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Such determinant expressions may be obvious or artificial for the readers with
different backgrounds. However, there are motivations from Combinatorics, in par-
ticular, graph theory. In 1989, Cameron [4] considered the operator A defined
on the set of sequences of non-negative integers as follows: for x = {xn}n≥1 and
z = {zn}n≥1, set Ax = z, where

(1.3) 1 +
∞∑
n=1

znt
n =

(
1−

∞∑
n=1

xnt
n

)−1

.

Many motivations and background together with many concrete examples (in par-
ticular, in the aspects of Graph theory) by this operator can be seen in [4]. Though
this operator was used for non-negative integers in [4], it is possible to deal with
rational numbers. In fact, recently, such an operator are used to introduced new
numbers corresponding to harmonic numbers [13].

In this paper, we introduce the shifted Bernoulli and Fubini numbers as a differ-
ent natural extension of the classical Bernoulli and Fubini numbers, in particular, in
terms of determinant expressions. It does not seem to have any substantial connec-
tion between Bernoulli numbers and Fubini numbers. We give their several similar
arithmetical and/or combinatorial properties which show the connections between
two numbers, under the aspects of continued fractions and convolutions.

2. Definitions and basic properties

For nonnegative integers n and m, define the shifted Bernoulli numbers B
(m)
n by

(2.1)
xm

ex − Em(x) + xm
=

∞∑
n=0

B(m)
n

xn

n!
,

where

Em(x) =
m∑

n=0

xn

n!

is the partial summation of ex ([12]). When m = 1, Bn = B
(1)
n are the classical

Bernoulli numbers defined by (1.1). When m = 0, B
(0)
n = (−1)n.

By the definition (2.1),

1 =

( ∞∑
n=0

B(m)
n

xn

n!

)(
1 +

∞∑
l=1

xl

(l +m)!

)

=
∞∑
n=0

B(m)
n

xn

n!
+

∞∑
n=1

n−1∑
k=0

B
(m)
k

(n− k +m)!k!
xn .

Comparing the coefficients on both sides, we have B
(m)
0 = 1 and for n ≥ 1

B
(m)
n

n!
+

n−1∑
k=0

B
(m)
k

(n− k +m)!k!
= 0 .

This is a recurrence relation among the shifted Bernoulli numbers.
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Lemma 2.1. For integers n ≥ 1 and m ≥ 0,

B(m)
n = −

n−1∑
k=0

n!

(n− k +m)!k!
B

(m)
k .

with B
(m)
0 = 1.

Remark. If m = 1 in Lemma 2.1, we have a famous recurrence formula for the
classical Bernoulli numbers:

Bn

n!
= −

n−1∑
k=0

Bk

(n− k + 1)!k!

or
n∑

k=0

(
n+ 1

k

)
Bk = 0 .

If m = 0 in Lemma 2.1, we have the famous identity

n∑
k=0

(
n

k

)
(−1)k = 0 .

The shifted Bernoulli numbers have an explicit expression. This is proved by
induction using Lemma 2.1.

Theorem 2.2. For integers n ≥ 1 and m ≥ 0,

B(m)
n = n!

n∑
k=1

(−1)k
∑

i1+···+ik=n
i1,...,ik≥1

1

(i1 +m)! · · · (ik +m)!
.

Remark. If m = 1 in Theorem 2.2, we have

Bn = n!

n∑
k=1

(−1)k
∑

i1+···+ik=n
i1,...,ik≥1

1

(i1 + 1)! · · · (ik + 1)!
.

If m = 0 in Theorem 2.2, we have

(−1)n =

n∑
k=1

(−1)k
∑

i1+···+ik=n
i1,...,ik≥1

n!

i1! · · · ik!
.

Shifted Bernoulli numbers are naturally extended from the original Bernoulli
numbers in terms of determinants. By expanding the determinant, we can prove
this result by induction together with Lemma 2.1.
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Theorem 2.3. For integers n ≥ 1 and m ≥ 0,

(2.2) B(m)
n = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣

1
(m+1)! 1 0

1
(m+2)!

1
(m+1)!

...
...

