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1 ≤ i ≤ 5, be set-valued mappings with Fi(x) ⊂ Fi+1(x) for each x ∈ X and for
1 ≤ i ≤ 3 such that

(i) F−1
1 : Y ⇒ X and F c

5 : X ⇒ Y are upper semi-continuous mappings;

(ii) F−1
4 (coA) ⊂ F−1

5 (A) for each finite subset A of Y , where coA means the
convex hull of the set A;

(iii) F−1
2 (y) is convex for each y ∈ Y , and the both sets F−1

3 (y) and F c
4 (x) are

compact for each x ∈ X and for each y ∈ Y .

Then either there is a y0 ∈ Y such that F−1
1 (y0) = ∅, or∩

y∈Y
F−1
5 (y) ̸= ∅.

Here, the notations S−1 and Sc for a mapping S : X ⇒ Y are defined by

x ∈ S−1(y) if and only if y ∈ S(x)

and

Sc(x) = Y \ S(x)
for some suitable x ∈ X and y ∈ Y . The Lemma A uses some slight different
descriptions from Lemma 2.3[8]. The following alternative principle is a variant
form of Lemma A.

Lemma B. Let X,Y be two nonempty convex subsets, each in a locally convex
Hausdorff topological vector spaces, one of them compact. Let Fi : X ⇒ Y , 1 ≤ i ≤
5, be set-valued mappings with Fi(x) ⊂ Fi+1(x) for each x ∈ X and for 1 ≤ i ≤ 3
such that

(i) F1 : X ⇒ Y and (F−1
5 )c : Y ⇒ X are upper semi-continuous mappings;

(ii) F4(coA) ⊂ F5(A) for each finite subset A of X, where coA means the convex
hull of the set A;

(iii) F2(x) is convex for each x ∈ X, and the both sets F3(x) and (F−1
4 )c(y) are

compact for each x ∈ X and for each y ∈ Y .

Then either there is an x0 ∈ X such that F1(x0) = ∅, or∩
x∈X

F5(x) ̸= ∅.

On the basis of Lemma A and Lemma B, some hierarchical minimax theorems
for non-continuous set-valued mappings under locally convex Hausdorff topologi-
cal vector space settings are introduced in this paper. In addition, the following
notations and some established facts are applied throughout this paper.

Definition 1.1 ([5]). Let X be a nonempty convex subset of a vector space, Z a
vector space, C ⊂ Z a closed convex and pointed solid cone with apex at the origin.
The mapping S : X ⇒ Z is
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(i) above-C-quasi-convex on X if the set

LevS≤(z) := {x ∈ X : S(x) ⊂ z − C}

is convex for all z ∈ Z.
(ii) above-properly C-quasi-convex (above-properly C-quasi-concave, respectively)

on X if for any x1, x2 ∈ X and any λ ∈ [0, 1], either

S(λx1 + (1− λ)x2) ⊂ S(x1)− C

(S(x1) ⊂ S(λx1 + (1− λ)x2)− C, respectively)

or

S(λx1 + (1− λ)x2) ⊂ S(x2)− C.

(S(x2) ⊂ S(λx1 + (1− λ)x2)− C, respectively)

(iii) above-naturally C-quasi-convex (above-naturally C-quasi-concave, respec-
tively) on X if for any x1, x2 ∈ X and any λ ∈ [0, 1],

S(λx1 + (1− λ)x2) ⊂ co{S(x1) ∪ S(x2)} − C.

(co{S(x1) ∪ S(x2)} ⊂ S(λx1 + (1− λ)x2)− C, respectively)

Definition 1.2 ([5]). Let A be a nonempty subset of Z, then a point z ∈ A is called

(i) a minimal point of A if A ∩ (z − C) = {z}; MinA is the set of all minimal
points of A;

(ii) a maximal point of A if A ∩ (z + C) = {z}; MaxA is the set of all maximal
points of A;

(iii) a weakly minimal point of A if A ∩ (z − intC) = ∅; MinwA is the set of all
weakly minimal points of A; and

(iv) a weakly maximal point of A if A ∩ (z + intC) = ∅; MaxwA is the set of all
weakly maximal points of A.

