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theory have, been magnified from linear setting, namely, Banach spaces or Hilbert
spaces, etc., to common solution because the problems cannot be posted in the linear
space and require a manifold structure (not necessary with linear structure). The
main advantages of these extensions are that non-convex problems in the general
sense are transformed into convex problems, and constraint problems also transform
into unconstraint problems. Eigenvalue optimization problems [24] and geometric
models for the human spine [1] are typical examples of the situation. Therefore,
many authors have focused on extension and development of nonlinear problems
techniques on the Riemannian manifold, see for examples [9, 12, 16, 25] and the
reference therein.

In 2012, Calao et al. [9] studied the equilibrium problems on a Hadamard mani-
fold. LetM be an Hadamard manifold, TM the tangent bundle ofM ,K a nonempty
closed geodesic convex subset of M , and F : K ×K −→ R a bifunction satisfying
F (x, x) = 0, for all x ∈ K. Then, the equilibrium problem on the Hadamard
manifold is to find x ∈ K such that

(1.3) F (x, y) ≥ 0, ∀y ∈ K.

We denote by EP (F ) the set of equilibrium points of the equilibrium problem (1.3).
They [9] studied the existence of an equilibrium point for a bifunction under suitable
conditions and applied their results to solve mixed variational inequality problems,
fixed point problems and Nash equilibrium problems in Hadamard manifolds. The
authors also introduced Picard iterative method to approximate solutions of the
problem (1.3). However, Wang et al. [28] found some gaps in the existence proof of
the mixed variational inequalities and the domain of the resolvent for the equilibrium
problems in [9].

The inclusion problem (1.2) is generalized by Li et al. [15] in Hadamard manifolds,
and it reads as follows:

(1.4) find x ∈ K such that 0 ∈ A(x),

where A : K −→ 2TM is a multivalued vector field on Hadamard manifolds and 0
denotes the zero section of TM . We denote by A−1(0) the set of singularities of
the inclusion problem (1.4). The authors also extended the general proximal point
method from Euclidean spaces to Hadamard manifolds for solving the inclusion
problem (1.4).

Motivated by above results, we introduce iterative algorithm for finding a com-
mon solution of the equilibrium problem (1.3) and the inclusion problem (1.4) on
Hadamard manifolds. Our proposed algorithm can be regraded as the double-
backward method for the two underlying problems.

The rest of this paper is organized in the following: In Section 2, we give some
basic concepts and fundamental results of Riemannian manifolds as well as some
useful results. In Section 3, we introduce the problem of finding x ∈ EP (F ) ∩
A−1(0), which is a common solution of the sets of equilibrium points and singularlity
of an inclusion problem. We propose an iterative algorithm for finding a common
solution of the proposed problem, and establish convergence results of a sequence
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generated by the proposed algorithm converges to a solution of the proposed problem
on Hadamard manifolds. In the last section, we devote our results to minimization
problems and minimax problems on Hadamard manifolds.

2. Preliminaries

In this section, we recall some fundamental definitions, properties, useful results,
and notations of Riemannian geometry. Readers refer to some textbooks [5, 23, 26]
for more details.

Let M be a connected finite-dimensional manifold. For p ∈ M , we denote TpM
the tangent space of M at p which is a vector space of the same dimension as M ,
and by TM =

∪
p∈M TpM the tangent bundle of M . We always suppose that M

can be endowed with a Riemannian metric ⟨·, ·⟩p, with corresponding norm denoted
by ∥ · ∥p, to become a Riemannian manifold. The angle ∠p(u, v) between u, v ∈
TpM (u, v ̸= 0) is set by cos∠p(u, v) =

⟨u,v⟩p
∥u∥∥v∥ . If there is no confusion, we denote

⟨·, ·⟩ := ⟨·, ·⟩p, ∥ · ∥ := ∥ · ∥p and ∠(u, v) := ∠p(u, v). Let γ : [a, b] −→ M be a
piecewise smooth curve joining γ(a) = p to γ(b) = q, we define the length of the
curve γ by using the metric as

L(γ) =

∫ b

a
∥γ′

(t)∥dt.

Minimizing the length function over the set of all such curves, we obtain a Rie-
mannian distance d(p, q) which induces the original topology on M .

Let ∇ be a Levi-Civita connection associated to (M, ⟨·, ·⟩). Given a smooth curve

γ, a smooth vector field X along γ is said to be parallel if ∇γ′X = 0. If γ
′
itself

is parallel, we say that γ is a geodesic, and in this case ∥γ′∥ is a constant. When

∥γ′∥ = 1, γ is said to be normalized. A geodesic joining p to q in M is said to be a
minimal geodesic if its length equals to d(p, q).