. . . 1 0
1

(m+n−1)!
1

(m+n−2)! · · · 1
(m+1)! 1

1
(m+n)!

1
(m+n−1)! · · · 1

(m+2)!
1

(m+1)!

∣∣∣∣∣∣∣∣∣∣∣∣
.

Remark. When m = 1 in Theorem 2.3, the result is reduced to (1.2). When m = 0
in Theorem 2.3, we have

1

n!
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1
1
2! 1 0
...

...
. . . 1 0

1
(n−1)!

1
(n−2)! · · · 1 1

1
n!

1
(n−1)! · · · 1

2! 1

∣∣∣∣∣∣∣∣∣∣∣∣
([7, §9]). This fact confirms that B

(0)
n = (−1)n.

Proof of Theorem 2.3. For simplicity, put B̃
(m)
n = (−1)nB

(m)
n /n! and prove that

(2.3) B̃(m)
n =

∣∣∣∣∣∣∣∣∣∣∣∣

1
(m+1)! 1 0

1
(m+2)!

1
(m+1)!

...
...

. . . 1 0
1

(m+n−1)!
1

(m+n−2)! · · · 1
(m+1)! 1

1
(m+n)!

1
(m+n−1)! · · · 1

(m+2)!
1

(m+1)!

∣∣∣∣∣∣∣∣∣∣∣∣
.

By Theorem 2.2, we see that

B̃
(m)
1 =

1

(m+ 1)!
.

Assume that (2.3) is valid up to n− 1. By Lemma 2.1,

B̃(m)
n =

n−1∑
k=0

(−1)n−k−1

(n− k +m)!
B̃

(m)
k

with B̃
(m)
0 = 1. Expanding at the first row of the right-hand side of (2.3), we have

B̃
(m)
n−1

(m+ 1)!
−

∣∣∣∣∣∣∣∣∣∣∣∣

1
(m+2)! 1 0

1
(m+3)!

1
(m+1)!

...
...

. . . 1 0
1

(m+n−1)!
1

(m+n−3)! · · · 1
(m+1)! 1

1
(m+n)!

1
(m+n−2)! · · · 1

(m+2)!
1

(m+1)!

∣∣∣∣∣∣∣∣∣∣∣∣
=

B̃
(m)
n−1

(m+ 1)!
−

B̃
(m)
n−2

(m+ 2)!
+ · · ·+ (−1)n

∣∣∣∣∣ 1
(m+n−1)! 1

1
(m+n)!

1
(m+1)!

∣∣∣∣∣
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=

n−1∑
k=0

(−1)n−k−1

(n− k +m)!
B̃

(m)
k = B̃(m)

n .

□

2.1. Table of B
(m)
n .

n 0 1 2 3 4 5 6

B
(0)
n 1 −1 1 −1 1 −1 1
Bn 1 −1

2
1
6 0 − 1

30 0 1
42

B
(2)
n 1 −1

6 − 1
36

1
180 − 11

1080
43

9072 − 289
90720

B
(3)
n 1 − 1

24 − 19
1440 − 53

11520 − 3113
2419200

349
2322432 − 174947

232243200

B
(4)
n 1 − 1

120 − 19
7200 − 709

672000 − 28813
60480000 − 46721

207360000 − 20744051
203212800000

The following property is easily seen. In the later section, we shall see more
relations, in particular, with shifted Fubini numbers.

Theorem 2.4. For m ≥ 0

B
(m)
1 = − 1

(m+ 1)!
.

2.2. Trudi’s formula and inverse formula. We shall use Trudi’s formula [16,
Vol.3, p.214],[18] to obtain different explicit expressions and inversion relations for

the numbers B
(m)
n . If a0 = 1, this formula is known as Brioschi’s formula [3],[16,

Vol.3, pp.208–209].

Lemma 2.5. For a positive integer n, we have∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . .

...
...

...
. . .

. . . 0
an−1 · · · a1 a0
an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−a0)

n−t1−···−tnat11 a
t2
2 · · · atnn ,

where
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! are the multinomial coefficients.

