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say that X is causally related to Y if and only if it holds

∆S2 = (x0 − y0)
2 −

3∑
i=1

(xi − yi)
2 ≥ 0

Here the x0 and y0 components of the two 4-vectors have the meaning of temporal
coordinates, i.e. x0 = ctX and y0 = ctY , where c is the speed of light in the vacuum
and tX , tY are the moments of time in which the X and Y events, respectively, take
place. The components x1, x2, x3 and y1, y2, y3 are instead the spatial coordinates
of the points where the two events take place compared to an orthogonal Cartesian
reference frame. The physical interpretation of the relationship introduced is as
follows:
X and Y events are causally related (we will write X ⊂ Y ) if and only if the space
c|tX − tY | that a ray of light travels through in the time ∆t = |tX − tY | is greater

or equal than the spatial distance S =
(∑3

i=1(xi − yi)
2
) 1

2 between the points at
which the events take place. We observe that this relation can be expressed in the
following way:
let TM : R4 → R4 be the self-adjoint bijective operator represented in the canonic
base of R4 by the diagonal matrix diag(1;−1;−1;−1) of order 4; it is

(∆S)2 = ⟨X − Y, TMX − TMY ⟩ ≥ 0

where with the parentheses ⟨·, ·⟩ we represented the usual scalar product of R4.
So we can write X ⊂ Y if and only if ⟨X − Y, TMX − TMY ⟩ ≥ 0.
A bijective map f : R4 → R4 that preserves, with its inverse, the causal relationship,
will be called causal automorphism. Therefore a causal automorphism, in the context
of Special Relativity Theory, is a bijective map f such that

∀X,Y ∈ R4, X ⊂ Y ⇐⇒ f(X) ⊂ f(Y )

i.e.

⟨X − Y, TMX − TMY ⟩ ≥ 0 ⇐⇒ ⟨f(X)− f(Y ), TM (f(X)− f(Y ))⟩ ≥ 0

An important result about causal automorphisms was obtained by mathematicians
Alexandrov and Zeemann who proved in [13] and [1] the following statement, known
as Alexandrov-Zeemann theorem:

Theorem 1.1. All the causal automorphisms of Minkowski’s space-time towards
itself are the elements of the group generated by Lorentz’s transformations, homoth-
eties and translations.

This group of transformations is nothing else than the Poincaré group P (R4);
a mapping f in P (R4) has the shape f(X) = λL(X) + v0 where L is a Lorentz
transformation, λ a real number and v0 a constant vector of linear space R4.

Remark 1.2. The causality relationship is reflexive and symmetric but not transi-
tive, as is shown by the following example.
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Example 1.3. In space R3 let be P = (x1, x2, x3) a point from which two rays of
light are emitted, at time t, in opposite directions along a line that passes through
PX ; besides let be PY = (y1, y2, y3) and PZ = (z1, z2, z3) two points placed along that
line, from opposite parts of P and equidistant from it. We have Y = (ct′, y1, y2, y3)
and Z = (ct′, z1, z2, z3), where t′ is the time when the two rays of light arrive at the
PY and PZ points. We have Y ⊂ X and X ⊂ Z, being

c2(t− t′)2 −
3∑

i=1

(xi − yi)
2 = 0

and

c2(t− t′)2 −
3∑

i=1

(zi − xi)
2 = 0

but it is not Y ⊂ Z being

c2(t′ − t′)2 −
3∑

i=1

(yi − zi)
2 = −

3∑
i=1

(yi − zi)
2 < 0

Our aim (in Section 2 and 3) will be now to extend, in a purely formal way, the
causality relationship from the Minkowski’s space-time, to a more general context,
in order to achieve the coherent definition of a causal relationship in the context
of the General Relativity Theory. Then sets of strong causal isomorphisms and
causal isomorphisms will be introduced highlighting some of their notable formal
properties.

2. Extension of the causality relationship to pairs of points of a
separable inner product space

Consider here a separable real field linear space E with inner product ⟨·, ·⟩ definite
positive; then let T : E → E be a self-adjoint bijective linear operator. As well
known the form τ(x, y) := ⟨x, Ty⟩ is a bilinear form (generally degenerate and not
definite positive). Relations of causality induced by self-adjoint bijective operators,
formally identical to that introduced in Minkowski’s space-time can be defined in
these spaces, i.e.

x ⊂T y ⇐⇒ ⟨x− y, T (x− y)⟩ ≥ 0 ∀x, y ∈ E.