A Riemannian manifold is complete if for any p ∈ M all geodesic emanating
from p are defined for all t ∈ R. From the Hopf-Rinow theorem we know that if
M is complete then any pair of points in M can be joined by a minimal geodesic.
Moreover, (M,d) is a complete metric space and every bounded closed subset is
compact.

Let M be a complete Riemannian manifold and p ∈ M . The exponential map
expp : TpM −→ M is defined as expp v = γv(1, p), where γ(·) = γv(·, p) is the

geodesic starting at p with velocity v (i.e., γv(0, p) = p and γ
′
v(0, p) = v). Then,

for any value of t, we have expp tv = γv(t, p) and expp 0 = γv(0, p) = p. Note
that the exponential expp is differentiable on TpM for all p ∈ M . It is well-known
that the derivative D expp(0) of expp(0) is equal to the identity vector of TpM.
Therefore, by the inverse mapping theorem, there exists an inverse exponential map
exp−1

p : M −→ TpM . Moreover, for any p, q ∈ M , we have d(p, q) = ∥ exp−1
p q∥.

A complete simply connected Riemannian manifold of non-positive sectional cur-
vature is said to be an Hadamard manifold. Throughout the remainder of the paper,
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we always assume that M is a finite-dimensional Hadamard manifold. The following
proposition is well-known and will be useful.

Proposition 2.1 ([23]). Let p ∈ M . The exponential map expp : TpM −→ M is a
diffeomorphism, and for any two points p, q ∈ M there exists a unique normalized
geodesic joining p to q, which is can be expressed by the formula

γ(t) = expp t exp
−1
p q, ∀t ∈ [0, 1].

This proposition yields thatM is diffeomorphic to the Euclidean space Rn. Then, M
has same topology and differential structure as Rn. Moreover, Hadamard manifolds
and Euclidean spaces have some similar geometrical properties. One of the most
important properties is illustrated in the following propositions.

A geodesic triangle △(p1, p2, p3) of a Riemannian manifold M is a set consisting
of three points p1, p2 and p3, and three minimal geodesics γi joining pi to pi+1 where
i = 1, 2, 3 (mod 3).

Proposition 2.2 ([23]). Let △(p1, p2, p3) be a geodesic triangle in M . For each
i = 1, 2, 3 (mod 3), given γi : [0, li] −→ M the geodesic joining pi to pi+1 and set

li := L(γi), αi := ∠(γ′
i(0),−γ

′
i−1(li−1)). Then,

(2.1) α1 + α2 + α3 ≤ π;

(2.2) l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1.

In the terms of the distance and the exponential map, the inequality (2.2) can be
rewritten as

(2.3) d2(pi, pi+1) + d2(pi+1, pi+2)− 2⟨exp−1
pi+1

pi, exp
−1
pi+1

pi+2⟩ ≤ d2(pi−1, pi),

where ⟨exp−1
pi+1

pi, exp
−1
pi+1

pi+2⟩ = d(pi, pi+1)d(pi+1, pi+2) cosαi+1.

The following relation between geodesic triangles in Riemannian manifolds and
triangles in R2 can be referred to [4].

Lemma 2.3 ([4]). Let △(p1, p2, p3) be a geodesic triangle in M . Then, there exists
a triangle △(p1, p2, p3) for △(p1, p2, p3) such that d(pi, pi+1) = ∥pi − pi+1∥, indices
taken modulo 3; it is unique up to an isometry of R2.

The triangle △(p1, p2, p3) in Lemma 2.3 is said to be a comparison triangle for
△(p1, p2, p3). The geodesic side from x to y will be denoted [x, y]. A point x ∈
[p1, p2] is said to be a comparison point for x ∈ [p1, p2] if ∥x − p1∥ = d(x, p1). The
interior angle of △(p1, p2, p3) at p1 is said to be the comparison angle between p2
and p3 at p1 and is denoted ∠p1(p2, p3). With all notation as in the statement of
Proposition 2.2, according to the law of cosine, (2.2) is valid if and only if

(2.4) ⟨p2 − p1, p3 − p1⟩R2 ≤ ⟨exp−1
p1 p2, exp

−1
p1 p3⟩

or,

α1 ≤ ∠p1(p2, p3)
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or, equivalently, △(p1, p2, p3) satisfies the CAT(0) inequality and that is, given a
comparison triangle △ ⊂ R2 for △(p1, p2, p3) for all x, y ∈ △,

(2.5) d(x, y) ≤ ∥x− y∥,

where x, y ∈ △ are the respective comparison points of x, y.
A subset K is called geodesic convex if for every two points p and q in K, the

geodesic joining p to q is contained in K, that is, if γ : [a, b] −→ M is a geodesic
such that p = γ(a) and q = γ(b), then γ((1− t)a+ tb) ∈ K for all t ∈ [0, 1].

