by [·]l and [·]u, respectively. We can easily see that

A ∈ [B]l ⇐⇒ A+ C = B + C,

A ∈ [B]u ⇐⇒ A− C = B − C.

Definition 2.10. (l[u]-minimal and l[u]-weak minimal element [13]) Let S ⊂ V.
We say that Ā ∈ S is a l[u]-minimal element if for any A ∈ S,

A ≤l[u]
C Ā implies Ā ≤l[u]

C A.
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Moreover, Ā ∈ S is a l[u]-weak minimal element if for any A ∈ S,

A ≤l[u]

intC Ā implies Ā ≤l[u]

intC A.

We denote the family of l[u]-minimal elements of S by l[u]-MinS and the family of
l[u]-weak minimal elements of S by l[u]-wMinS.

We can easily see that

l[u]-MinS ⊂ l[u]-wMinS ⊂ S.

Remark 4. Since the weak type set relation does not satisfy reflexivity condition,
we cannot define the concept of equivalent class and minimal element. Since the
strong type set relation does not satisfy transitivity condition, we also cannot define
the concept of equivalent class and minimal element (see also [14]).

3. Nonlinear scalarization

In this section, we assume k0 ∈ C \ (−C). First, we introduce the following
scalarizing functions for vector

φC,k0 : Y → (−∞,∞] and ψC,k0 : Y → [−∞,∞),

φC,k0(y) = inf{t ∈ R
∣∣y ≤C tk0 } = inf{t ∈ R

∣∣y ∈ tk0 − C },
ψC,k0(y) = sup{t ∈ R

∣∣tk0 ≤C y} = sup{t ∈ R
∣∣y ∈ tk0 + C }.

The above scalarization method is based on the sublinearity of φC,k0 and hence
it is called “sublinear scalarization”. This approach is found in Rubinov [22] and
Pascoletti-Serafini [20], and it was developed and investigated by Tammer [10] and
Luc [18]. It is similar to the idea of Minkowski functional, which is a type of gauge
function. Moreover, φC,k0 has the order-monotone property (see for detail [19]).
The above scalarizing functions for vector have the following property (see also
[19])

φC,k0(y) = −ψC,k0(−y).
In the last 20 years, the investigations of scalarizing functions for sets which are

generalizations of the above scalarizing function for vector have developed widely
(see the history of the investigation [2, 3, 4] and their references therein). Agreeing
inf ∅ = ∞ and sup ∅ = −∞, we define hwinf , h

l
inf , h

u
inf , h

s
inf : V → [−∞,∞]

hwinf(V ) = inf{t ∈ R
∣∣V ≤w

C {tk0}} = inf{t ∈ R
∣∣tk0 − V ⊂ C },

hlinf(V ) = inf{t ∈ R
∣∣∣V ≤l

C {tk0}} = inf{t ∈ R
∣∣tk0 ∈ V + C },

huinf(V ) = inf{t ∈ R
∣∣V ≤u

C {tk0}} = inf{t ∈ R
∣∣V ⊂ tk0 − C },

hsinf(V ) = inf{t ∈ R
∣∣V ≤s

C {tk0}} = inf{t ∈ R
∣∣(V + C) ∩ {tk0} ̸= ∅},

and hwsup, h
l
sup, h

u
sup, h

s
sup : V → [−∞,∞]

hwsup(V ) = sup{t ∈ R
∣∣{tk0} ≤w

C V } = sup{t ∈ R
∣∣V − tk0 ⊂ C },

hlsup(V ) = sup{t ∈ R
∣∣∣{tk0} ≤l

C V } = sup{t ∈ R
∣∣V ⊂ tk0 + C },
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husup(V ) = sup{t ∈ R
∣∣{tk0} ≤u

C V } = sup{t ∈ R
∣∣tk0 ∈ V − C },

hssup(V ) = sup{t ∈ R
∣∣{tk0} ≤s

C V } = sup{t ∈ R
∣∣{tk0} ∩ (V − C) ̸= ∅}.

The functions hwinf , h
l
inf , h

u
inf , h

s
inf and hwsup, h

l
sup, h

u
sup, h

s
sup play the role of utility

functions. By the definitions of the above scalarizing functions for sets, we obtain
the following relationships.

Proposition 3.1 ([2]). The following statements hold:

(i) hlsup(V ) = −huinf(−V );

(ii) husup(V ) = −hlinf(−V ).