Whenever C = R+, and all mappings are single-valued, the Definition 1.1-1.2 can
be reduced to the original ones. In this case, both MaxA and MaxwA (MinA and
MinwA, respectively) can be denoted by maxA (minA, respectively).

Definition 1.3 ([1]). Let U , V be Hausdorff topological spaces. A set-valued map
S : U ⇒ V with nonempty values is said to be

(a) upper semi-continuous at x0 ∈ U if for every x0 ∈ U and for every open
set N containing S(x0), there exists a neighborhood M of x0 such that
S(M) :=

∪
x∈M S(x) ⊂ N ;

(b) lower semi-continuous at x0 ∈ U if for every x0 ∈ U and for every open
set N with S(x0) ∩N ̸= ∅, there exists a neighborhood M of x0 such that
S(x) ∩N ̸= ∅ for all x ∈ M ; and

(c) continuous at x0 ∈ U if S is upper semi-continuous as well as lower semi-
continuous at x0.

(d) closed if its graph is closed.
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The following example includes two such types of semi-continuous set-valued
mappings, which will be used again in the sequel.

Example 1. Let X = Y = [0, 1] and C = R+, and set-valued mappings U, V :
X × Y ⇒ R be defined by

U(x, y) :=


{t : t ∈ [0, 2]}, x = 0, y = 0,
{t : t ∈ [1, 2]}, x = 0, 0 < y ≤ 1,
{t : t ∈ [0, 1]}, 0 < x ≤ 1, y = 0,
{1}, 0 < x, y ≤ 1;

V (x, y) := [x3 − 1 + y2, x2].

Thus U is upper semi-continuous mapping on X × Y and V is a lower semi-
continuous mapping on X × Y .

Proof. We first claim that U is upper semi-continuous on X × Y . If (x̄, ȳ) = (0, 0).
For any open set N ⊃ U(x̄, ȳ) = [0, 2], we choose an open set M = [0, δ)× [0, ε), for
some small numbers 0 < δ, ε < 1. Then, for any (x, y) ∈ M ,

U(x, y) =


{t : t ∈ [0, 2]}, x = 0, y = 0,
{t : t ∈ [1, 2]}, x = 0, 0 < y < ε,
{t : t ∈ [0, 1]}, 0 < x < δ, y = 0,
{1}, 0 < x < δ, 0 < y < ε.

We can see that, for any cases, U(x, y) ⊂ U(x̄, ȳ). Hence U(x, y) ⊂ N . If x̄ =
0, 0 < ȳ < 1, then for any open set N ⊃ U(x̄, ȳ) = [1, 2], we choose an open set
M = [0, δ) × (ȳ − ε/2, ȳ + ε/2), for some small numbers 0 < δ < 1 and 0 < ε <
min{1, 2ȳ, 2(1− ȳ)}. Then, for any (x, y) ∈ M ,

U(x, y) =

{
{t : t ∈ [1, 2]}, x = 0, y ∈ (ȳ − ε/2, ȳ + ε/2),
{1}, 0 < x < δ, y ∈ (ȳ − ε/2, ȳ + ε/2),

Hence, U(x, y) ⊂ N . If x̄ = 0, ȳ = 1, then for any open set N ⊃ U(x̄, ȳ) = [1, 2], we
choose an open set M = [0, δ)×(ε, 1], for some small numbers 0 < δ, ε < 1, such that
for all (x, y) ∈ M , U(x, y) ⊂ N . Hence, U is upper semi-continuous on {0} × (0, 1].
By similar arguments for the both cases, 0 < x̄ ≤ 1, ȳ = 0 and 0 < x̄, ȳ ≤ 1, we can
get that U is upper semi-continuous at (x̄, ȳ).