A real function f : M −→ R is called geodesic convex if for any geodesic γ in M ,
the composition function f ◦ γ : [a, b] −→ R is convex, that is,

(f ◦ γ)(ta+ (1− t)b) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b)

where a, b ∈ R, and t ∈ [0, 1].

Proposition 2.4 ([23]). Let d : M × M −→ R be the distance function. Then,
d(·, ·) is a geodesic convex function with respect to the product Riemannian metric,
that is, for any pair of geodesics γ1 : [0, 1] −→ M and γ2 : [0, 1] −→ M the following
inequality holds for all t ∈ [0, 1]

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each y ∈ M , the function d(·, y) : M −→ R is a geodesic convex
function.

The following notion and lemma are crucial in establishing our main convergence
results.

Definition 2.5. [12] Let K be a nonempty subset of M and {xn} be a sequence
in M . Then, {xn} is said to be Fejér convergent with respect to K if for all p ∈ K
and n ∈ N,

d(xn+1, p) ≤ d(xn, p).

Lemma 2.6 ([12]). Let K be a nonempty subset of M and {xn} be a sequence in M
such that {xn} be a Fejér convergent with respect to K. Then, the following hold:

(i) For every p ∈ K, d(xn, p) converges;
(ii) {xn} is bounded;
(iii) Assume that every cluster point of {xn} belongs to K.

Then, {xn} converges to a point in K.

Recall that for all x, y ∈ R2,

∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2, ∀t ∈ [0, 1].

Next, let us present the concepts of the monotonicity of vector fields.
Given K be a nonempty subset of M . Let X(K) denote to the set of all multi-

valued vector fields A : K −→ 2TM such that A(x) ⊆ TxM for each x ∈ K, and
denote D(A) the domain of A defined by D(A) = {x ∈ K : A(x) ̸= ∅}.

Definition 2.7 ([10]). A vector field A ∈ X(K) is said to be
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(i) monotone if for all x, y ∈ D(A)

⟨u, exp−1
x y⟩ ≤ ⟨v,− exp−1

y x⟩, ∀u ∈ A(x) and ∀v ∈ A(y);

(ii) maximal monotone if it is monotone and for all x ∈ K and u ∈ TxK, the
condition

⟨u, exp−1
x y⟩ ≤ ⟨v,− exp−1

y x⟩, ∀y ∈ D(A) and ∀v ∈ A(y),

implies that u ∈ A(x).

The concept of Kuratowski semicontinuity on Hadamard manifolds was intro-
duced by Li et al. [15].

Definition 2.8 ([15]). Let a vector field A ∈ X(K) and x0 ∈ K. ThenA is said to be
upper Kuratowski semicontinuous at x0 if for any sequences {xn} ⊆ K and {vn} ⊂
TM with each vn ∈ A(xn), the relations limn−→∞ xn = x0 and limn−→∞ vn = v0
imply that v0 ∈ A(x0). Moreover, A is said to be upper Kuratowski semicontinuous
on K if it is upper Kuratowski semicontinuous for each x ∈ K.

The definition of the resolvent of a multivalued vector field and firmly nonexpan-
sive mappings on Hadamard manifolds was introduced by Li et al. [16].

Definition 2.9 ([16]). Let a vector field A ∈ X(K) and λ ∈ (0,∞). The λ-resolvent
of A is a multivalued map JA

λ : K −→ 2K defined by

JA
λ (x) := {z ∈ K : x ∈ expz λA(z)}, ∀x ∈ K.

Remark 2.10 ( [16]). Let λ > 0. By the definition of the resolvent of a vector field,
then the range of the resolvent JA

λ is contained the domain of A and Fix(JA
λ ) =

A−1(0).

Definition 2.11 ([16]). Let K be a nonempty subset of M and T : K −→ M be
a mapping. Then T is called firmly nonexpansive if for all x, y ∈ K, the function
Φ : [0, 1] −→ [0,∞) defined by

Φ(t) := d(expx t exp
−1
x Tx, expy t exp

−1
y Ty), ∀t ∈ [0, 1],

is nonincreasing.

A mapping T : K −→ K is called nonexpansive if d(T (x), T (y)) ≤ d(x, y), for all
x, y ∈ K, where d(x, y) is a Riemannian distance. It turns out that the monotonicity
and nonexpansivity are closely related.

Theorem 2.12 ([16]). Let a vector field A ∈ X(K). Then, for any λ > 0, the vector
field A is monotone if and only if JA

λ is single-valued and firmly nonexpansive.

Proposition 2.13 ([16]). Let K be a nonempty subset of M and T : K −→ M be
a firmly nonexpansive mapping. Then

⟨exp−1
Ty x, exp

−1
Ty y⟩ ≤ 0

holds for any x ∈ Fix(T ) and for all y ∈ K.

