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where ε > 0. This uniformity induces a uniform topology on M, which we denote
by τ2 and call the strong topology. It is clear that τ2 is indeed stronger than τ1.

It is not difficult to see that the uniform spaces (M, τ1) and (M, τ2) are metrizable
(by metrics ρ1 and ρ2, respectively) and complete if (X, ∥·∥) is a Banach space.

Clearly, Mc is a closed subset of M with respect to the weak topology (and
therefore with respect to the strong topology) and hence complete with respect to
both the strong and weak topologies. Denote byMb the set of all bounded sequences
of elements in A and by Mbc the set of all bounded sequences of elements in Ac.
It can easily be verified that Mb and Mbc are closed subsets of M with respect to
the strong topology. Evidently, the relative strong topology on Mb is determined
by the metric d : Mb ×Mb → R defined by

d ({An}∞n=1 , {Bn}∞n=1) := sup {ρ (An, Bn)}∞n=1 {An}∞n=1 , {Bn}∞n=1 ∈ Mb.

Definition 1.1. A mapping A : K → K is called normal with respect to f if given
ε > 0, there is δ (ε) > 0 such that for each x ∈ K satisfying f (x) ≥ inf (f) + ε, the
inequality

f (Ax) < f (x)− δ (ε)

is true. A sequence {An}∞n=1 of operators An : K → K is called normal with
respect to f if given ε > 0, there is δ (ε) > 0 such that for each x ∈ K satisfying
f (x) ≥ inf (f) + ε and each integer n = 1, 2, . . . , the inequality

f (Anx) < f (x)− δ (ε)

holds.

Example 1.2. Let X = R and K = [0,∞). Define A : K → K by Ax := 2−1 |sinx|
for each x ∈ K. Let f : K → R be defined by

f (x) :=

{
x2 x ≤ 1

2x− 1 x > 1

for each x ∈ K. Clearly, A ∈ Ac, that is, Ac ⊂ A ̸= ∅ and therefore Mc ⊂ M ̸= ∅.
Let ε > 0 be given and assume x ∈ K satisfies f (x) ≥ ε. Choose δ (ε) := 3 · 8−1ε.
Then

f (Ax) = 4−1 sin2 x < f (x)− δ (ε) .

We conclude that A is normal with respect to f .

It was shown in [1] that if K is a bounded, closed and convex set in (X, ∥·∥),
where (X, ∥·∥) is a Banach space, then a generic element taken from the spaces
A, Ac, M and Mc is normal with respect to f , and that the sequence of values of
the function f along any trajectory of such an element tends to the infimum of f
on K. These results demonstrate the importance of normal mappings for convex
minimization problems. We present analogous results, where the set K is a general
nonempty, closed and convex set, which is not necessarily bounded. To this end,
we introduce the following weaker notion of normality.

Definition 1.3. A sequence {An}∞n=1 of operators An : K → K is called weakly
normal with respect to f if given ε > 0, there exists a sequence {δn}∞n=1 of positive
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numbers such that lim supn→∞ nδn = ∞, and for each positive integer n, each x ∈ K
satisfying f (x) ≥ inf (f) + ε and each integer k = 1, 2, . . . , n, the inequality

f (Akx) < f (x)− δn

holds.

Remark 1.4. It is not difficult to see that for each α ∈ (0, 1) and each
{An}∞n=1 , {Bn}∞n=1 ∈ M, their convex combination, α {An}∞n=1 + (1− α) {Bn}∞n=1,
is also an element of M and if one of them is normal, then the sequence α {An}∞n=1+
(1− α) {Bn}∞n=1 is also normal. Evidently, each normal sequence of mappings is, in
particular, weakly normal, but not vice versa, as is shown in the following example.

Example 1.5. Let X = R and K = (−∞, 1]. Let g : K → R be defined by

g (x) :=

{
x x > 0

0 otherwise

for each x ∈ K. For each positive integer n, define An : K → K by

Anx :=
(
1− n−2−1

)2−1

g (x)

for each x ∈ K. Let f : K → R be defined by

f (x) =

{
x2 x > 0

0 otherwise

for each x ∈ K. Clearly, f is convex. Let ε > 0 be arbitrary. For each positive

integer n, set δn := n−2−1
ε. Then inf (f) = 0 and for each x ∈ K such that f (x) ≥ ε

and each k = 1, 2, . . . , n, we have

f (Akx) =
(
1− k−2−1

)
f (x) ≤ f (x)− k−2−1

ε = f (x)− δk ≤ f (x)− δn.