Of course, according to Example 1.3, these binary relationships are reflexive and
symmetric, but generally not transitive.

In this setting, analogously to the case of Special Relativity Theory, we can in-
troduce the notion of causal isomorphism.

Definition 2.1. Let (E1, ⟨·, ·⟩1,⊂T ) be an inner product space E1 endowed with
the causality relationship ⊂T induced by self-adjoint bijective operator T . Let
(E2, ⟨·, ·⟩2,⊂S) be an inner product space E2 endowed with the causality relationship
⊂S induced by self-adjoint bijective operator S. A bijective mapping f : E1 → E2 is
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called an causal isomorphism if the images of vectors causally related they are also
casually related

x ⊂T y ⇐⇒ f(x) ⊂S f(y).

That is, equivalently

⟨x− y, T (x− y)⟩1 ≥ 0 ⇐⇒ ⟨f(x)− f(y), S(f(x)− f(y))⟩2 ≥ 0

Note that, as in Special Relativity Theory, f can be not linear. However this
can not happen if f is a strong causal isomorphism in the sense of the following
definition:

Definition 2.2. Let (E1, ⟨·, ·⟩1,⊂T ) be an inner product space E1 endowed with
the causality relationship ⊂T induced by self-adjoint bijective operator T . Let
(E2, ⟨·, ·⟩2,⊂S) be an inner product space E2 endowed with the causality relationship
⊂S induced by self-adjoint bijective operator S. A bijective mapping f : E1 → E2

is called a strong causal isomorphism if

⟨x, T (y)⟩1 = ⟨f(x), S(f(y))⟩2, ∀x, y ∈ E1

Of course a strong casual isomorphism is a casual isomorphism. But there is more.
Indeed, we show the following results:

Theorem 2.3. Let (E1, ⟨·, ·⟩1) , (E2, ⟨·, ·⟩1) be two separable inner product spaces
on the complex number field C having the same dimension, finite or countable. Let
G1 : E1 → E1, G :2: E2 → E2 be two bijective linear operators. Moreover, let
f : E1 → E2 be a bijective map such that ∀x, y,∈ E1, it results

⟨x,G1y⟩1 = ⟨f(x), G2(f(y))⟩2.
Then f is linear. It follows that any strong causal isomorphism is a linear operator.

Proof. For all y ∈ E2, let v ∈ E1 and w ∈ E2 be such that G2w = y and f(v) = w.
In the following, for convenience of notation we will not specify whether the vectors
we consider are in E1 or E2. And we do not want even specify if wea are considering
⟨·, ·⟩1 or ⟨·, ·⟩2 . All of this is very clear.

⟨f(αx), y⟩ = ⟨f(αx), G2w⟩ = ⟨f(αx), G2f(v)⟩ ≥ ⟨αx,G1v⟩
= α⟨x,G1v⟩ = α⟨f(x), G2f(v)⟩ = α⟨f(x), G2w⟩ = α⟨f(x), y⟩

>From which f(αx) = αf(x) for all scalar α and for all vectors x. Besides,

⟨f(x1 + x2), y⟩ = ⟨f(x1 + x2), G2f(v)⟩ = ⟨x1 + x2, G1v⟩
= ⟨f(x1), G2f(v)⟩+ ⟨f(x2), G2f(v)⟩ = ⟨f(x1) + f(x2), y⟩

that gives f(x1 + x2) = f(x1) + f(x2). □
But there is even more. We can show that f is also continuous under the assump-

tions of continuity of G1 and G2. For this, we use the following celebrate result that
a linear mapping between normed spaces is continuous if and only if it is weakly
continuous. Following [4],
The weak continuity of a bounded linear operator was as first noticed by Banach in

his 1922 masterpiece: the converse was proved by Dunford.
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Theorem 2.4. A linear mapping F : N → M between the normed linear spaces N
and M is norm-to-norm continuous if and only if F is weak-to-weak continuous.