Next, we claim that V is lower semi-continuous on X × Y . Indeed, for any
(x̄, ȳ) ∈ X×Y and for any open set N with N ∩V (x̄, ȳ) ̸= ∅. First, if x̄2 ∈ N , there
exists a positive number ε such that (x̄2−ε, x̄2+ε) ⊂ N . Since the mapping x 7→ x2

is continuous, there exists a positive number δ such that, for all x with |x− x̄| < δ,
|x2 − x̄2| < ε. We choose an open neighborhood M = (x̄− δ, x̄+ δ)× (ȳ − δ, ȳ + δ)
of (x̄, ȳ) such that for all (x, y) ∈ M , the intersection N ∩ V (x, y) is nonempty
because x2 ∈ (x̄2 − ε, x̄2 + ε). Secondly, if x̄3 − 1 + ȳ2 ∈ N , there exists a positive
number ε such that (x̄3 − 1 + ȳ2 − ε, x̄3 − 1 + ȳ2 + ε) ⊂ N . Since the mapping
(x, y) 7→ x3−1+y2 is continuous on X×Y , there exist positive number δ and open
set M = (x̄ − δ, x̄ + δ) × (ȳ − δ, ȳ + δ) such that |x3 − 1 + y2 − (x̄3 − 1 + ȳ2)| < ϵ.
Hence N ∩ V (x, y) ̸= ∅. Thirdly, if x̄3 − 1 + ȳ2 ̸∈ N and x̄3 − 1 + ȳ2 ̸∈ ∂N , where
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∂N means the boundary of N . For any ε > 0 with x̄3 − 1 + ȳ2 + ε ̸∈ N . Then
we choose an open set as the same as in the second step, then for all (x, y) ∈ M ,
N ∩V (x, y) ̸= ∅. Fourthly, if x̄3− 1+ ȳ2 ̸∈ N but x̄3− 1+ ȳ2 ∈ ∂N . We can choose
an open set N1 ⊂ N with N1 ∩ V (x̄, ȳ) ̸= ∅ and x̄3 − 1 + ȳ2 ̸∈ N1 ∪ ∂N1. Then the
same process of third step is followed by N ∩ V (x, y) ⊃ N1 ∩ V (x, y) ̸= ∅. Finally,
for the both cases, x̄2 ̸∈ N ∪ ∂N and x̄2 ∈ ∂N \ N , we can see N ∩ V (x, y) ̸= ∅
by using a similar method of third or fourth step. From above argument, we prove
that V is lower semi-continuous on X × Y . □

Note that S is upper semicontinuous at x0 and S(x0) is compact, then for any net
{xν} ⊂ U , xν → x0, and for any net yν ∈ S(xν) for each ν, there exists y0 ∈ S(x0)
and a subnet {yνα} such that yνα → y0. Furthermore, S is lower semicontinuous at
x0 if for any net {xν} ⊂ U , xν → x0, y0 ∈ S(x0) implies that there exists subnet
yνk ∈ S(xνk) such that yνk → y0. For more details, we refer the reader to [1].

The following lemma clarifies the relationship of quasi-convexities between the G
and maxG(x) mappings.

Lemma 1.4 ([6], Lemma 1). Suppose that X is a nonempty convex subset of a
topological vector space, with a set-valued mapping of G : X 7→ R where maxG(x)
exists for each x ∈ X, then the mapping G : X 7→ R is above-R+-quasi-convex if
and only if the mapping x 7→ maxG(x) is a quasi-convex function.

The preceding notable properties indicate that above-properly C-quasi-concave
mapping (above-naturally C-quasi-convex mapping, respectively) is more general
than above-naturally C-quasi-concave mapping (above-properly C-quasi-convex map-
ping, respectively).