In addition, there exists the following inversion formula (see, e.g. [14]), which is
based upon the relation:

n∑
k=0

(−1)n−kαkD(n− k) = 0 (n ≥ 1) .
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Lemma 2.6. If {αn}n≥0 is a sequence defined by α0 = 1 and

αn =

∣∣∣∣∣∣∣∣∣∣
D(1) 1

D(2)
. . .

. . .
...

. . .
. . . 1

D(n) · · · D(2) D(1)

∣∣∣∣∣∣∣∣∣∣
, then D(n) =

∣∣∣∣∣∣∣∣∣∣
α1 1

α2
. . .

. . .
...

. . .
. . . 1

αn · · · α2 α1

∣∣∣∣∣∣∣∣∣∣
.

By applying these lemmata to Theorem 2.3, we obtain an explicit expression for
shifted Bernoulli numbers.

Theorem 2.7. For n ≥ m ≥ 1, we have

B(m)
n = n!

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)

× (−1)t1+···+tn

(
1

(m+ 1)!

)t1

· · ·
(

1

(m+ n)!

)tn

.

By applying the inversion relation in Lemma 2.6 to Theorem 2.3, we have the
following.

Theorem 2.8. For n ≥ 1, we have

(−1)n

(n+m)!
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B
(m)
1 1 0

B
(m)
2
2! B

(m)
1

...
...

. . . 1 0
B

(m)
n−1

(n−1)!

B
(m)
n−2

(n−2)! · · · B
(m)
1 1

B
(m)
n
n!

B
(m)
n−1

(n−1)! · · · B
(m)
2
2! B

(m)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. Continued fraction expansions

The generating function of shifted Bernoulli numbers can be expressed in contin-
ued fractions. It is known that any real number α can be expressed uniquely as the
simple continued fraction expansion:

(3.1) α = a0 +
1

a1 +
1

a2 +
1

a3 +
.. .

,

where a0 is an integer and a1, a2, . . . are positive integers. Though the expression
is not unique, there exist general continued fraction expansions for real or complex
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numbers, and in general, analytic functions f(x):

(3.2) f(x) = a0(x) +
b1(x)

a1(x) +
b2(x)

a2(x) +
b3(x)

a3(x) + ...

.

In [2] several continued fraction expansions for Bernoulli numbers are given. For
example,

(3.3)

∞∑
n=1

B2n(4x)
n =

x

1 +
1

2
+

x

1

2
+

1

3
+

x

1

3
+

1

4
+

x

. . .

.

More general continued fractions expansions for analytic functions are recorded, for
example, in [19].

Let the n-th convergent of the continued fraction expansion of (3.2) be

(3.4)
Pn(x)

Qn(x)
= a0(x) +

b1(x)

a1(x) +
b2(x)

a2(x) + ...
+

bn(x)

an(x)

.

There exist the fundamental recurrence formulas:

Pn(x) = an(x)Pn−1(x) + bn(x)Pn−2(x) (n ≥ 1),

Qn(x) = an(x)Qn−1(x) + bn(x)Qn−2(x) (n ≥ 1),(3.5)

with P−1(x) = 1, Q−1(x) = 0, P0(x) = a0(x) and Q0(x) = 1.
From the definition in (2.1), shifted Bernoulli numbers satisfy the relation(

1 +
∞∑
n=0

xn+1

(m+ n+ 1)!

)( ∞∑
n=0

B(m)
n

xn

n!

)
= 1 .

Thus,

P ′
M (x) = 1, Q′

M (x) = 1 +

M−1∑
i=0

xi+1

(m+ i+ 1)!

or

PM (x) = (m+M)!, QM (x) = (m+M)!

(
1 +

M−1∑
i=0

xi+1

(m+ i+ 1)!

)
yield that

Q′
M (x)

∞∑
n=0

B(m)
n

xn

n!
∼ P ′

M (x) (M → ∞)
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or

QM (x)

∞∑
n=0

B(m)
n

xn

n!
∼ PM (x) (M → ∞) .

Notice that the n-th convergent pn/qn of the simple continued fraction (3.1) of a
real number α yields the approximation property

|qnα− pn| <
1

qn+1
.

Now,

P0(x)

Q0(x)
=

m!

m!
= 1,

P1(x)

Q1(x)
=

(m+ 1)!