Proof. A Proof complete can be found in [4], page 12. □
So now we have the tools to prove the result announced above:

Theorem 2.5. Let (E1, ⟨·, ·⟩1) , (E2, ⟨·, ·⟩1) be two separable inner product spaces
on the complex number field C having the same dimension, finite or countable. Let
G1 : E1 → E1, G2 : E2 → E2 be two bijective linear operators. Moreover, let
f : E1 → E2 be a bijective map such that ∀x, y,∈ E1, it results

(2.1) ⟨x,G1y⟩1 = ⟨f(x), G2(f(y))⟩2.
If G1and G2 are continuous, then the map f is continuous with the bound

∥f∥ ≤

√
∥G1∥
∥G2∥

It follows that any strong causal isomorphism is a linear bounded operator.

Proof. Step 1. Thanks to Theorem 2.5, to show the continuity of f it is equivalent
to show its weak continuity.
Let thus ⟨xn, y⟩ → 0, for all y ∈ E1. We need to show that ⟨f(xn), z⟩ → 0 for all
z ∈ E2.
Indeed, any z ∈ E2 can be written as z = G2f(y), w ∈ E1, and so

⟨f(xn), z)⟩ = ⟨f(xn), G2f(y)⟩ = by (2.1) = ⟨xn, G1y)⟩ → 0.

Thanks the bijectivity of G1 the thesis follows.
Step 2. Show now the bound of ∥f∥. Indeed, we can write the equality ∥f(x)∥2 =
⟨f(x), G2(G

−1
2 f(x))⟩2 as ∥f(x)∥2 = ⟨f(x), G2(f(y))⟩2, where y ∈ E1 is such that

f(y) = G−1
2 f(x) i.e.

(2.2) y = f−1G−1
2 f(x)

So we obtain

∥f(x)∥2 = ⟨f(x), G2f(y)⟩2 = (since f is a strong causal isomorphism)
= ⟨x,G1y⟩ ≤ ∥x∥∥G1y∥ = (by (2.2))
= ∥x∥∥G1f

−1G−1
2 f(x)∥ ≤ ∥x∥∥G1f

−1G−1
2 ∥∥f(x)∥

that yields ∥f(x)∥ ≤ ∥x∥∥G1f
−1G−1

2 ∥ hence f is bounded and

∥f∥ ≤ ∥G1f
−1G−1

2 ∥ ≤ ∥G1∥∥f−1∥∥G−1
2 ∥ ≤ ∥G1∥

∥f∥∥G2∥
.

And so, finally

∥f∥ ≤

√
∥G1∥
∥G2∥

□
Corollary 2.6. Under the assumptions of Theorem 2.5 and if moreover G2 is ex-
pansive with respect to G1 (i.e. if ∥G2∥ ≥ ∥G1∥) then f is nonexpansive.
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3. Extension of the causality relationship to pairs of points of a
Pseudo-Riemannian manifold.

Now we want to extend the causal relationship in the context of the General
Relativity Theory.
In this setting, the linear spaces introduced can be interpreted as tangent spaces of
a 4-dimensional pseudo-Riemannian manifold in two particular points of it. In this
manifold, fixed a point P (X̄) and an open set T (P ), if P1(X) and P2(X) are in
T (P ), (with X̄,X, Y we denoted local coordinates of P, P1, P2), we will say that the

event X is causally related to event Y if and only if
∫
γ
Gi,jdx

idxj ≥ 0; in this last

formula Gi,j is the metric tensor defined in the open set T (P ) and γ is the geodesic
that has as extremes P1 and P2.
(dS)2 = Gi,jdx

idxj is the square of the space time interval that separates two
indefinitely neighgboring events, expressed in differential form [8],[2],[9]. So that if
P ′ is a point distinct from P and T (P ′) is its open set, let

f : T (P ) → T (P ′)