The following lemma which is useful in establishing our main result.
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Lemma 2.14 ([2]). Let K be a nonempty closed subset of M and a vector field
A ∈ X(K) be a maximal monotone. Let {λn} ⊂ (0,∞) be a real sequence with
limn−→∞ λn = λ > 0 and a sequence {xn} ⊂ K with limn−→∞ xn = x ∈ K such
that limn−→∞ JA

λn
(xn) = y. Then, y = JA

λ (x).

We then turn towards the theory of bifunctions, their resolvents and the related
equilibrium problems.

Let K be a nonempty closed geodesic convex set in M and F : K ×K −→ R be
a bifunction. We suppose the following assumptions:

(A1) for all x ∈ K, F (x, x) ≥ 0;
(A2) F is monotone, that is, for all x, y ∈ K, F (x, y) + F (y, x) ≤ 0;
(A3) For every y ∈ K, x 7→ F (x, y) is upper semicontinuous;
(A4) For every x ∈ K, y 7→ F (x, y) is geodesic convex and lower semicontinuous;
(A5) x 7→ F (x, x) is lower semicontinuous;
(A6) There exists a compact set L ⊆ M such that

x ∈ K \ L =⇒ [∃y ∈ K ∩ L such that F (x, y) < 0].

Calao et al. [9] introduced the concept of resolvent of a bifunction on Hadamard
manifold as follows: let F : K × K −→ R, the resolvent of a bifunction F is a
multivalued operator TF

r : M −→ 2K such that for all x ∈ M

TF
r (x) =

{
z ∈ K : F (z, y)− 1

r
⟨exp−1

z x, exp−1
z y⟩ ≥ 0, ∀y ∈ K

}
.

Let us end the preliminary section with the following results which discuss the
regularization of a given bifunction.

Theorem 2.15 ( [9, 28]). Let F : K × K −→ R be a bifunction satisfying the
following conditions:

(1) F is monotone;
(2) for all r > 0, TF

r is properly defined, that is, the domain D(TF
r ) ̸= ∅.

Then for any r > 0,

(i) the resolvent TF
r is single-valued;

(ii) the resolvent TF
r is firmly nonexpansive;

(iii) the fixed point set of TF
r is the equilibrium point set of F ,

Fix(TF
r ) = EP (F ).

Moreover, if F satisfying conditions (A1)–(A4). Then, D(TF
r ) = M.

3. Main results

In this paper, K always denotes a nonempty closed geodesic convex subset of
Hadamard manifold M , unless explicitly stated otherwise. Let A ∈ X(K) be a
vector field and F : K × K −→ R be a bifunction. We consider the problem of
finding x ∈ K such that

(3.1) x ∈ EP (F ) ∩A−1(0),
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that is, x is simultaneously an equilibrium point of F and a singularity of A. We
suppose that Ω := EP (F ) ∩A−1(0) ̸= ∅.

We first introduce the following iterative algorithm for computing the approxi-
mate solutions of problem (3.1).

Algorithm 3.1. Let A ∈ X(K) be a vector field and F : K × K −→ R be a
bifunction. Choose an initial point x0 ∈ K and define {xn}, {yn} and {zn} as
follows:

yn := expxn
αn exp

−1
xn

JA
λn
(xn),(3.2)

zn ∈ K such that F (zn, t)−
1

rn
⟨exp−1

zn yn, exp
−1
zn t⟩ ≥ 0, ∀t ∈ K,(3.3)

xn+1 := expxn
βn exp

−1
xn

zn, ∀n ∈ N,(3.4)

where {αn}, {βn}, {λn} and {rn} are given real positive sequences such that

(i) 0 < a ≤ αn, βn ≤ b < 1, ∀n ∈ N,
(ii) 0 < λ̂ ≤ λn ≤ λ̃ < ∞, ∀n ∈ N,
(iii) lim infn−→∞ rn > 0.

When F ≡ 0, the Algorithm (3.1) becomes the following algorithm for finding a
solution of the problem (1.4).

Algorithm 3.2. Let A ∈ X(K) be a vector field. Choose initial point x0 ∈ K and
define {xn} as follows:

xn+1 := expxn
αn exp

−1
xn

JA
λn
(xn), ∀n ∈ N,

where {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are the same as in Algorithm 3.1.

When A ≡ 0, the Algorithm (3.1) becomes the following algorithm for finding a
solution of the problem (1.3).

Algorithm 3.3. Let F : K×K −→ R be a bifunction. Choose initial point x0 ∈ K
and define {xn} and {zn} as follows:

zn ∈ K such that F (zn, t)−
1

rn
⟨exp−1

zn xn, exp
−1
zn t⟩ ≥ 0, ∀t ∈ K,

xn+1 := expxn
βn exp

−1
xn

zn, ∀n ∈ N,

where {βn} ⊂ (0, 1) and {rn} ⊂ (0,∞) are the same as in Algorithm 3.1.