Proposition 3.2. The following statements hold:

(i) hsinf(V ) = hlinf(V ) ≤ huinf(V ) = hwinf(V );

(ii) hwinf(V ) = hlsup(V ) ≤ husup(V ) = hssup(V );
(iii) hwsup(V ) = −hwinf(−V );
(iv) hssup(V ) = −hsinf(−V ).

Proof. We have for all t ∈ R

{V ∈ V
∣∣V ⊂ tk0 − C } ⊂ {V ∈ V

∣∣{tk0} ⊂ V + C } and

{V ∈ V
∣∣V ⊂ tk0 + C } ⊂ {V ∈ V

∣∣{tk0} ⊂ V − C }

and hence conclusion (i) and (ii) follows. Conclusion (iii) and (iv) are easily derived
by the definitions of scalarizing functions. □

Definition 3.3. We say that the function f : V → [−∞,∞] is

(i) ≤l
C-increasing if V1 ≤l

C V2 implies f(V1) ≤ f(V2),

(ii) strictly ≤l
intC -increasing if V1 ≤l

intC V2 (V1 ̸= V2) implies f(V1) < f(V2).

The definitions of ≤u
C-increasing, ≤w

C-increasing, ≤s
C-increasing, strictly ≤u

intC -

increasing, strictly ≤w
intC -increasing and strictly ≤s

intC -increasing are similar to

the above ones, respectively.

3.1. l-type.

Lemma 3.4 ([4]). Let k0 ∈ intC. The function hlinf : VC → (−∞,∞] has the
following properties:

(i) hlinf(V ) ≤ t ⇐⇒ tk0 ∈ cl(V + C);

(ii) hlinf is ≤l
C-increasing;

(iii) hlinf(V + λk0) = hlinf(V ) + λ for every λ ∈ R;
(iv) V̂ ∈ [V ]l =⇒ hlinf(V̂ ) = hlinf(V );

(v) hlinf is sublinear.

(vi) hlinf achieves a real value;

(vii) hlinf(V ) < t ⇐⇒ tk0 ∈ V + intC;

(viii) hlinf is strictly ≤l
intC -increasing.
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Example 1. We remark that the monotonicity of ≤s
C is not guaranteed. We set

Y = R2, C = R2
+ = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0}, k0 = (1, 1),

V1 = [0, 1]× [3, 4] V2 = [2, 3]× [2, 3].

We can check that V1 ≤s
C V2 and (3 =)hsinf(V1) > hsinf(V2)(= 2).

Example 2 ([4]). Assumption of closedness in conclusion (i) of Lemma 3.4 is
needed. We set

Y = R2, C = R2
+, k0 = (1, 1), V = {(x, y) | y ≤ −1

x
, x > 0}.

We can check that

hlinf(V ) ≤ 0 ⇐⇒ 0Y ∈ V + C

is false since V + C = {(x, y) | x > 0} is an open set which does not contain 0Y .

Example 3 ([4]). Assumption of C-properness and k0 ∈ intC are needed to show
that hlinf > −∞. We set

Y = R2, C = R2
+, k0 = (1, 1), V = {(x, y) | y ≤ 1

x
, x < 0}.

We can check that V + C = Y and hlinf(V ) = −∞.

Example 4 ([4]). Assumption k0 ∈ intC is needed to show that hlinf is a real-valued

function and hlinf is a strictly ≤l
intC -increasing function. We set

Y = R2, C = R2
+, k0 = (1, 0), V1 = (1, 2)×(1, 2), V2 = (1, 3)×(1, 3).

We can check that V1 ≤l
intC V2, however, h

l
inf(V1) = hlinf(V2) = ∞.

3.2. u-type.

Lemma 3.5 ([4]). Let k0 ∈ intC. The function huinf : V → (−∞,∞] has the
following properties:

(i) huinf(V ) ≤ t ⇐⇒ V ⊂ tk0 − C;
(ii) huinf is ≤u

C-increasing;
(iii) huinf(V + λk0) = huinf(V ) + λ for every λ ∈ R;
(iv) V̂ ∈ [V ]u =⇒ huinf(V̂ ) = huinf(V );
(v) huinf is sublinear.
(vi) huinf(V ) < t =⇒ V ⊂ tk0 − intC.

Moreover, if k0 ∈ intC and V is (−C)-bounded then huinf has the following property:

(vii) huinf achieves a real value.

Furthermore, if k0 ∈ intC and V is (−C)-compact then huinf has the following prop-
erties:

(viii) V ⊂ tk0 − intC =⇒ huinf(V ) < t;
(ix) huinf is strictly ≤u

intC -increasing.
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Example 5 ([4]). Assumption of (−C)-boundedness is needed to show that huinf <
∞. We set

Y = R2, C = R2
+, k0 = (1, 1), V = {(x, y) | x = 1}.