Clearly, limn→∞ nδn = ∞. Therefore the sequence {An}∞n=1 is weakly normal with
respect to f , but it is not normal with respect to f because limn→∞ f (Anx) = f (x)
for each x ∈ K such that f (x) ≥ ε. As a matter of fact, we also have {An}∞n=1 ∈ Mc,
that is, Mc ⊂ M ̸= ∅.

In the sequel we assume that the function f is clearly understood and therefore
use the notions of normality and weak normality without referring explicitly to f .
We also assume that (X, ∥·∥) is a Banach space.

The rest of the paper is organized as follows. In Section 2 we state our main
theorems. Several auxiliary results are presented in Section 3. Section 4 is devoted
to results concerning the existence of residual sets of normal mappings, normal
sequences of mappings and of weakly normal sequences of mappings. In Section 5
we provide some applications of the concepts of normality and weak normality to
solving certain minimization problems. Finally, the proofs of our main theorems,
which are stated in Section 2, are provided in Section 6.



208 K. BARSHAD, S. REICH, AND A. ZASLAVSKI

2. Statements of the main results

In this section we state our three main theorems. We establish them in the last
section of our paper.

Theorem 2.1. There exist sets F ⊂ M, Fb ⊂ F∩Mb, Fc ⊂ F ∩ Mc and Fbc ⊂
Fb ∩Mc of weakly normal sequences of mappings which are countable intersections
of open (in the relative weak topology) and dense (respectively, in the weak topology,
in the relative strong topology, in the relative weak topology and in the relative strong
topology) sets in, respectively, M, Mb, Mc and Mbc such that for each {An}∞n=1 ∈ F ,
the following assertion holds:

For each ε > 0 and each B0 ∈ A, there exists a neighborhood U (in the weak
topology) of {An}∞n=1 and a positive integer N satisfying

f (BN . . . B1B0x) < inf (f) + ε

for each {Bn}∞n=1 ∈ U and each x ∈ K.

Theorem 2.2. There exist a set F ⊂ A of normal mappings, which is a countable
intersection of open and dense sets in A, and a set Fc ⊂ F∩Ac of normal mappings,
which is a countable intersection of open and dense sets in Ac, such that for each
A ∈ F , the following assertion holds:

For each ε > 0, there exists a neighborhood U of A in A such that for each
B0 ∈ A, there is a positive integer N satisfying

f
(
BNB0x

)
< inf (f) + ε

for each B ∈ U and each x ∈ K. In particular, for each B ∈ U , there is a positive
integer N such that we have

f
(
BNx

)
< inf (f) + ε

for each x ∈ K.

Theorem 2.3. There exist sets Fb ⊂ Mb and Fbc ⊂ Fb∩Mc of normal sequences of
mappings, which are countable intersections of open (in the relative strong topology)
and dense (in the relative strong topology) sets in, respectively, Mb and Mbc, such
that for each {An}∞n=1 ∈ F , the following assertion holds:

For each ε > 0, there exists a neighborhood U (in the strong topology) of {An}∞n=1

such that for each B0 ∈ A there is a positive integer N satisfying

f
(
Br(N) . . . Br(1)B0x

)
< inf (f) + ε

for each {Bn}∞n=1 ∈ U , each mapping r : {1, 2, . . . } →{1, 2, . . . } and each x ∈ K.
In particular, for each {Bn}∞n=1 ∈ U and each mapping
r : {1, 2, . . . } →{1, 2, . . . }, there is a positive integer N such that

f
(
Br(N) . . . Br(1)x

)
< inf (f) + ε

for each x ∈ K.

These theorems generalize the corresponding results in [1] and [4].
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3. Auxiliary results

We first prove that there exists a continuous and normal operator A∗ : K → K.
Our proof follows in the footsteps of the proof of Proposition 2.1 of [1]. In this
connection, see also [4].

Proposition 3.1. There exists an operator A∗ : K → K which is continuous,
normal and satisfies (1.1).

Proof. Without loss of generality we may assume that f does not attain its minimum
on K. Define a set-valued map a : K → 2K as follows: for each x ∈ K, denote by
a (x) the closure (in the relative topology induced by the norm ∥·∥) of the set{

y ∈ K : f (y) < 2−1 (f (x) + inf (f))
}
.