Now we prove the convergence of any sequences generated by Algorithm ?? to a
common solution of problem (3.1).

Theorem 3.4. Suppose that a vector field A ∈ X(K) be a maximal monotone and
F : K × K −→ R be a bifunction satisfying assumptions (A1)–(A6) with Ω ̸= ∅.
Then, the sequence generated by Algorithm 3.1 converges to a solution of problem
(3.1).

Proof. It is sufficient to show by Lemma 2.6 that {xn} is Fejér convergent with
respect to Ω and the cluster points of {xn} belongs to Ω. We divide the proof into
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the following four steps.

Step I. We show that {xn} is Fejér convergent with respect to Ω.

Let ω ∈ Ω. Then ω ∈ EP (F ) and ω ∈ A−1(0). By Theorem 2.15, we have
zn = TF

rn(yn) and

d(zn, ω) = d(TF
rn(yn), T

F
rn(ω))

≤ d(yn, ω), for ω ∈ Ω.(3.5)

Since ω ∈ A−1(0), Remark 2.10 gives ω = JA
λn
(ω). Set un := JA

λn
(xn) and

let △ (ω, xn, un) ⊆ M be a geodesic triangle with vertices ω, xn and un, and let
△ (ω, xn, un) ⊆ R2 be the corresponding comparison triangle. Then, we have

(3.6) d(xn, ω) = ∥xn − ω∥, d (xn, un) = ∥xn − un∥ and d (un, ω) = ∥un − ω∥ .

Recall from (3.2) that yn = expxn
αn exp

−1
xn

un, then we have

yn = (1− αn)xn + αnun.

From (2.4) and (2.5), we get

(3.7) ∠ω (un, xn) ≤ ∠ω (un, xn)

and

d(yn, ω) ≤ ∥yn − ω∥.

From the last inequality, (3.7) and αn ∈ (0, 1), then

d2(yn, ω) ≤ ∥yn − ω∥2

= ∥(1− αn)xn + αnun − ω∥2

= ∥(xn − ω)− αn (xn − un)∥2

= ∥xn − ω∥2 + α2
n ∥xn − un∥2 − 2αn∥xn − ω∥ ∥xn − un∥ cos∠ω (un, xn)

≤ ∥xn − ω∥2 + αn ∥xn − un∥2 − 2αn∥xn − ω∥ ∥xn − un∥ cos∠ω (un, xn)

= ∥xn − ω∥2 + αn ∥xn − un∥2 − 2αn ⟨xn − ω, xn − un⟩R2

= ∥xn − ω∥2 + (αn − 2αn) ∥xn − un∥2 + 2αn ⟨ω − un, xn − un⟩R2

≤ d2(xn, ω)− αnd
2 (xn, un) + 2αn

⟨
exp−1

un
ω, exp−1

un
xn

⟩
.(3.8)

On the other hand, since un := JA
λn
(xn) and JA

λn
is firmly nonexpansive, it follows

from Proposition 2.13 that ⟨
exp−1

un
ω, exp−1

un
xn

⟩
≤ 0.

This together with (3.8) yields that

d2(yn, ω) ≤ d2(xn, ω)− αnd
2 (xn, un)(3.9)

≤ d2(xn, ω).(3.10)
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Recall from (3.2) that yn = expxn
αn exp

−1
xn

un, we get d(xn, yn) = αnd (xn, un).
From (3.9), we obtain this

d2(yn, ω) ≤ d2(xn, ω)−
1

αn
d2 (xn, yn) .(3.11)

For n ∈ N, let γn : [0, 1] −→ M be a geodesic joining γn(0) = xn to γn(1) = zn.
Then, (3.4) can be written as xn+1 = γn(βn). By using geodesic convexity of
Riemannian distance, (3.5) and (3.10), we get

d(xn+1, ω) = d(γn(βn), ω)

≤ (1− βn)d(γn(0), ω) + βnd(γn(1), ω)

= (1− βn)d(xn, ω) + βnd(zn, ω)

≤ (1− βn)d(xn, ω) + βnd(yn, ω)

≤ (1− βn)d(xn, ω) + βnd(xn, ω)

= d(xn, ω).(3.12)

Therefore, {xn} is Fejér convergent with respect to Ω.

Step II. We show that limn−→∞ d(xn+1, xn) = 0.

Fix n ∈ N. Let △(xn, zn, ω) be a geodesic triangle with vertices xn, zn and ω, and
△(xn, zn, ω) be the corresponding comparison triangle. Then, we have

d(xn, ω) = ∥xn − ω∥, d(zn, ω) = ∥zn − ω∥ and d(zn, xn) = ∥zn − xn∥.