We can check that V is not (−C)-bounded and huinf(V ) = ∞.

Example 6 ([4]). Assumption k0 ∈ intC is needed to show that huinf is a real-valued
function and huinf is a strictly ≤u

intC -increasing function. We set

Y = R2, C = R2
+, k0 = (1, 0),

V1 = {(x, y) | x ≤ 0, 0 ≤ y ≤ 1}, V2 = {(x, y) | x ≤ 1, 1 ≤ y ≤ 2}.

We can check that even if V1, V2 ∈ V is (−C)-compact and V1 ≤u
intC V2, however,

huinf(V1) = huinf(V2) = ∞.

Example 7 ([4]). Assumption of (−C)-compactness is needed to show that huinf is
a strictly ≤u

intC -increasing function. We set

Y = R2, C = R2
+, k0 = (1, 1),

V1 = {(x, y) | 0 ≤ y ≤ 1}, V2 = {(x, y) | 2 ≤ y ≤ 3}.

We can check that V1 ≤u
intC V2, however, h

u
inf(V1) = huinf(V2) = ∞.

3.3. Nonconvex separation type theorems for sets.

Corollary 3.6 (l-type, revised version of [2]). Let Y be a topological vector space,
C ⊂ Y a solid closed convex cone, k0 ∈ intC and V ∈ VC a C-closed set. Then we
have

0Y ̸∈ V + C ⇐⇒ hlinf(V ) > 0.

Moreover, if k0 ∈ intC, then we have

0Y ̸∈ V + intC ⇐⇒ hlinf(V ) ≥ 0.

Proof. The proof of this Corollary is a consequence of (i) and (vii) of Lemma 3.4. □

Corollary 3.7 (u-type, revised version of [2]). Let Y be a topological vector space,
C ⊂ Y a solid closed convex cone, k0 ∈ intC and V ∈ V is a (−C)-bounded set.
Then we have

V ̸⊂ −C ⇐⇒ huinf(V ) > 0.

Moreover, if k0 ∈ intC and V ∈ V is a (−C)-compact set, then we have

V ̸⊂ −intC ⇐⇒ huinf(V ) ≥ 0.

Proof. The proof of this Corollary is a consequence of (i), (vi) and (viii) of Lemma 3.5.
□
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4. Main results

Brezis and Browder generalized Ekeland’s variational principle, which is a mini-
mal point theorem on a quasi-ordered set.

Theorem 4.1 (Brezis-Browder[5]). Let (W,⪯) be a quasi-ordered set (that is, ⪯ is
a reflexive and transitive relation on W ) and let ϕ :W → R be a function satisfying

(A1) ϕ is bounded below,
(A2) w1 ⪯ w2 implies ϕ(w1) ≤ ϕ(w2),
(A3) for every ⪯-decreasing sequence {wn}n∈N ⊆ W there exists some w ∈ W

such that w ⪯ wn for all n ∈ N.
Then for every w0 ∈W there exists some w̄ ∈W such that

(i) w̄ ⪯ w0,
(ii) ŵ ⪯ w̄ implies ϕ(ŵ) = ϕ(w̄).

The above theorem plays an important role in this paper. We define the following
ordering relation on X ×VC (l-type and strong type) and X ×V (u-type and weak
type), respectively, where X is a metric space.

(x1, V1) ⪯w
k0 (x2, V2) ⇐⇒ V1 + d(x1, x2)k

0 ≤w
C V2

(x1, V1) ⪯l
k0 (x2, V2) ⇐⇒ V1 + d(x1, x2)k

0 ≤l
C V2

(x1, V1) ⪯u
k0 (x2, V2) ⇐⇒ V1 + d(x1, x2)k

0 ≤u
C V2

(x1, V1) ⪯s
k0 (x2, V2) ⇐⇒ V1 + d(x1, x2)k

0 ≤s
C V2

Proposition 4.2. We have the following properties:

(i) ⪯l
k0 and ⪯u

k0 are reflexive and transitive on X×VC and X×V, respectively;
(ii) ⪯w

k0 is transitive on X × V;
(iii) ⪯s

k0 is reflexive on X × VC ;

(iv) (⪯w
k0) =⇒ (⪯l

k0) =⇒ (⪯s
k0) and (⪯w

k0) =⇒ (⪯u
k0) =⇒ (⪯s

k0).