Lemma 1.5. Let X be a nonempty convex subset of a vector space, Z a vector
space, and C ⊂ Z be a closed convex and pointed solid cone with an apex at the
origin. If the set-valued mapping S : X ⇒ Z is above-naturally C-quasi-concave on
X, then S is above-properly C-quasi-concave. Furthermore, every above-properly
C-quasi-convex mapping is an above-naturally C-quasi-convex.

The proof of Lemma 1.5 can be directly derived from definitions.

2. Hierarchical structures for scalar set-valued mappings

The following scalar minimax theorem is based on Lemma A.

Theorem 2.1. Let X,Y be two nonempty compact convex subsets of locally
convex Hausdorff topological vector spaces, respectively. Furthermore, let Gi : X ×
Y ⇒ R, for i = 1, 2, 3, 4, 5, be a set-valued mapping, where maxGi(x, y)
and min

∪
x∈X G5(x, y) exist for each (x, y) ∈ X × Y , such that maxGi(x, y) ≤

maxGi+1(x, y) for all (x, y) ∈ X × Y and for i = 1, 2, 3, 4. Finally, suppose that
the following conditions are satisfied:

(i) either y 7→ G1(x, y) or y 7→ G2(x, y) is above-properly R+-quasi-concave on
Y for each x ∈ X, whereas x 7→ G4(x, y) is above-R+-quasi-convex on X
for each y ∈ Y ;
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(ii) (x, y) 7→ G1(x, y) is an upper semi-continuous mapping on X × Y and
y 7→ G2(x, y) is an upper semi-continuous mapping on Y for each x ∈ X;
meanwhile, x 7→ G1(x, y) and x 7→ G3(x, y) are lower semi-continuous map-
pings on X for each y ∈ Y , and (x, y) 7→ G5(x, y) is a lower semi-continuous
mapping on X × Y ; and

(iii) for each w ∈ Y , there is an xw ∈ X such that

maxG5(xw, w) ≤ max
∪
y∈Y

min
∪
x∈X

G5(x, y).

Thus, the following relationship holds:

(S −H) min
∪
x∈X

max
∪
y∈Y

G1(x, y) ≤ max
∪
y∈Y

min
∪
x∈X

G5(x, y).

Proof. For any t1, t2, t3, t4 ∈ R with t1 < t2 < t3 < t4. Define F1 : X ⇒ Y by

(2.1) F1(x) := {y ∈ Y : maxG5(x, y) ≤ t1}

for all x ∈ X, and F2, F3, F4, F5 are similarly, with the triples (G5,≤, t1) inside
the braces in (2.1) replaced by (G4, <, t2), (G3,≤, t3), (G2, <, t4) and (G1, <, t4),
respectively. Because maxGi(x, y) ≤ maxGi+1(x, y) for all (x, y) ∈ X × Y and for
i = 1, 2, 3, 4, Fi(x) ⊂ Fi+1(x) for i = 1, 2, 3, 4.

Note that the graphs of both mappings F−1
1 and F c

5 are closed. Indeed, for any

sequence (yn, xn) ∈ Graph(F−1
1 ) := {(y, x) : maxG5(x, y) ≤ t1} with (yn, xn) →

(y0, x0). Then, for all n, maxG5(xn, yn) ≤ t1. From the lower semi-continuity of G5

and Lemma 2.5[5], maxG5 is lower semi-continuous on X×Y and maxG5(x0, y0) ≤
t1. Hence, (y0, x0) ∈ Graph(F−1

1 ) and the mapping F−1
1 is closed. By a similar

argument, the mapping F c
5 is also closed. Therefore, these two mappings are upper

semi-continuous.
Next, for any finite subset A of Y , we claim that F−1

4 (coA) ⊂ F−1
5 (A). As-

sume that for each x ∈ X, the mapping y 7→ G1(x, y) above-properly R+-quasi-
concave on Y . Let w ∈ F−1