Recall that xn+1 := expxn
βn exp

−1
xn

zn, so its comparison point is xn+1 = (1 −
βn)xn + βnzn. Using (2.5), (3.5), and (3.10), we get

d2(xn+1, ω) ≤ ∥xn+1 − ω∥2

= ∥(1− βn)xn + βnzn − ω∥2

= ∥(1− βn)(xn − ω) + βn(zn − ω)∥2

= (1− βn)∥xn − ω∥2 + βn∥zn − ω∥2 − βn(1− βn)∥xn − zn∥2

= (1− βn)d
2(xn, ω) + βnd

2(zn, ω)− βn(1− βn)d
2(xn, zn)

≤ (1− βn)d
2(xn, ω) + βnd

2(yn, ω)− βn(1− βn)d
2(xn, zn)(3.13)

≤ (1− βn)d
2(xn, ω) + βnd

2(xn, ω)− βn(1− βn)d
2(xn, zn)

= d2(xn, ω)− βn(1− βn)d
2(xn, zn).(3.14)

From (3.14), we also obtain

βn(1− βn)d
2(xn, zn) ≤ d2(xn, ω)− d2(xn+1, ω),

and we further have

d2(xn, zn) =
1

βn(1− βn)
(d2(xn, ω)− d2(xn+1, ω))

≤ 1

a(1− b)
(d2(xn, ω)− d2(xn+1, ω)).
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Since {xn} is Fejér convergent with respect to Ω implies that limn−→∞ d(xn, ω)
exists. By letting n −→ ∞, we have

(3.15) lim
n−→∞

d(xn, zn) = 0.

Recall that xn+1 = γn(βn) for all n ∈ N, using the geodesic convexity of Rie-
mannian distance, we obtain

d(xn+1, xn) = d(γn(βn), xn)

≤ (1− βn)d(γn(0), xn) + βnd(γn(1), xn)

= (1− βn)d(xn, xn) + βnd(zn, xn)

= βnd(xn, zn)

≤ bd(xn, zn).

Letting n −→ ∞ and using (3.15), we get

(3.16) lim
n−→∞

d(xn+1, xn) = 0.

Step III. We show that limn−→∞ d(xn, yn) = 0.

Using (3.11) and (3.13), we obtain

d2(xn+1, ω) ≤ (1− βn)d
2(xn, ω) + βn(d

2(xn, ω)

− 1

αn
d2 (xn, yn))− βn(1− βn)d

2(xn, zn)

= (1− βn)d
2(xn, ω) + βnd

2(xn, ω)

− βn
αn

d2 (xn, yn)− βn(1− βn)d
2(xn, zn)

= d2(xn, ω)−
βn
αn

d2 (xn, yn)− βn(1− βn)d
2(xn, zn).

With some rearrangements we obtain

a

b
d2(xn, yn) ≤

βn
αn

d2 (xn, yn) ≤ d2(xn, ω)− d2(xn+1, ω)− βn(1− βn)d
2(xn, zn).

Since {xn} is Fejér convergence of with respect to Ω and (3.15) together imply that

(3.17) lim
n−→∞

d(xn, yn) = 0.

Step IV. We show that the cluster points of {xn} belongs to Ω.

Since the sequence {xn} is Fejér convergent, by (ii) of Lemma 2.6, {xn} is bounded.
Hence, there exists a subsequence {xni} of {xn} which converges to a cluster point
x∗ of {xn}. From (3.17), we get yni −→ x∗ as i −→ ∞. Also from (3.15), we have
zni −→ x∗ as i −→ ∞.

We firstly prove that x∗ ∈ EP (F ). By zn = TF
rn(yn), we get

F (zn, y)−
1

rn
⟨exp−1

zn yn, exp
−1
zn y⟩ ≥ 0, ∀y ∈ K.
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Since the bifunction F is monotone, we obtain

− 1

rn
⟨exp−1

zn yn, exp
−1
zn y⟩ ≥ F (y, zn).

Replacing n by ni, we get

(3.18) − 1

rni

⟨exp−1
zni

yni , exp
−1
zni

y⟩ ≥ F (y, zni).

Recall that

lim
i−→∞

∥ exp−1
zni

yni∥ = lim
i−→∞

d(yni , zni) = 0,

so we get exp−1
zni

yni −→ 0 as i −→ ∞. Using lim infi−→∞ rni > 0 and y 7→ F (x, y)

is lower semicontinuous, and letting i −→ ∞ into (3.18), we get

0 ≥ lim inf
i−→∞

F (y, zni) ≥ F (y, x∗), ∀y ∈ K.

Let γ : [0, 1] −→ M be the geodesic joining γ(0) = x∗ to γ(1) = y ∈ K. Since
K is geodesic convex, then γ(t) ∈ K and F (γ(t), x∗) ≤ 0 for all t ∈ [0, 1]. From
y 7→ F (x, y) is geodesic convex, we have, for t > 0, the following

0 = F (γ(t), γ(t)) ≤ tF (γ(t), y) + (1− t)F (γ(t), x∗)

≤ tF (γ(t), y).