4.1. Minimal element theorems for set-valued map. The aim of this subsec-
tion is to present minimal element theorems by using Brezis-Browder’s principle,
sublinear scalarizing functions for sets and nonconvex separation type theorems. In
[12], they defined order relations ⪯l

k0 ,⪯
u
k0 and presented firstly minimal element

theorems with respect to ⪯l
k0 and ⪯u

k0 .
We define the following new order relations on X × VC and X × V, respectively,

where X is a metric space. The idea of these relations depends on [8] and chapter
2 of [11].

(x1, V1) ⪯l
k0,hl

inf
(x2, V2) ⇐⇒

{
(x1, V1) ⪯l

k0 (x2, V2)

hlinf(V1) < hlinf(V2)
or

{
x1 = x2

V2 ∈ [V1]
l

(x1, V1) ⪯u
k0,hu

inf
(x2, V2) ⇐⇒

{
(x1, V1) ⪯u

k0 (x2, V2)

huinf(V1) < huinf(V2)
or

{
x1 = x2

V2 ∈ [V1]
u

We also see that ⪯l
k0,hl

inf

and ⪯u
k0,hu

inf
are reflexive and transitive on X × VC and

X × V, respectively.
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Theorem 4.3 (l-type). Let X be a complete metric space and Y a topological
vector space, C ⊂ Y a solid closed convex cone, VC a family of C-closed subsets of
Y , k0 ∈ intC and A ⊂ X×VC a nonempty set. We assume the following conditions:

(i) A is bounded below (there exists Ṽ ∈ VC such that 0Y ̸∈ PVC
(A)− Ṽ + C);

(ii) For all ⪯l
k0-decreasing sequence {(xn, Vn)}n∈N ⊂ A with xn → x ∈ X, there

exists (x, V ) ∈ A such that (x, V ) ⪯l
k0 (xn, Vn) for all n ∈ N.

Then for every (x0, V0) ∈ A there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) ⪯l
k0 (x0, V0), and

(b) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ⪯l
k0 (x̄, V̄ ) then x̂ = x̄.

Moreover, if we replace ⪯l
k0 with ⪯l

k0,hl
inf

, conclusion (b) can be replaced to

(b’) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ⪯l
k0,hl

inf

(x̄, V̄ ) then x̂ = x̄ and V̂ ∈ [V̄ ]l.

Proof. Let

A0 := {(x, V ) ∈ A | (x, V ) ⪯l
k0 (x0, V0)}.

We apply the Brezis-Browder principle to the quasi-ordered set (A0,⪯l
k0) and the

following functional

ϕ : A0 → R, ϕ(x, V ) := hlinf(V ).

We show that ϕ satisfies the assumptions of Theorem 4.1. By Corollary 3.6 and (v)

of Lemma 3.4, we have for Ṽ ∈ VC

0 < hlinf(PVC
(A)− Ṽ ) ≤ hlinf(PVC

(A)) + hlinf(−Ṽ )

for all x ∈ X and hence

−∞ < −hlinf(−Ṽ ) ≤ hlinf(PVC
(A)).

Then, we have that hlinf(PVC
(A)) is bounded from below on X, that is, (A1) holds.

By condition (ii) and (iii) of Lemma 3.4, we have that

(x1, V1) ⪯l
k0 (x2, V2)

(
⇐⇒ V1 + d(x1, x2)k

0 ≤l
C V2

)
implies

hlinf(V1) + d(x1, x2) ≤ hlinf(V2)

and hence

hlinf(V1) ≤ hlinf(V2),

that is, (A2) holds. We easily see that condition (ii) implies (A3). Therefore, by
Theorem 4.1, for every (x0, V0) ∈ A0 there exists (x̄, V̄ ) ∈ A0 such that

(1) (x̄, V̄ ) ⪯l
k0 (x0, V0),

(2) (x̂, V̂ ) ⪯l
k0 (x̄, V̄ ) implies ϕ(x̂, V̂ ) = ϕ(x̄, V̄ ).

Condition (1) implies conclusion (a). Since (x̂, V̂ ) ∈ A0, by condition (ii) and (iii)
of Lemma 3.4, we have that

hlinf(V̂ ) + d(x̂, x̄) ≤ hlinf(V̄ ).
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Now we have hlinf(V̂ ) = ϕ(x̂, V̂ ) = ϕ(x̄, V̄ ) = hlinf(V̄ ), we obtain d(x̂, x̄) = 0 and
hence x̂ = x̄, that is, conclusion (b) holds.