(m+ 1)! + x
= 1− x

(m+ 1)! + x
,

P2(x)

Q2(x)
=

(m+ 2)!

(m+ 2)! + (m+ 2)x+ x2
= 1−

x

(m+ 1)! + x−
(m+ 1)!x

m+ 2 + x

and Pn(x) and Qn(x) (n ≥ 3) satisfy the recurrence relations

Pn(x) = (m+ n+ x)Pn−1(x)− (m+ n− 1)xPn−2(x)

Qn(x) = (m+ n+ x)Qn−1(x)− (m+ n− 1)xQn−2(x)

(They are proved by induction). Since by (3.5) for n ≥ 3

an(x) = m+ n+ x and bn(x) = −(m+ n− 1)x ,

we have the following continued fraction expansion.

Theorem 3.1.

∞∑
n=0

B(m)
n

xn

n!
= 1 −

x

(m+ 1)! + x−
(m+ 1)!x

m+ 2 + x−
(m+ 2)x

m+ 3 + x−
(m+ 3)x

m+ 4 + x− ...

.

When m = 1 in Theorem 3.1, we have a continued fraction expansion concerning
the original Bernoulli numbers. Other expressions can be found, for instance, in [2].

Corollary 3.2.

∞∑
n=0

Bn
xn

n!
= 1−

x

2 + x−
2x

3 + x−
3x

4 + x−
4x

5 + x− ...

.
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When m = 0 in Theorem 3.1, we have a continued fraction expansion of the
exponential function. Another expression can be found, for instance, in [10, p.207]
and [19, (91.3)].

Corollary 3.3.

e−x = 1−
x

1 + x−
x

2 + x−
2x

3 + x−
3x

4 + x− ...

.

4. Convolution identities

The following identity on sums of products of two Bernoulli numbers Bn = B
(1)
n

is known as Euler’s formula:

(4.1)
n∑

k=0

(
n

k

)
BkBn−k = −nBn−1 − (n− 1)Bn (n ≥ 1) .

We can give a more general result for shifted Bernoulli numbers B
(m)
n .

Theorem 4.1. For integers n ≥ 0 and m ≥ 1, we have

n∑
k=0

(
n

k

)
B

(m)
k B

(m)
n−k

= − n!

m2 ·m!

n−1∑
l=0

(
m!− 1

m ·m!

)n−l−1 l(m!− 1) +m

l!
B

(m)
l − n−m

m
B(m)

n .

Remark. If m = 1 in Theorem 4.1, we have the identity (4.1).

Proof of Theorem 4.1. For simplicity, in (2.1), put

b(x) :=

(
1 +

∞∑
l=1

xl

(l +m)!

)−1

=
∞∑
n=0

B(m)
n

xn

n!
.

Then, we have

b′(x) = −b(x)2
∞∑
l=1

lxl−1

(l +m)!

= −b(x)2

( ∞∑
l=1

xl−1

(l +m− 1)!
−m

∞∑
l=1

xl−1

(l +m)!

)

= −b(x)2
(

1

m!
+

x−m

x

(
b(x)−1 − 1

))
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=
(m!− 1)x−m ·m!

m!x
b(x)2 − x−m

x
b(x) .

Thus,

b(x)2 =
m!x

(m!− 1)x−m ·m!
b′(x) +

m!(x−m)

(m!− 1)x−m ·m!
b(x)

= − x

m

1

1− m!−1
m·m!x

b′(x)− x−m

m

1

1− m!−1
m·m!x

b(x)

= − x

m

∞∑
l=0

(
m!− 1

m ·m!

)l

xl
∞∑
n=1

B(m)
n

xn−1

(n− 1)!

− x−m

m

∞∑
l=0

(
m!− 1

m ·m!

)l

xl
∞∑
n=0

B(m)
n

xn

n!

= − 1

m

∞∑
l=0

(
m!− 1

m ·m!

)l ∞∑
n=0

n!

(n− l − 1)!
B

(m)
n−l

xn

n!

− 1

m

∞∑
l=0

(
m!− 1

m ·m!

)l ∞∑
n=0

n!

(n− l − 1)!
B

(m)
n−l−1

xn

n!