It is clear that for each x ∈ K, the set a (x) is nonempty, closed and convex. We
claim that a is lower semi-continuous. Let U be an arbitrary open set in K. We
have to show that the set V = {x ∈ K : a (x) ∩ U ̸= ∅} is open. To this end, let
x0 ∈ V . Then there exists a point y0 ∈ a (x0) ∩ U . By definition of a (x0), there
also exists a point y1 ∈ U such that

f (y1) < 2−1 (f (x0) + inf (f)) .

Since the function f is continuous, there is a number δ > 0 such that for each x ∈ K
satisfying ∥x− x0∥ < δ, we have

f (y1) < 2−1 (f (x) + inf (f)) .

Hence y1 ∈ a (x) ∩ U for each x ∈ K satisfying ∥x− x0∥ < δ, and therefore x0
is an interior point of V . Thus V is indeed open and therefore a is lower semi-
continuous, as claimed. By Michael’s selection theorem, there exists a continuous
mapping A∗ : K → K such that A∗x ∈ a (x) for each x ∈ K. It follows from the
definition of a that for each point x ∈ K, we have

f (A∗x) ≤ 2−1 (f (x) + inf (f)) .

Given ε > 0, choose δ (ε) = 4−1ε. Then for each x ∈ K satisfying f (x) ≥ inf (f) +
ε, we have f (A∗x) < f (x) − δ (ε). Hence A∗ is normal and satisfies (1.1), as
asserted. □
Lemma 3.2. Let {An}∞n=1 ∈ M be normal and let ε > 0 be given. Then there exist
a number δ > 0 and a neighborhood U of {An}∞n=1 in M with the strong topology
such that for each {Bn}∞n=1 ∈ U and each x ∈ K satisfying f (x) ≥ inf (f) + ε, we
have f (Bnx) < f (x)− δ for each n = 1, 2, . . . .

Proof. Since {An}∞n=1 is normal, there is δ0 > 0 such that for each n = 1, 2, . . . and
each x ∈ K satisfying f (x) ≥ inf (f) + ε, we have

(3.1) f (Anx) < f (x)− δ0.

Since f is uniformly continuous, there is δ ∈
(
0, 2−1δ0

)
such that |f (y)− f (z)| <

2−1δ0 for each y, z ∈ K satisfying ∥y − z∥ < δ. Set

U := {{Bn}∞n=1 : ({Bn}∞n=1 , {An}∞n=1) ∈ E2 (δ)} .
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It is clear that U is a neighborhood of {An}∞n=1 in M with the strong topology.
Assume that {Bn}∞n=1 ∈ U and that x ∈ K satisfies f (x) ≥ inf (f) + ε. Then by
(3.1) we have

(3.2) f (Anx) < f (x)− δ0

for each n = 1, 2, . . . . The definitions of δ and U imply that ∥Anx−Bnx∥ < δ and
|f (Anx)− f (Bnx)| < 2−1δ0 for each n = 1, 2, . . . . When combined with (3.2), this
implies that

f (Bnx) < f (x) + 2−1δ0 − δ0 < f (x)− δ

for each n = 1, 2, . . . , as asserted. □

Lemma 3.3. Let {An}∞n=1 ∈ M be weakly normal and let ε > 0 be given. Then there
exist a sequence of positive numbers {δN}∞N=1 and a sequence {UN}∞N=1 of neigh-
borhoods of {An}∞n=1 in M with the weak topology such that lim supN→∞ δNN = ∞
and for each positive integer N , the following assertion holds:

For each {Bn}∞n=1 ∈ UN and each x ∈ K satisfying f (x) ≥ inf (f) + ε, we have
f (Bnx) < f (x)− δN for each n = 1, 2, . . . , N .

Proof. Since {An}∞n=1 is weakly normal, there is a sequence {δ′N}∞N=1 of positive
numbers such that lim supN→∞ δ′NN = ∞ and for each x ∈ K satisfying f (x) ≥
inf (f) + ε, we have

(3.3) f (Anx) < f (x)− δ′N

for all N = 1, 2 . . . and each n = 1, 2, . . . , N .
Let N be a positive integer. Set δN := 2−1δ′N . Since f is uniformly continuous,
there is a number δ′′N > 0 such that |f (y)− f (z)| < δN for each y, z ∈ K satisfying
∥y − z∥ < δ′′N . Set

UN :=
{
{Bn}∞n=1 : ({Bn}∞n=1 , {An}∞n=1) ∈ E1

(
N, δ′′N

)}
.