To prove (b’), let

B0 := {(x, V ) ∈ A | (x, V ) ⪯l
k0,hl

inf
(x0, V0)},

ϕ : B0 → R, ϕ(x, V ) := hlinf(V ).

Similarly, we also show that ϕ satisfies the assumptions of Theorem 4.1 and we
obtain conclusion (b’). □

In a similar way as Theorem 4.3, we obtain u-type minimal element theorem.

Theorem 4.4 (u-type). Let X be a complete metric space and Y a topological vec-
tor space, C ⊂ Y a solid closed convex cone, V a family of (−C)-bounded subsets of
Y , k0 ∈ intC and A ⊂ X×V a nonempty set. We assume the following conditions:

(i) A is bounded below

(there exists Ṽ ∈ V and Ṽ ̸= Y such that PV(A)− Ṽ ̸⊂ −C);
(ii) For all ⪯u

k0-decreasing sequence {(xn, Vn)}n∈N ⊂ A with xn → x ∈ X, there
exists (x, V ) ∈ A such that (x, V ) ⪯u

k0 (xn, Vn) for all n ∈ N.
Then for every (x0, V0) ∈ A there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) ⪯u
k0 (x0, V0), and

(b) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ⪯u
k0 (x̄, V̄ ) then x̂ = x̄.

Moreover, if we replace ⪯u
k0 with ⪯u

k0,hu
inf
, conclusion (b) can be replaced to

(b’) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ⪯u
k0,hu

inf
(x̄, V̄ ) then x̂ = x̄ and V̂ ∈ [V̄ ]u.

Remark 5. In [12], they introduced the following condition (Theorem 5.1 and 5.2):

(Hamel-Löhne): Let Y a topological vector space, C ⊂ Y be a proper closed
convex cone andK ⊂ Y a convex cone. If, in addition, k0 ∈ K\{0Y } ⊂ intC
and if for each (x, V ) ∈ A0, V is compact, then (ii) can be strengthened to

(ii’) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ⪯l[u] (x̄, V̄ ) then x̂ = x̄ and V̂ ∩ V̄ ̸= ∅.
We compare the above condition (ii’) to (b’) of Theorem 4.3. Then we see that

condition “V̂ ∩ V̄ ̸= ∅” is clearly different from “V̂ ∈ [V̄ ]l ( ⇐⇒ V̂ +C = V̄ +C)”.
(Theorem 4.4 is similar). Additionally in Theorem 4.3 and 4.4, we do not assume
compactness condition on V ∈ V.

Moreover, if we consider some scalarizing function which satisfies monotonicity
condition, that is, for A,B ∈ V and scalarizing function f : V → R we have that
A ≤l

C B implies f(A) ≤ f(B), then

A ∈ [B]l =⇒ f(A) = f(B).

Therefore, we conclude that Theorem 4.3 and 4.4 are new type minimal element
theorems in set optimization problem. Especially, we remark that the conclusion
(b’) in Theorem 4.3 and 4.4 are some kind of weak “uniqueness” condition.

By using Proposition 4.2, we obtain the following theorem.
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Theorem 4.5 (strong type). We assume either hypothesis of Theorem 4.3 or
hypothesis of Theorem 4.4. Then for every (x0, V0) ∈ A there exists (x̄, V̄ ) ∈ A
such that

(a) (x̄, V̄ ) ⪯s
k0 (x0, V0), and

(b) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ⪯s
k0 (x̄, V̄ ) then x̂ = x̄.

Remark 6. Since ⪯s
k0 satisfies only reflexive condition, we conclude that Theo-

rem 4.5 is like a pseudo minimal element theorem.

4.2. Ekeland’s variational principles for set-valued map. In 1972, Ekeland[7]
presented the following variational principle, which provides powerful tools in mod-
ern variational analysis.

Theorem 4.6 (Ekeland[7]). Let (X, d) be a complete metric space and f : X →
(−∞,∞] a l.s.c. function, ̸≡ +∞, bounded from below. Let ε > 0 and u ∈ X satisfy

f(u) ≤ inf
x∈X

f(x) + ε.

Then there exists v ∈ X such that

(i) f(v) ≤ f(u),
(ii) d(u, v) ≤ 1, and
(iii) for each w ̸= v, f(v)− εd(v, w) < f(w).