+
∞∑
l=0

(
m!− 1

m ·m!

)l ∞∑
n=0

n!

(n− l)!
B

(m)
n−l

xn

n!

= − 1

m

∞∑
n=0

n∑
l=0

(
m!− 1

m ·m!

)l n!(n− l −m)

(n− l)!
B

(m)
n−l

xn

n!

− 1

m

∞∑
n=0

n−1∑
l=0

(
m!− 1

m ·m!

)l n!

(n− l − 1)!
B

(m)
n−l−1

xn

n!
.

On the other hand,

b(x)2 =
∞∑
n=0

n∑
k=0

(
n

k

)
B

(m)
k B

(m)
n−k

xn

n!
.

By comparing the coefficients on both sides, we get

n∑
k=0

(
n

k

)
B

(m)
k B

(m)
n−k

= −n!

m

n∑
l=0

(
m!− 1

m ·m!

)l n− l −m

(n− l)!
B

(m)
n−l

− n!

m

n−1∑
l=0

(
m!− 1

m ·m!

)l 1

(n− l − 1)!
B

(m)
n−l−1

= −n!

m

n∑
l=0

(
m!− 1

m ·m!

)n−l l −m

l!
B

(m)
l
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− n!

m

n−1∑
l=0

(
m!− 1

m ·m!

)n−l−1 1

l!
B

(m)
l

= −n!

m

n−1∑
l=0

(
m!− 1

m ·m!

)n−l−1(m!− 1

m ·m!
(l −m) + 1

)
B

(m)
l

l!

− n!

m

n−m

n!
B(m)

n

= − n!

m2 ·m!

n−1∑
l=0

(
m!− 1

m ·m!

)n−l−1 l(m!− 1) +m

l!
B

(m)
l − n−m

m
B(m)

n .

□

5. Fubini numbers

The Fubini numbers [5, p.32, p.228] (or the ordered Bell numbers) form an integer
sequence in which the nth term counts the number of weak orderings of a set with
n elements. By using the Stirling numbers of the second kind

{
n
k

}
, Fubini numbers

are defined by

Fn =

n∑
k=0

k!
{n
k

}
.

They can be expanded involving binomial coefficients or given by an infinite series:

Fn =
n∑

k=0

k∑
j=0

(−1)k−j

(
k

j

)
jn =

1

2

∞∑
m=0

mn

2m
.

The first Fubini numbers are presented as

{Fn}∞n=0 = 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, . . .

[17, A000670]. The (exponential) generating function of Fubini numbers is given by

(5.1)
1

2− ex
=

∞∑
n=0

Fn
xn

n!
.

The Fubini numbers satisfy the recurrence relation [8]:

(5.2) Fn =
n∑

j=1

(
n

j

)
Fn−j .

Several generalizations of the Fubini numbers have been proposed and studied.

A typical one is the higher-order Fubini numbers F
(r)
n (e.g., [6, 15]) defined by(

1

2− ex

)r

=
∞∑
n=0

F(r)
n

xn

n!
.

In this section, we propose a different type of generalized Fubini numbers, similarly
to shifted Bernoulli numbers, in terms of determinants.

In [14], a determinant expression of Fubini numbers is given:
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Proposition 5.1. For n ≥ 1, we have

Fn = n!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
− 1

2! 1
...

...
. . . 1 0

(−1)n−2

(n−1)!
(−1)n−3

(n−2)! · · · 1 1
(−1)n−1

n!
(−1)n−2

(n−1)! · · · − 1
2! 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, for m ≥ 0, we define the shifted Fubini numbers F
(m)
n by

(5.3) F (m)
n = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(m+1)! 1 0

− 1
(m+2)!

1
(m+1)! 1

...
...

. . . 1 0
(−1)n−2

(m+n−1)!
(−1)n−3

(m+n−2)! · · · 1
(m+1)! 1

(−1)n−1

(m+n)!
(−1)n−2

(m+n−1)! · · · − 1
(m+2)!

1
(m+1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When m = 0, Fn = F
(0)
n are the original Fubini numbers.