Clearly, UN is a neighborhood of {An}∞n=1 in M with the weak topology. Assume
that {Bn}∞n=1 ∈ UN and that x ∈ K satisfies f (x) ≥ inf (f) + ε. Then by (3.3) we
have

(3.4) f (Anx) < f (x)− δ′N

for each n = 1, 2, . . . , N . The definitions of δ′′N and UN imply that ∥Anx−Bnx∥ <
δ′′N and |f (Anx)− f (Bnx)| < δN for each n = 1, 2, . . . , N . When combined with
(3.4), this implies that

f (Bnx) < f (x) + δN − δ′N = f (x)− δN

for each n = 1, 2, . . . , N . In this way we have constructed two sequences {δN}∞N=1

and {UN}∞N=1. Using the weak normality of {An}∞n=1 and the definition of {δN}∞N=1,
we obtain that lim supN→∞ δNN = ∞. Hence we see that the sequences {δN}∞N=1

and {UN}∞N=1 have all the asserted properties. □

Let A∗ be the mapping the existence of which is guaranteed by Proposition 3.1
and let {An}∞n=1 be an arbitrary sequence in M. For each γ ∈ (0, 1) , we define a
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sequence of mappings {Aγ
n}∞n=1, A

γ
n : K → K, by

(3.5) Aγ
n := (1− γ)An + γA1A∗, n = 1, 2, . . . .

By (1.1) and Proposition 3.1, A1A∗ ∈ A and A1A∗ is normal. By Proposition 3.1
and Remark 1.4, the sequence {Aγ

n}∞n=1 ∈ M. For each γ ∈ (0, 1) and for each
N = 1, 2 . . . , we have

(3.6) (∀n ∈ {1, . . . , N}) ρ (Aγ
n, An) ≤ 2γmax

{
sup
x∈K

∥Akx∥
}N

k=1

.

If, in addition, {An}∞n=1 ∈ Mb, then we also have

(3.7) (∀n ∈ {1, 2 . . . }) ρ (Aγ
n, An) ≤ 2γ sup

{
sup
x∈K

∥Akx∥
}∞

k=1

,

where sup {supx∈K ∥Akx∥}∞k=1 < ∞. For an arbitrary operator A ∈ A, we define

Aγ := (1− γ)A+ γAA∗.

Evidently,

(3.8) ρ (Aγ , A) ≤ 2γ sup
x∈K

∥Ax∥ .

Lemma 3.4. For each ε > 0, there exists a positive number δ such that for each
{An}∞n=1 ∈ M and each γ ∈ (0, 1), there is a sequence {UN}∞N=1 of neighborhoods
of {Aγ

n}∞n=1 in M with the weak topology such that the following assertion holds for
each positive integer N :

For each {Bn}∞n=1 ∈ UN and each x ∈ K such that f (x) ≥ inf (f) + ε, we have
f (Bnx) < f (x)− γδ for each n = 1, 2, . . . , N .

Proof. Let ε > 0. Since A∗ is normal, there is a positive number δ′ such that for
each x ∈ K satisfying f (x) ≥ inf (f) + ε, we have

f (A∗x) < f (x)− δ′.

Set δ := 2−1δ′. Let {An}∞n=1 ∈ M and γ ∈ (0, 1). By the convexity of f , we have

(3.9) f (Aγ
nx) < f (x)− γδ′

for each n = 1, 2 . . . . Let N be a positive integer. Since f is uniformly continuous,
there is a number δ′′ > 0 such that |f (y)− f (z)| < γδ for each y, z ∈ K satisfying
∥y − z∥ < δ′′. Set

UN :=
{
{Bn}∞n=1 ∈ M : ({Aγ

n}
∞
n=1 , {Bn}∞n=1) ∈ E1

(
N, δ′′

)}
.