In this subsection, by using scalarizing functions hlinf and huinf , we obtain three
types of Ekeland’s variational principles for set-valued map. We consider the fol-
lowing conditions:

(C-≤l
C): Let X be a complete metric space and Y a topological vector space,

C ⊂ Y a solid closed convex cone, k0 ∈ intC and F : X → VC a C-closed
valued function.
(i) F is bounded below (there exists Ṽ ∈ VC such that 0Y /∈ F (X)−Ṽ +C);
(ii) {x̂ ∈ X|(x̂, F (x̂)) ⪯l

k0 (x, F (x))} is closed for all x ∈ X.
(C-≤u

C): Let X be a complete metric space and Y a topological vector space,
C ⊂ Y a solid closed convex cone, k0 ∈ intC and F : X → V a (−C)-
bounded valued function.
(i) F is bounded below

(there exists Ṽ ∈ V and Ṽ ̸= Y such that F (X)− Ṽ ̸⊂ −C);
(ii) {x̂ ∈ X|(x̂, F (x̂)) ⪯u

k0 (x, F (x))} is closed for all x ∈ X.

Theorem 4.7 (l-type). We assume (C-≤l
C). Moreover, we assume

(Ekeland-≤l
C): for k0 ∈ intC and x0 ∈ X with F (x0) ̸⊂ F (X) + k0 + intC.

Then there exists x̄ ∈ X such that

(i) F (x̄) ≤l
C F (x0),

(ii) d(x̄, x0) ≤ 1 and
(iii) F (x) + d(x̄, x)k0 ≰l

C F (x̄) for all x ̸= x̄.

Proof. Let A = grF := {(x, F (x))|x ∈ X} ⊂ X × VC . Of course, PVC
(A) = F (X).

Let us show that condition (ii) of Theorem 4.3 holds. Let {(xn, Vn)}n∈N ⊂ A be
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a ⪯l
k0-decreasing sequence with xn → x ∈ X. Of course, Vn = F (xn). For all

n, p ∈ N, we have that

xn+p ∈ An := {x ∈ X|F (x) + d(x, xn)k
0 ≤l

C F (xn)}

By condition (ii) of (C-≤l
C), An contains a limit x of the sequence (xn+p)p∈N.

Therefore, (x, F (x)) ⪯l
k0 (xn, F (xn)) for every n. Applying Theorem 4.3, for every

x0 ∈ X we obtain x̄ ∈ X such that (x̄, F (x̄)) ∈ grF satisfies

(a) (x̄, F (x̄)) ⪯l
k0 (x0, F (x0)),

(b) (x, F (x)) ̸⪯l
k0 (x̄, F (x̄)) for all x ̸= x̄.

Condition (b) is condition (iii) of Theorem 4.7. To prove condition (ii), we suppose
that d(x̄, x0) > 1. Then we have that

(d(x̄, x0)− 1)k0 + C ⊂ intC.

By condition (a), we have that

F (x0) ⊂ F (x̄) + d(x̄, x0)k
0 + C

and hence

F (x0)− k0 ⊂ F (x̄) + d(x̄, x0)k
0 − k0 + C ⊂ F (x̄) + intC.

Therefore, we obtain F (x0) ⊂ F (x̄) + k0 + intC, which contradicts (Ekeland-
≤l

C). □

In a similar way as Theorem 4.7, we obtain u-type and strong type Ekeland’s
variational principles.

Theorem 4.8 (u-type). We assume (C-≤u
C). Moreover, we assume

(Ekeland-≤u
C): for k0 ∈ intC and x0 ∈ X with F (X) + k0 ̸⊂ F (x0)− intC.

Then there exists x̄ ∈ X such that

(i) F (x̄) ≤u
C F (x0),

(ii) d(x̄, x0) ≤ 1 and
(iii) F (x) + d(x̄, x)k0 ≰u

C F (x̄) for all x ̸= x̄.

Theorem 4.9 (strong type). We assume either (C-≤l
C) or (C-≤u

C). Moreover,
we assume

(Ekeland-≤s
C): for k0 ∈ intC and x0 ∈ X with

(
F (X)+k0+intC

)
∩F (x0) =

∅.
Then there exists x̄ ∈ X such that

(i) F (x̄) ≤s
C F (x0),

(ii) d(x̄, x0) ≤ 1 and
(iii) F (x) + d(x̄, x)k0 ≰s

C F (x̄) for all x ≠ x̄.