If we expand the determinant on the right-hand side of (5.3), we have

F
(m)
n

n!
=

F
(m)
n−1

(m+ 1)!(n− 1)!

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
(m+2)! 1 0
1

(m+3)!
1

(m+1)! 1
...

...
. . . 1 0

(−1)n−2

(m+n−1)!
(−1)n−4

(m+n−3)! · · · 1
(m+1)! 1

(−1)n−1

(m+n)!
(−1)n−3

(m+n−2)! · · · − 1
(m+2)!

1
(m+1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

F
(m)
n−1

(m+ 1)!(n− 1)!
+

F
(m)
n−2

(m+ 2)!(n− 2)!
+ · · ·

+ (−1)n−2

∣∣∣∣∣
(−1)n−2

(m+n−1)! 1
(−1)n−1

(m+n)!
1

(m+1)!

∣∣∣∣∣
=

n−1∑
k=0

F
(m)
k

(n− k +m)!k!
,

where we put F
(m)
0 = 1. Therefore, we have the recurrence relation for shifted

Fubini numbers.

Lemma 5.2. For integers n ≥ 1 and m ≥ 0,

F (m)
n =

n−1∑
k=0

n!

(n− k +m)!k!
F

(m)
k .
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with F
(m)
0 = 1.

Remark. When m = 0 in Lemma 5.2, we have the relation (5.2).

By Lemma 5.2, we have the generating function of shifted Fubini numbers.

Theorem 5.3. For m ≥ 0, we have

xm

xm − ex + Em(x)
=

∞∑
n=0

F (m)
n

xn

n!
,

where

Em(x) =
m∑

n=0

xn

n!

is the partial summation of ex.

Proof. By Lemma 5.2, we have

xm − ex + Em(x)

xm

∞∑
n=0

F (m)
n

xn

n!

=

(
1−

∞∑
l=1

xl

(l +m)!

)( ∞∑
n=0

F (m)
n

xn

n!

)

=
∞∑
n=0

F (m)
n

xn

n!
−

∞∑
n=1

n−1∑
j=0

F
(m)
j

(m+ n− j)!j!
xn

=

∞∑
n=0

F (m)
n

xn

n!
−

∞∑
n=1

F (m)
n

xn

n!

= F
(m)
0 = 1 .

□

Similarly to Theorem 2.2, the shifted Fubini numbers have an explicit expression.

Theorem 5.4. For integers n ≥ 1 and m ≥ 0,

F (m)
n = n!

n∑
k=1

∑
i1+···+ik=n
i1,...,ik≥1

1

(i1 +m)! · · · (ik +m)!
.
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5.1. Table of F
(m)
n , and mutual relations between B

(m)
n and F

(m)
n . Table of

F
(m)
n is given below.

n 0 1 2 3 4 5 6

Fn 1 1 3 13 75 541 4683

F
(1)
n 1 1

2
5
6 2 191

30
76
3

5081
42

F
(2)
n 1 1

6
5
36

29
180

263
1080

4157
9072

93881
90720

F
(3)
n 1 1

24
29

1440
149

11520
24967

2419200
115567

11612160
377909

33177600

F
(4)
n 1 1

120
7

2400
2687

2016000
44027

60480000
31627

69120000
66233749

203212800000

The following properties are easily seen.

Theorem 5.5. For m ≥ 0

F
(m)
1 =

1

(m+ 1)!
.

There are some relations between shifted Bernoulli numbers and shifted Fubini
numbers.

Theorem 5.6. For m ≥ 0

B
(m)
0 + F

(m)
0 = 2 ,

−B
(m)
0 + F

(m)
0 = 0 ,

B
(m)
1 + F

(m)
1 = 0 ,

−B
(m)
1 + F

(m)
1 =

2

(m+ 1)!
,

B
(m)
2 + F

(m)
2 =

(
2

(m+ 1)!

)2

,

−B
(m)
2 + F

(m)
2 =

4

(m+ 2)!
,

B
(m)
3 + F

(m)
3 =

4!

(m+ 1)!(m+ 2)!
,

−B
(m)
3 + F

(m)
3 =

2 · 3!
(
((m+ 1)!)3 + (m+ 3)!