be a one-to-one map that preserves, with its inverse, the causal relationship intro-
duced above, that is, an application such that ∀x, y ∈ T (P ) X ⊂ Y ⇐⇒ f(X) ⊂
f(Y ). Then the map f is called causal isomorphism.
In our approximation we consider, in place of open sets T (P ), T (P ′) of the manifold,
the tangent spaces in the points P and P ′ with associated inner products induced
by operators T and S, whose matrices elements are coincident with the values of
components of metric tensor Gi,j in points P and P ′ respectively [2, 9].
Thus, in place of the causal relationships expressed above in the integral form, we
consider those defined from the bilinear forms induced by the operators Tand S. This
is a reasonable approximation that will allow us to draw formal properties of consid-
erable interest of the corresponding sets of causal isomorphisms. Let (E1, ⟨·, ·⟩1, T )
and (E2, ⟨·, ·⟩2, S) be real linear separable spaces with associated bilinear forms in-
duced by linear self-adjoint bijective operators T and S.
Let L(E1, E2) be the set of strong isomorphisms from E1 to E2.
We know that any L ∈ L(E1, E2) is linear (Theorem 2.3) and also continuous if T
and S are (Theorem 3.1). Show now that L(E1, E2) is closed with respect to the
invertibility.

Theorem 3.1. L ∈ L(E1, E2) implies that L−1 ∈ L(E2, E1)

Proof. ⟨L−1v, TL−1w⟩ = ⟨LL−1v, SLL−1w⟩ = ⟨v, Sw⟩ □

Let then K(E1, E2) be the set of causal isomorphisms from E1 to E2.

Of course L(E1, E2) ⊆ K(E1, E2) and also is closed with respect to the inverti-
bility.
Finally we want to see that K(E1, E2) is a larger set than the analogous set of causal
isomorphisms in the Special Relativity Theory, that is the Poincaré group P (R4), i.e
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the set of mappings f in P (R4) has the shapef(X) = λL(X)+v0. For this purpose,
define P (E1, E2) := {f : E1 → E2|f(x) = λLx+ v0, λ ̸= 0, L ∈ L(E1, E2)}.

The first result is expected.

Theorem 3.2. P (E1, E2) ⊆ K(E1, E2).

Proof. f ∈ P (E1, E2) implies that f(x) = λLx+ v0. See that f is a causal isomor-
phism, that is

x ⊂T y ⇐⇒ f(x) ⊂S f(y)

i.e.
⟨x− y, T (x− y)⟩1 ≥ 0 ⇐⇒ ⟨f(x)− f(y), S(f(x)− f(y))⟩2 ≥ 0.

Suppose thus ⟨x− y, T (x− y)⟩1 ≥ 0.
Then

⟨(x)− f(y), S(f(x)− f(y))⟩2 = ⟨λLx− λLy, S(λLx− λLy)⟩
= λ2⟨Lx− Ly, S(Lx− Ly)⟩
= λ2⟨x− y, T (x− y)⟩1 ≥ 0.

□

We see now that also P (E1, E2) is closed with respect to the invertibility.

Theorem 3.3. f ∈ P (E1, E2) implies that f−1 ∈ P (E2, E1).

Proof. We show that if f(x) = v, then it results

f−1 =
1

λ
L−1 − 1

λ
L−1v0

Indeed, this follows by the two formulas(
f ◦

(
1

λ
L−1 − 1

λ
L−1v0

))
(v) = λL

(
1

λ
L−1v − 1

λ
L−1v0

)
+ v0 = v

and ((
1

λ
L−1 − 1

λ
L−1v0

)
◦ f

)
(x) =

(
1

λ
L−1 − 1

λ
L−1v0

)
(λLx+ v0)

=
1

λ
L−1(λLx+ v0)−

1

λ
L−1v0 = x

□

Corollary 3.4. If E1 = E2 = E, then L(E) ⊆ P (E) ⊆ K(E) are non abelian
transformations groups respect to the composition.

Finally, we underline another difference between the Special and General Relativ-
ity Theory. We know that in the Special Relativity Theory it results P (E1, E2) =
K(E1, E2).
The last our result shows that this does not hold in the General Relativity Theory.

Theorem 3.5. . In general P (E1, E2) ̸= K(E1, E2).
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Proof. It is enough to give a counterexample. Indeed, let be E1 = E2 = R. Fix a
positive number a and take the linear, bijective, self-adjoint operator T defined by
Tx := ax. The relationschip causality induced is given by

x ⊂T y ⇐⇒ (x− y)a(x− y) = a(x− y)2 ≥ 0 ∀x, y ∈ R.

So in this context a causal isomorphism is any bijective map from R to R. For
example f(x) := x3 is such a map, but it has not the form f(x) = λx = b. □
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