Proof. Applying Theorem 4.3 or Theorem 4.4 and Proposition 4.2, for every x0 ∈ X
we obtain x̄ ∈ X such that (x̄, F (x̄)) ∈ grF satisfies

(a) (x̄, F (x̄)) ⪯s
k0 (x0, F (x0)),

(b) (x, F (x)) ̸⪯s
k0 (x̄, F (x̄)) for all x ̸= x̄.
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Condition (b) is condition (iii) of Theorem 4.9. To prove condition (ii), we suppose
that d(x̄, x0) > 1. Then we have that (d(x̄, x0)− 1)k0 + C ⊂ intC and hence

F (x̄) + d(x̄, x0)k
0 + C ⊂ F (x̄) + k0 + intC.

By condition (a), we have that(
F (x̄) + d(x̄, x0)k

0 + C
)
∩ F (x0) ̸= ∅

and hence (
F (x̄) + k0 + intC

)
∩ F (x0) ̸= ∅,

which contradicts (Ekeland-≤s
C). By condition (a), we have also(
F (x̄) + C

)
∩ F (x0) ̸= ∅,

which implies condition (i). □

4.3. Caristi’s fixed point theorems for set-valued map.

Theorem 4.10 (Caristi[6]). Let (X, d) be a complete metric space and f : X →
(−∞,∞] a l.s.c. function, ̸≡ +∞, bounded from below. Assume that T : X → X
satisfies

d(x, Tx) ≤ f(x)− f(Tx)

for each x ∈ X, then T has a fixed point in X, that is, there exists x0 ∈ X with
Tx0 = x0.

In this subsection, by using scalarizing functions hlinf and huinf , we obtain three
types of Caristi’s fixed point theorems for set-valued map.

Theorem 4.11 (l-type). We assume (C-≤l
C). Moreover, we assume

(Caristi-≤l
C): if T : X → 2X is a multivalued mapping such that for every

x ∈ X there exists y ∈ Tx such that F (y) + d(x, y)k0 ≤l
C F (x),

then T has a fixed point in X, that is, there exists x̄ ∈ X with x̄ ∈ T x̄. Furthermore,
for every x ∈ X we have Tx ̸= ∅ and for every y ∈ Tx, f satisfies the above
inequality, then T has a critical point in X, that is, there exists x̄ ∈ X such that
T x̄ = {x̄}.

Proof. By Theorem 4.7, there exists x̄ ∈ X such that

(4.1) F (y) + d(x̄, y)k0 ≰l
C F (x̄) for all y ∈ X \ {x̄}.

On the other hand by condition (Caristi-≤l
C), there exists y ∈ X such that y ∈ T x̄

and

F (y) + d(x̄, y)k0 ≤l
C F (x̄).

Because of (4.1), we have x̄ = y. Therefore, T has at least one fixed point. Moreover,
all the y ∈ T x̄ being equal to x̄, we have that T has a critical point. □

In a similar way as Theorem 4.11, we obtain u-type and strong type Caristi’s
fixed point theorems.

Theorem 4.12 (u-type). We assume (C-≤u
C). Moreover, we assume



SOME TYPES OF MINIMAL ELEMENT THEOREMS IN SET OPTIMIZATION 201

(Caristi-≤u
C): if T : X → 2X is a multivalued mapping such that for every

x ∈ X there exists y ∈ Tx such that F (y) + d(x, y)k0 ≤u
C F (x),

then T has a fixed point in X. Furthermore, for every x ∈ X we have Tx ̸= ∅ and
for every y ∈ Tx, F satisfies the above inequality, then T has a critical point in X.

Theorem 4.13 (strong type). We assume either (C-≤l
C) or (C-≤u

C). Moreover,
we assume

(Caristi-≤s
C): if T : X → 2X is a multivalued mapping such that for every

x ∈ X there exists y ∈ Tx such that F (y) + d(x, y)k0 ≤s
C F (x),

then T has a fixed point in X. Furthermore, for every x ∈ X we have Tx ̸= ∅ and
for every y ∈ Tx, F satisfies the above inequality, then T has a critical point in X.

4.4. Takahashi’s minimization theorems for set-valued map. Takahashi
presents the following theorem, which is useful in optimization theory.

Theorem 4.14 (Takahashi[23]). Let (X, d) be a complete metric space and f :
X → (−∞,∞] a l.s.c. function, ̸≡ +∞, bounded from below. Suppose that for
each u ∈ X with infx∈X f(x) < f(u), there exists v ∈ X such that v ̸= u and
f(v) + d(u, v) ≤ f(u). Then there exists x0 ∈ X such that f(x0) = infx∈X f(x).

In this subsection, by using scalarizing functions hlinf and huinf , we obtain two
types of Takahashi’s minimization theorems for set-valued map.