)
((m+ 1)!)3(m+ 3)!

.

Proof. From the definition, we know that B
(m)
0 = F

(m)
0 = 1. From Theorem 2.4 and

Theorem 5.5, we know that

−B
(m)
1 = F

(m)
1 =

1

(m+ 1)!
.

Hence, by Lemma 2.1 and Lemma 5.2, we have

B
(m)
2 + F

(m)
2 =

1∑
k=0

2

(2− k +m)!k!
(−B

(m)
k + F

(m)
k )
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=
2

(m+ 1)!

(
1

(m+ 1)!
+

1

(m+ 1)!

)
=

(
2

(m+ 1)!

)2

and

−B
(m)
2 + F

(m)
2 =

1∑
k=0

2

(2− k +m)!k!
(B

(m)
k + F

(m)
k )

=
2

(m+ 2)!
(1 + 1)

=
4

(m+ 2)!
.

Further, by using these results too, we have

B
(m)
3 + F

(m)
3 =

2∑
k=0

3!

(3− k +m)!k!
(−B

(m)
k + F

(m)
k )

=
3!

(m+ 2)!

(
1

(m+ 1)!
+

1

(m+ 1)!

)
+

3!

(m+ 1)!2!

4

(m+ 2)!

=
4!

(m+ 1)!(m+ 2)!

and

−B
(m)
3 + F

(m)
3 =

2∑
k=0

3!

(3− k +m)!k!
(B

(m)
k + F

(m)
k )

=
3!

(m+ 3)!
(1 + 1) +

3!

(m+ 1)!2!

(
2

(m+ 1)!

)2

=
2 · 3!

(
((m+ 1)!)3 + (m+ 3)!

)
((m+ 1)!)3(m+ 3)!

.

□

Remark. We can continue to get the expressions of B
(m)
n +F

(m)
n and −B

(m)
n +F

(m)
n

for n ≥ 4 too. However, the results become more complicated.
By applying Trudi’s formula, similarly to Theorem 2.7 and Theorem 2.8, we have

the following combinatorial expression and the inversion expression, respectively.

Theorem 5.7. For n ≥ m ≥ 1, we have

F (m)
n = n!

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)

× (−1)n−t1−···−tn

(
1

(m+ 1)!

)t1 ( −1

(m+ 2)!

)t2

· · ·
(
(−1)n−1

(m+ n)!

)tn

.
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Theorem 5.8. For n ≥ 1, we have

(−1)n−1

(n+m)!
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F
(m)
1 1 0

F
(m)
2
2! F

(m)
1

...
...

. . . 1 0
F

(m)
n−1

(n−1)!

F
(m)
n−2

(n−2)! · · · F
(m)
1 1

F
(m)
n
n!

F
(m)
n−1

(n−1)! · · · F
(m)
2
2! F

(m)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

5.2. Continued fraction expansions. The generating function of shifted Fubini
numbers can be expressed in continued fractions as similarity to that of shifted
Bernoulli numbers.

From the expression in Theorem 5.3 below, shifted Fubini numbers satisfy the
relation (

1−
∞∑
n=0

xn+1

(m+ n+ 1)!

)( ∞∑
n=0

F (m)
n

xn

n!

)
= 1 .

Thus,

PM (x) = (m+M)!, QM (x) = (m+M)!

(
1−

M−1∑
i=0

xi+1

(m+ i+ 1)!

)

yield that

QM (x)
∞∑
n=0

F (m)
n

xn

n!
∼ PM (x) (M → ∞) .

Now,

P0(x)

Q0(x)
=

m!

m!
= 1,

P1(x)

Q1(x)
=

(m+ 1)!

(m+ 1)!− x
= 1 +

x

(m+ 1)!− x
,

P2(x)

Q2(x)
=

(m+ 2)!

(m+ 2)!− (m+ 2)x− x2
= 1 +

x

(m+ 1)!− x−
(m+ 1)!x

m+ 2 + x

and Pn(x) and Qn(x) (n ≥ 3) satisfy the recurrence relations

Pn(x) = (m+ n+ x)Pn−1(x)− (m+ n− 1)xPn−2(x)

Qn(x) = (m+ n+ x)Qn−1(x)− (m+ n− 1)xQn−2(x) .