Clearly, UN is a neighborhood of {Aγ
n}∞n=1 in M with the weak topology. Assume

that {Bn}∞n=1 ∈ UN and that x ∈ K satisfies f (x) ≥ inf (f) + ε. The definitions
of δ′′ and UN imply that ∥Anx−Bnx∥ < δ′′ and |f (Aγ

nx)− f (Bnx)| < γδ for each
n = 1, 2, . . . , N . When combined with (3.9), this implies that

f (Bnx) < f (x) + γδ − γδ′ = f (x)− γδ
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for each n = 1, 2, . . . , N . In this way we have found a number δ and constructed a
sequence {UN}∞N=1 which have all the asserted properties. □

4. Residual sets of normal mappings, normal sequences of mappings
and of weakly normal sequences of mappings

Recall that a subset Z of a topological space Y is called residual if it contains a
countable intersection of open and dense subsets of Y . In the case where the space
Y is completely pseudo-metrizable, the Baire category theorem guarantees that Z
is also a dense subset of Y . In this section we prove that there exist residual sets of
normal mappings, normal sequences of mappings and weakly normal sequences of
mappings.

Theorem 4.1. There exist sets F ⊂ M, Fb ⊂ F∩Mb, Fc ⊂ F ∩ Mc and Fbc ⊂
Fb ∩ Mc, which are countable intersections of open (in the relative weak topology)
and dense (respectively, in the weak topology, in the relative strong topology, in the
relative weak topology and in the relative strong topology) sets in, respectively, M,
Mb, Mc and Mbc such that each sequence {Bn}∞n=1 ∈ F is weakly normal.

Proof. Define

T :=
{
γ ∈ (0, 1) : γ = N−2−1

for some positive integer N
}

and for each positive integer N , define

TN :=
{
γ ∈ T : γ < N−2−1

}
.

By (3.6) and Proposition 3.1, for each N = 1, 2 . . . , the set

AN = {{Aγ
n}

∞
n=1 : {An}∞n=1 ∈ M, γ ∈ TN}

is dense in M with the weak topology and the set

AN
c = {{Aγ

n}
∞
n=1 : {An}∞n=1 ∈ Mc, γ ∈ TN}

is dense in Mc with the relative weak topology. By (3.7) and Proposition 3.1, for
each N = 1, 2 . . . , the set

AN
b = {{Aγ

n}
∞
n=1 : {An}∞n=1 ∈ Mb, γ ∈ TN}

is dense in Mb with the relative strong topology, and the set

AN
bc = {{Aγ

n}
∞
n=1 : {An}∞n=1 ∈ Mbc, γ ∈ TN}

is dense in Mbc with the relative strong topology.
Let q be an arbitrary positive integer. By Lemma 3.4, there exists a num-

ber δ (q) > 0 such that for each ({An}∞n=1 , γ) ∈ M × T , there is a sequence
{UN ({An}∞n=1 , γ) (q)}

∞
N=1 of open neighborhoods of {Aγ

n}∞n=1 with the weak topol-
ogy such that the following assertion holds for each positive integer N :

For each {Bn}∞n=1 ∈ UN ({An}∞n=1 , γ) (q) and each x ∈ K satisfying f (x) ≥
inf (f) + 2−q, we have

(4.1) f (Bnx) < f (x)− γδ (q)
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for each n = 1, 2 . . . , N .
For each positive integers q and N , let

Dq,N = ∪({An}∞n=1,γ)∈M×TN

(
Uγ−2 ({An}∞n=1 , γ) (q)

)
,

Db
q,N = ∪({An}∞n=1,γ)∈Mb×TN

Uγ−2 ({An}∞n=1 , γ) (q) ∩Mb,

Dc
q,N = ∪({An}∞n=1,γ)∈Mc×TN

Uγ−2 ({An}∞n=1 , γ) (q) ∩Mc,

and

Dbc
q,N = ∪({An}∞n=1,γ)∈Mbc×TN

Uγ−2 ({An}∞n=1 , γ) (q) ∩Mbc.

Clearly, the sets Dq,N , Db
q,N , Dc

q,N and Dbc
q,N are open (in the relative weak topology)

and dense (respectively, in the weak topology, in the relative strong topology, in the
relative weak topology and in the relative strong topology) sets in, respectively,
M, Mb, Mc and Mbc for each pair of positive integers q and N , because these
sets contain, respectively, AN , AN

b , AN
c and AN

bc. Define F = ∩∞
q=1 ∩∞

N=1 Dq,N ,

Fb = ∩∞
q=1∩∞

N=1Db
q,N , Fc = ∩∞

q=1∩∞
N=1Dc

q,N and Fbc = ∩∞
q=1∩∞

N=1Dbc
q,N . Evidently,

F , Fb, Fc and Fbc are countable intersections of open (in the relative weak topology)
and dense (respectively, in the weak topology, in the relative strong topology, in the
relative weak topology and in the relative strong topology) sets in, respectively, M,
Mb, Mc and Mbc.