Theorem 4.15 (l-type). We assume (C-≤l
C). Moreover, we assume

(Takahashi-≤l
C): for each y ∈ X with F (y) ̸∈ l-wMinF (X), there exists

z ∈ X \ {y} such that F (z) + d(y, z)k0 ≤l
C F (y).

Then there exists x̄ ∈ X such that F (x̄) ∈ l-wMinF (X).

Proof. By Theorem 4.7, there exists u ∈ X such that

F (v) + d(u, v)k0 ≰l
C F (u)

for all v ∈ X \{u}. If for all u ∈ X such that F (u) ̸∈ l-wMinF (X), by (Takahashi-
≤l

C), there exists v ∈ X \ {u} with F (v) + d(u, v)k0 ≤l
C F (u), which is a contradic-

tion. □

In a similar way as Theorem 4.15, we obtain u-type Takahashi’s minimization
theorem.

Theorem 4.16 (u-type). We assume (C-≤u
C). Moreover, we assume

(Takahashi-≤u
C): for each y ∈ X with F (y) ̸∈ u-wMinF (X), there exists

z ∈ X \ {y} such that F (z) + d(y, z)k0 ≤u
C F (y).

Then there exists x̄ ∈ X such that F (x̄) ∈ u-wMinF (X).

Remark 7. Since we cannot define the concept of minimal element of the weak
and strong type set relations, we cannot obtain Takahashi’s minimization theorem
for set-valued map with respect to ≤w

C and ≤s
C .
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4.5. Equivalences. In this subsection, we prove the equivalences between the above
existence theorems. The proof is similar as [1].

Theorem 4.17 (l-type). Theorem 4.7, Theorem 4.11 and Theorem 4.15 are equiv-
alent to each other.

Theorem 4.18 (u-type). Theorem 4.8, Theorem 4.12 and Theorem 4.16 are equiv-
alent to each other.

Theorem 4.19 (strong type). Theorem 4.9 and Theorem 4.13 are equivalent.

Proof. (Theorem 4.9⇒Theorem 4.13) The proof is similar to Theorem 4.11.
(Theorem 4.13⇒Theorem 4.9) Let k0 ∈ intC and x0 ∈ X with(

F (X) + k0 + intC
)
∩ F (x0) = ∅.

We define

X0 := {x ∈ X|F (x)+d(x, x0)k0 ≤l
C F (x0)}∪{x ∈ X|F (x)+d(x, x0)k0 ≤u

C F (x0)}.

Since x0 ∈ X0, we have that X0 is nonempty. Moreover by (C-≤l
C) or (C-≤u

C), X0

is closed and hence complete. We also define

Sx := {y ∈ X|x ̸= y, F (y) + d(x, y)k0 ≤s
C F (x)}

Tx :=

{
x if Sx = ∅
Sx if Sx ̸= ∅.

By the definition of Sx and Tx, we have that x /∈ Sx, Tx ̸= ∅ for all x ∈ X and
T : X0 → 2X0 . Also we have that for every x ∈ X there exists y ∈ Tx such that
F (y) + d(x, y)k0 ≤s

C F (x). By theorem 4.13, there exists x̄ ∈ X0 such that x̄ ∈ T x̄.
By the definition of T and x̄ ∈ X0, we have for each x ̸= x̄

F (x̄) + d(x̄, x0)k
0 ≤s

C F (x0)

F (x) + d(x, x̄)k0 ̸≤s
C F (x̄).

In a similar way as Theorem 4.9, we obtain F (x̄) ≤s
C F (x0) and d(x̄, x0) ≤ 1. □

5. Conclusions

In this paper, we present some new types of minimal element theorems on X×V,
where X is a complete metric space and V a family of nonempty subsets of topo-
logical vector space. First, we introduce new type order relation ⪯s

k0 and obtained
minimal element theorem with respect to ⪯s

k0 . Second, we introduce new type or-

der relations ⪯l
k0,hl

inf

and ⪯u
k0,hu

inf
which depend on nonlinear scalarizing functions

for sets hlinf , h
u
inf and equivalent classes [·]l, [·]u, respectively. By the definitions

of ⪯l
k0,hl

inf

and ⪯u
k0,hu

inf
, we obtain (b’) of Theorem 4.3, Theorem 4.4, respectively.

These results are some kind of characteristic minimality conclusions in set opti-
mization (see also remark 5). Lastly, we present three types of set-valued Ekeland’s
variational principle, Caristi’s fixed point theorem and two types of set-valued Taka-
hashi’s minimization theorem, which are generalizations of [1].
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