Since by (3.5) for n ≥ 3

an(x) = m+ n+ x and bn(x) = −(m+ n− 1)x ,

we have the following continued fraction expansion.
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Theorem 5.9.

∞∑
n=0

F (m)
n

xn

n!
= 1 +

x

(m+ 1)!− x−
(m+ 1)!x

m+ 2 + x−
(m+ 2)x

m+ 3 + x−
(m+ 3)x

m+ 4 + x− ...

.

When m = 0 in Theorem 5.9, we have a continued fraction expansion concerning
the original Fubini numbers. Other expressions can be found in the generating
functions in [17, A000670].

Corollary 5.10.
∞∑
n=0

Fn
xn

n!
= 1 +

x

1− x−
x

2 + x−
2x

3 + x−
3x

4 + x− ...

.

5.3. Convolution identities. Finally, similarly to Theorem 4.1, we show the con-
volution identities for two shifted Fubini numbers. The identity for m = 0 can be
also seen in [11, (18)].

Theorem 5.11. For integers n ≥ 0, we have
n∑

k=0

(
n

k

)
FkFn−k =

1

2
(Fn+1 + Fn) .

For integers n ≥ 0 and m ≥ 1, we have
n∑

k=0

(
n

k

)
F

(m)
k F

(m)
n−k

= − n!

m2 ·m!

n−1∑
l=0

(
m! + 1

m ·m!

)n−l−1 l(m! + 1) +m

l!
F

(m)
l − n−m

m
F (m)
n .

Proof. For simplicity, put

f(x) :=

(
1−

∞∑
l=1

xl

(l +m)!

)−1

=
∞∑
n=0

F (m)
n

xn

n!
.

Then, we have

f ′(x) = f(x)2
∞∑
l=1

lxl−1

(l +m)!
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= f(x)2

( ∞∑
l=1

xl−1

(l +m− 1)!
−m

∞∑
l=1

xl−1

(l +m)!

)

= f(x)2
(

1

m!
− x−m

x

(
f(x)−1 − 1

))
=

(m! + 1)x−m ·m!

m!x
f(x)2 − x−m

x
f(x) .

Thus, when m = 0, by f ′(x) = 2f(x)2 − f(x), we get

f(x)2 =
1

2
f ′(x) +

1

2
f(x)

=
1

2

∞∑
n=0

Fn+1
xn

n!
+

1

2

∞∑
n=0

Fn
xn

n!
.

When m ≥ 1, we get

f(x)2 =
m!x

(m! + 1)x−m ·m!
f ′(x) +

m!(x−m)

(m! + 1)x−m ·m!
f(x)

= − 1

m

∞∑
n=0

n∑
l=0

(
m! + 1

m ·m!

)l n!(n− l −m)

(n− l)!
F

(m)
n−l

xn

n!

− 1

m

∞∑
n=0

n−1∑
l=0

(
m! + 1

m ·m!

)l n!

(n− l − 1)!
F

(m)
n−l−1

xn

n!
.

Therefore, we obtain
n∑

k=0

(
n

k

)
F

(m)
k F

(m)
n−k = −n!

m

n∑
l=0

(
m! + 1

m ·m!

)l n− l −m

(n− l)!
F

(m)
n−l

− n!

m

n−1∑
l=0

(
m! + 1

m ·m!

)l 1

(n− l − 1)!
F

(m)
n−l−1

= −n!

m

n∑
l=0

(
m! + 1

m ·m!

)n−l l −m

l!
F

(m)
l

− n!

m

n−1∑
l=0

(
m! + 1

m ·m!

)n−l−1 1

l!
F

(m)
l

= −n!

m

n−1∑
l=0

(
m! + 1

m ·m!

)n−l−1(m! + 1

m ·m!
(l −m) + 1

)
F

(m)
l

l!

− n!

m

n−m

n!
F (m)
n

= − n!

m2 ·m!

n−1∑
l=0

(
m! + 1

m ·m!

)n−l−1 l(m! + 1)−m

l!
F

(m)
l

− n−m

m
F (m)
n . □
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