Assume now that {Bn}∞n=1 ∈ F and let ε > 0 be an arbitrary positive number.
Choose a positive integer q0 such that 2−q0 < ε. Then for each positive integer N ,
there exists a pair ({An}∞n=1 , γN ) ∈ M× TN such that

{Bn}∞n=1 ∈ Uγ−2
N

({An}∞n=1 , γN ) (q0) ,

and it follows from (4.1) that for each point x ∈ K satisfying f (x) ≥ inf (f)+ ε, we
have

(4.2) f (Bnx) < f (x)− γNδ (q0)

for each n = 1, 2 . . . , γ−2
N .

Consider the sequences {γN}∞N=1 and
{
γ−2
N

}∞
N=1

. Since for each positive integer

N we have γ−2
N > N , it is clear that there exists a strictly increasing subsequence{

γ−2
Nk

}∞

k=1
of

{
γ−2
N

}∞
N=1

. For each positive integer M , set δM := γN
min

{
k: γ−2

Nk
≥M

} .
Since γ−2

N
min

{
k: γ−2

Nk
≥M

} ≥ M , we conclude from (4.2) that for each point x ∈ K

satisfying f (x) ≥ inf (f) + ε, we have

f (Bnx) < f (x)− δMδ (q0)

for each n = 1, 2 . . . ,M . Since for each k = 1, 2 . . . , we have

δγ−2
Nk

= γN
min

{
i: γ−2

Ni
≥γ−2

Nk

} = γNk
,

it follows that
lim
n→∞

γ−2
Nk

δγ−2
Nk

= lim
n→∞

γ−1
Nk

= ∞.
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Hence {Bn}∞n=1 is weakly normal. This completes the proof of Theorem 4.1. □

Theorem 4.2. There exist a set F ⊂ Mb, which is a countable intersection of open
and dense sets in A, and a set Fc ⊂ F ∩ Ac, which is a countable intersection of
open and dense sets in Ac, such that each mapping B ∈ F is normal.

Proof. By (3.8) and Proposition 3.1, the set

A = {Aγ : A ∈ A, γ ∈ (0, 1)}
is dense in A, and the set

Ac = {Aγ : A ∈ Ac, γ ∈ (0, 1)}
is dense in Ac.

By Remark 1.4, for each (A, γ) ∈ A× (0, 1), the mapping Aγ is normal. Assume
q is an arbitrary positive integer. By Lemma 3.2, for each (A, γ) ∈ A× (0, 1), there
exist a number δq (A, γ) > 0 and an open neighborhood Uq (A, γ) of Aγ in A such
that the following assertion holds:

For each B ∈ Uq (A, γ) and each x ∈ K satisfying f (x) ≥ inf (f) + 2−q, we have

(4.3) f (Bx) < f (x)− δq.

For each positive integer q, set

Dq = ∪(A,γ)∈A×(0,1)Uq (A, γ) ,

Dc
q = ∪(A,γ)∈Ac×(0,1)Uq (A, γ) ∩ Ac.

It is clear that the sets Dq and Dc
q are open and dense sets in, respectively, A and

Ac for each q = 1, 2, . . . , since these sets contain, respectively, A and Ac. Define
F = ∩∞

q=1Dq and Fc = ∩∞
q=1Dc

q. Evidently, F and Fc are countable intersections of
open and dense sets in, respectively, A and Ac.

Assume now that B ∈ F . Let ε > 0 be an arbitrary positive number and choose
a positive integer q0 such that 2−q0 < ε. There exists a pair (A, γ) ∈ A × (0, 1)
such that B ∈ Uq0 (A, γ). It follows from (4.3) that for each point x ∈ K satisfying
f (x) ≥ inf (f) + ε, we have

f (Bx) < inf (f)− δq0 .

Hence B is normal. This completes the proof of Theorem 4.2. □

Theorem 4.3. There exist sets Fb ⊂ F∩Mb and Fbc ⊂ Fb ∩ Mbc, which are
countable intersections of open (in the relative strong topology) and dense (in the
relative strong topology) sets in, respectively, Mb and Mbc, such that each sequence
{Bn}∞n=1 ∈ F is normal.