Dividing by t and since x 7→ F (x, y) is upper semicontinuous, we see that

0 ≤ lim sup
t−→0+

F (γ(t), y)

≤ F (x∗, y).

Since y ∈ K is chosen arability, x∗ ∈ EP (F ).
Next, we prove that x∗ ∈ A−1(0). Since {αn} ⊂ (0, 1) satisfying 0 < a ≤ αn ≤

b < 1, 1
αn

d(xn, yn) = d(xn, un), and limn−→∞ d(xn, yn) = 0, we may see that

(3.19) lim
n−→∞

d(xn, un) = 0.

Since λ̂ ≤ λn ≤ λ̃, we may assume without the loss of generality that limi−→∞ λni =

λ for some subsequence {λni} of {λn} and some λ ∈ [λ̂, λ̃]. Recall that un = JA
λn
(xn).

Then by (3.19) and Lemma 2.14, we obtain limi−→∞ uni = x∗ and that x∗ = JA
λ (x∗).

From Remark 2.10, we obtain x∗ ∈ A−1(0). Therefore, we get x∗ ∈ Ω. By a (iii) of
Lemma 2.6, the sequence {xn} generated by Algorithm 3.1 converges to a solution
of the problem (3.1). The proof is therefore completed. □

Next, we have the following results of Theorem 3.4 as follows:

Corollary 3.5. Suppose that a vector field A ∈ X(K) be a maximal monotone with
A−1(0) ̸= ∅. Then, the sequence generated by Algorithm 3.2 converges to a solution
of problem (1.4).

Corollary 3.6. Suppose that F : K ×K −→ R be a bifunction satisfying assump-
tions (A1)–(A6) with EP (F ) ̸= ∅. Then, the sequence generated by Algorithm 3.3
converges to a solution of problem (1.3).
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4. Applications

In this section, we derive our algorithm for finding minimizers of minimization
problems, and also give the algorithm for finding saddle points of minimax problems
in Hadamard manifolds.

4.1. Minimization problems. Let g : M −→ R ∪ {+∞} be a proper lower semi-
continuous and geodesic convex function. Consider the minimization problem:

(4.1) min
x∈M

g(x).

We denote Sg the solution set of (4.1), that is,

Sg = {x ∈ M : g(x) ≤ g(y), ∀y ∈ M}.

Definition 4.1. Let g : M −→ R be a geodesic convex and x ∈ M . A vector
s ∈ TxM is called a subgradient of g at x if and only if

(4.2) g(y) ≥ g(x) + ⟨s, exp−1
x y⟩, ∀y ∈ M.

The set of all subgradients of g, denoted by ∂g(x) is called the subdifferential of g
at x, which is closed geodesic convex (possibly empty) set.

Lemma 4.2. [15] Let g : M −→ R ∪ {+∞} be a proper lower semicontinuous and
geodesic convex function. Then, the subdifferential ∂g of g is a maxiaml monotone
vector field.

It is easy to see that

x ∈ Sg ⇐⇒ 0 ∈ ∂g(x).

Recall that ∂g is maximal monotone if g : M −→ R ∪ {+∞} is proper lower
semicontinuous and geodesic convex. Applying Algorithm 3.1 to the multivalued
vector field ∂g, we obtain the following results for the convex minimization problem
(4.1).

Theorem 4.3. Suppose that g : M −→ R be a proper lower semicontinuous and
geodesic convex function and F : K×K −→ R be a bifunction satisfying assumptions
(A1)–(A6) with EP (F ) ∩ Sg ̸= ∅. Let {xn} be a sequence in D(g) generated as

yn := expxn
αn exp

−1
xn

J∂g
λn
(xn),

zn ∈ K such that F (zn, t)−
1

rn
⟨exp−1

zn yn, exp
−1
zn t⟩ ≥ 0, ∀t ∈ K,

xn+1 := expxn
βn exp

−1
xn

zn, ∀n ∈ N,

where {αn}, {βn}, {λn} and {rn} are real positive sequences such that

(i) 0 < a ≤ αn, βn ≤ b < 1, ∀n ∈ N,
(ii) 0 < λ̂ ≤ λn ≤ λ̃ < ∞, ∀n ∈ N,
(iii) lim infn−→∞ rn > 0.

Then, the sequence {xn} converges to a solution of the problem EP (F ) ∩ Sg.
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Corollary 4.4. Let g : M −→ R be a proper lower semicontinuous and geodesic
convex function with Sg ̸= ∅. Let {xn} be a sequence in D(g) generated as

xn+1 := expxn
αn exp

−1
xn

J∂g
λn
(xn), ∀n ∈ N,

where {αn} and {λn} are real positive sequences such that

(i) 0 < a ≤ αn ≤ b < 1, ∀n ∈ N,
(ii) 0 < λ̂ ≤ λn ≤ λ̃ < ∞, ∀n ∈ N.

Then, the sequence {xn} converges to a solution of the problem (4.1).

4.2. Saddle points in minimax problems.
In this subsection, we first recall the formulation of saddle point problems in the

frame work of Hadamard manifolds. Then, we derive the proposed algorithm for
finding the saddle point.

Let M1 and M2 be the Hadamard manifolds, and K1 and K2 the geodesic convex
subset of M1 and M2, respectively. A function H : K1×K2 −→ R is called a saddle
function if

(a) H(x, ·) is geodesic convex on K2 for all x ∈ K1 and
(b) H(·, y) is geodesic concave, i.e., −H(·, y) is geodesic convex on K1 for all

y ∈ K2.

A point z̃ = (x̃, ỹ) is said to be a saddle point of H if

H(x, ỹ) ≤ H(x̃, ỹ) ≤ H(x̃, y), ∀z = (x, y) ∈ K1 ×K2.

We denote SPP to the set of saddle points of H. Let VH : K1×K2 −→ 2TM1×2TM2

be a multivalued vector field associated with saddle function H, defined by

(4.3) VH(x, y) = ∂(−H(·, y))(x)× ∂(H(x, ·))(y), ∀(x, y) ∈ K1 ×K2.

The product space M = M1 ×M2 is a Hadamard manifold and the tangent space
of M at z = (x, y) is TzM = TxM1 × TyM2. For further details, see [23, Page 239].
The corresponding metric given by

⟨w,w′⟩ = ⟨u, u′⟩+ ⟨v, v′⟩, ∀w = (u, v), w′ = (u′, v′) ∈ TzM.

A geodesic in the product manifold M is the product of two geodesic in M1 and
M2. Then, for any two point z = (x, y) and z′ = (x′, y′) in M , we have

exp−1
z z′ = exp−1

(x,y)(x
′, y′) = (exp−1

x x′, exp−1
y y′).

A vector field V : M1 ×M2 −→ 2TM1 × 2TM2 is said to be monotone if and only if
for any z = (x, y), z′ = (x′, y′), w = (u, v) ∈ V (z) and w′ = (u′, v′) ∈ V (z′), we have

⟨u, exp−1
x x′⟩+ ⟨v, exp−1

y y′⟩ ≤ ⟨u′,− exp−1
x′ x⟩+ ⟨v′,− exp−1

y′ y⟩.

Theorem 4.5. [15] Let H be a saddle function on K = K1 × K2 and VH the
multivalued vector field defined by (4.3). Then, VH is maximal monotone.

One can check that a point z̃ = (x̃, ỹ) ∈ K is a saddle point of H if and only if
it is a singularity of VH . Applying Algorithm (3.1) to multivalued vector field VH

associated with the saddle function H, we get the following result.
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Theorem 4.6. Suppose that H : K = K1 × K2 −→ R be a saddle function and
VH : K1 × K2 −→ 2TM1 × 2TM2 be the associated maximal monotone vector field.
Assume that F : K × K −→ R be a bifunction satisfying assumptions (A1)–(A6)
with EP (F )∩SSP ̸= ∅. Choose initial point x0 ∈ K×K and define {xn}, {yn} and
{zn} as follows:

yn := expxn
αn exp

−1
xn

JVH
λn

(xn),

zn ∈ K such that F (zn, t)−
1

rn
⟨exp−1

zn yn, exp
−1
zn t⟩ ≥ 0, ∀t ∈ K,

xn+1 := expxn
βn exp

−1
xn

zn, ∀n ∈ N,

where {αn}, {βn}, {λn} and {rn} are real positive sequences such that

(i) 0 < a ≤ αn, βn ≤ b < 1, ∀n ∈ N,
(ii) 0 < λ̂ ≤ λn ≤ λ̃ < ∞, ∀n ∈ N,
(iii) lim infn−→∞ rn > 0.

Then, the sequence {xn} converges to a solution of the problem EP (F ) ∩ SPP .

Corollary 4.7. Suppose that H : K = K1 × K2 −→ R be a saddle function and
VH : K1 × K2 −→ 2TM1 × 2TM2 be the associated maximal monotone vector field
with SSP ̸= ∅. Choose initial point x0 ∈ K and define {xn} as follows:

xn+1 := expxn
αn exp

−1
xn

JVH
λn

(xn), ∀n ∈ N,

where {αn}and {λn} are real positive sequences such that

(i) 0 < a ≤ αn ≤ b < 1, ∀n ∈ N,
(ii) 0 < λ̂ ≤ λn ≤ λ̃ < ∞, ∀n ∈ N.

Then, the sequence {xn} converges to a saddle point of H.
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