Proof. By (3.7) and Proposition 3.1 the set

Ab = {{Aγ
n}

∞
n=1 : {An}∞n=1 ∈ Mb, γ ∈ (0, 1)}

is dense in Mb with the relative strong topology and the set

Abc = {{Aγ
n}

∞
n=1 : {An}∞n=1 ∈ Mbc, γ ∈ (0, 1)}

is dense in Mbc with the relative strong topology.
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By Remark 1.4, for each pair ({An}∞n=1 , γ) ∈ M× (0, 1), the sequence {Aγ
n}∞n=1

is normal. Let q be an arbitrary positive integer. By Lemma 3.2, for each pair
({An}∞n=1 , γ) ∈ M× (0, 1), there exist a number δq ({An}∞n=1 , γ) > 0 and an open
neighborhood Uq ({An}∞n=1 , γ) of {A

γ
n}∞n=1 in M with the strong topology such that

the following assertion holds:
For each {Bn}∞n=1 ∈ Uq ({An}∞n=1 , γ) and each x ∈ K satisfying f (x) ≥ inf (f)+

2−q, we have

(4.4) f (Bnx) < f (x)− δq

for each n = 1, 2, . . . . For each positive integer q, set

Db
q = ∪({An}∞n=1,γ)∈Mb×(0,1)Uq ({An}∞n=1 , γ) ∩Mb,

Dbc
q = ∪({An}∞n=1,γ)∈Mc×(0,1)Uq ({An}∞n=1 , γ) ∩Mbc.

Clearly, the sets Db
q and Dbc

q are open and dense sets in, respectively, Mb, Mbc

for each q = 1, 2 . . . , since these sets contain, respectively, Ab and Abc. Define
F = ∩∞

q=1Db
q and Fbc = ∩∞

q=1Dbc
q . Evidently, F and Fc are countable intersections

of open and dense sets in, respectively, Mb and Mbc.
Assume now that {Bn}∞n=1 ∈ F . Let ε > 0 be an arbitrary positive number.

Choose a positive integer q0 such that 2−q0 < ε. There exists a pair ({An}∞n=1 , γ) ∈
Mb × (0, 1) such that {Bn}∞n=1 ∈ Uq0 ({An}∞n=1 , γ). It follows from (4.4) that for
each point x ∈ K satisfying f (x) ≥ inf (f) + ε, we have

f (Bnx) < inf (f)− δq0

for each n = 1, 2, . . . . Hence {Bn}∞n=1 is normal. This completes the proof of
Theorem 4.3. □

5. Applications of normality and weak normality to the minimization
of convex functions

In this section we present several applications of the concepts of normality and
weak normality to solving certain minimization problems.

Theorem 5.1. Let {An}∞n=1 ∈ M be weakly normal and let ε > 0. Then for each
B0 ∈ A, there exist a neighborhood U of {An}∞n=1 in M with the weak topology and
a positive integer N such that for each {Bn}∞n=1 ∈ U , we have

f (BN . . . B1B0x) < inf (f) + ε

for each x ∈ K.

Proof. Let B0 ∈ A. Set d0 = sup {|f (B0x)| : x ∈ K}. Evidently, d0 is finite because
f is uniformly continuous. Since {An}∞n=1 is weakly normal, employing Lemma 3.3,
we see that there exist a positive integer N , a positive number δN > 0 satisfying
δNN > d0 − inf (f), and a neighborhood UN of {An}∞n=1 in M with the weak
topology such that the following assertion holds:

For each {Bn}∞n=1 ∈ UN and each x ∈ K satisfying f (x) ≥ inf (f) + ε, we have

(5.1) f (Bnx) < f (x)− δN
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for each n = 1, 2, . . . , N .
Let {Bn}∞n=1 ∈ UN . We claim that

(5.2) f (BN . . . B1B0x) < inf (f) + ε

for each x ∈ K. Suppose to the contrary that this is not true. Then there exists
x ∈ K such that

f (Bn . . . B1B0x) ≥ inf (f) + ε, n = 0, . . . , N.

By (5.1) and by induction it follows that for each n = 1, . . . , N ,

f (Bn . . . B1B0x) < f (B0x)− nδN .

This implies that

f (BN . . . B1B0x) < f (B0x)−NδN < d0 − (d0 − inf (f)) = inf (f) ,

a contradiction. Therefore, (5.2) is, in fact, valid and Theorem 5.1 is proved. □

Theorem 5.2. Let A ∈ A be normal and let ε > 0. Then there exists a neighborhood
U of A in A such that for each B0 ∈ A, the following assertion holds:

There is a positive integer N such that for each B ∈ U , we have

f
(
BNB0x

)
< inf (f) + ε

for each x ∈ K. In particular, for each B ∈ U , there is a positive integer N such
that we have

f
(
BNx

)
< inf (f) + ε

for each x ∈ K.

Proof. By Lemma 3.2, there exist a neighborhood U of A in A and a number δ > 0
such that the following property holds:

For each B ∈ U and each x ∈ K satisfying f (x) ≥ inf (f) + ε, we have

(5.3) f (Bx) < f (x)− δ

Let B0 ∈ A. Choose a positive integer N such that

δN > d0 − inf (f) ,

where d0 = sup {|f (B0x)| : x ∈ K}. It is clear that d0 is finite because f is uniformly
continuous. Assume that B ∈ U . We claim that

(5.4) f
(
BNB0x

)
< inf (f) + ε

for each x ∈ K. Suppose to the contrary that this is not true. Then there exists
x ∈ K such that

f (BnB0x) ≥ inf (f) + ε, n = 0, . . . , N.

By (5.3) and by induction it follows that for each n = 1, . . . , N ,

f (BnB0x) < f (B0x)− nδ.

This implies that

f
(
BNB0x

)
< f (B0x)−Nδ < d0 − (d0 − inf (f)) = inf (f) ,
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a contradiction. Therefore, (5.4) is indeed valid, as claimed, and Theorem 5.2 is
proved. □

Theorem 5.3. Let {An}∞n=1 ∈ M be normal and let ε > 0. Then there exists a
neighborhood U of {An}∞n=1 in M with the strong topology such that for each B0 ∈ A,
the following assertion holds:

There is a positive integer N such that for each {Bn}∞n=1 ∈ U and each mapping
r : {1, 2, . . . } →{1, 2, . . . }, we have

f
(
Br(N) . . . Br(1)B0x

)
< inf (f) + ε

for each x ∈ K. In particular, for each {Bn}∞n=1 ∈ U and each mapping
r : {1, 2, . . . } →{1, 2, . . . }, there is a positive integer N such that

f
(
Br(N) . . . Br(1)x

)
< inf (f) + ε

for each x ∈ K.

Proof. By Lemma 3.2, there exist a neighborhood U of {An}∞n=1 in M with the
strong topology and a number δ > 0 such that the following property holds:

For each {Bn}∞n=1 ∈ U and each point x ∈ K satisfying f (x) ≥ inf (f) + ε, we
have

(5.5) f (Bnx) < f (x)− δ

for each n = 1, 2, . . . .
Let B0 ∈ A. Choose a positive integer N such that

δN > d0 − inf (f) ,

where d0 = sup {|f (B0x)| : x ∈ K}. Clearly, d0 is finite because f is uniformly
continuous. Now assume that {Bn}∞n=1 ∈ U and r : {1, 2, . . . } → {1, 2, . . . }. We
claim that

(5.6) f
(
Br(N) . . . Br(1)B0x

)
< inf (f) + ε

for each x ∈ K. Suppose to the contrary that this is not true. Then there exists
x ∈ K such that

f
(
Br(n) . . . Br(1)B0x

)
≥ inf (f) + ε, n = 0, . . . , N.

Using (5.5) and induction, we see that for each n = 1, . . . , N ,

f
(
Br(n) . . . Br(1)B0x

)
< f (B0x)− nδ.

This implies that

f
(
Br(N) . . . Br(1)B0x

)
< f (B0x)−Nδ < d0 − (d0 − inf (f)) = inf (f) ,

a contradiction. Therefore, (5.6) is indeed valid, as claimed, and Theorem 5.3 is
established. □
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6. Proofs of the main results

Theorem 2.1 is a direct consequence of Theorems 4.1 and 5.1. Theorem 2.2 is a
direct consequence of Theorems 4.2 and 5.2. Theorem 2.3 is a direct consequence
of Theorems 4.3 and 5.3.
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