4 (coA), then w ∈ F−1
4 (

∑n
i=1 αiyi) for some yi ∈ A,

αi ∈ [0, 1], for i = 1, 2 . . . , n and
∑n

i=1 αi = 1. Then, maxG1(w,
∑n

i=1 αiyi) ≤
maxG2(w,

∑n
i=1 αiyi) < t4. By the fact of Proposition 3.5[5], the mapping y 7→

maxG1(x, y) is properly quasi-concave for each x ∈ X. Hence, at least one i ∈
{1, 2, . . . n} such that maxG1(w, yi) ≤ maxG1(w,

∑n
i=1 αiyi) holds. That is, at

least one i ∈ {1, 2, . . . n} such that maxG1(w, yi) < t4 holds. Hence, w ∈ F−1
5 (A).

Therefore, F−1
4 (coA) ⊂ F−1

5 (A).
Finally, let us to claim that condition (iii) of Lemma A is valid. Indeed, because

the mapping x 7→ G4(x, y) is above-R+-quasi-convex on X for each y ∈ Y , the
mapping x 7→ maxG4(x, y) is quasi-convex on X for each y ∈ Y by Lemma 1.4.
This implies that the set F−1

2 (y) is convex for each y ∈ Y . Finally, we can deduce
the following situation without difficulty that, for all x ∈ X and y ∈ Y , the both
sets F−1

3 (y) and F c
4 (x) are compact from the facts that the mapping y 7→ G2(x, y)

is upper semi-continuous on Y for each x ∈ X, the mapping x 7→ G3(x, y) is lower
semi-continuous on X for each y ∈ Y and Lemma 2.5[5].



HIERARCHICAL MINIMAX PROBLEMS 271

Then, all conditions of Lemma A are satisfied, and hence we know that either
there is a y0 ∈ Y such that F−1

1 (y0) = ∅, or∩
y∈Y

F−1
5 (y) ̸= ∅.

That is, either there is a y0 ∈ Y such that maxG5(x, y0) > t1 for all x ∈ X, or there
exists an x0 ∈ X such that maxG1(x0, y) < t4 for all y ∈ Y . Nevertheless, the first
assertion does not hold because of condition (iii) and t1 < t4. This implies that
max

∪
y∈Y maxG1(x0, y) ≤ t4. By Lemma 1.1[7], we have max

∪
y∈Y G1(x0, y) ≤ t4.

Therefore, min
∪

x∈X max
∪

y∈Y G1(x, y) ≤ t4, which means (S −H) is valid. □

Accordingly, above-R+-quasi-convexity, is more general than above-naturally R+-
quasiconvexity which is used in Theorem 3.1[8]. Furthermore, the truth is deter-
mined with Theorem 2.1, which is a new version of scalar minimax results, when
the readers compare it with other theorems in literatures[5, 3, 7, 4, 6, 8].

Corollary 2.2. Let X,Y be two nonempty compact convex subsets of locally convex
Hausdorff topological vector spaces, respectively. Let Gi : X × Y ⇒ R, for i =
1, 2, 3, 4, 5, be a set-valued mapping where maxGi(x, y) exists for each (x, y) ∈ X ×
Y , such that maxGi(x, y) ≤ maxGi+1(x, y) for all (x, y) ∈ X × Y and for i =
1, 2, 3, 4. Assume that the set

∪
x∈X G5(x, y) is compact for all (x, y) ∈ X × Y .

Finally, suppose that the following conditions are satisfied:

(i) either y 7→ G1(x, y) or y 7→ G2(x, y) is above-properly R+-quasi-concave on
Y for each x ∈ X, whereas x 7→ G4(x, y) is above-R+-quasi-convex on X
for each y ∈ Y ;

(ii) (x, y) 7→ G1(x, y) is an upper semi-continuous mapping on X × Y and
y 7→ G2(x, y) is an upper semi-continuous mapping on Y for each x ∈ X;
meanwhile, (x, y) 7→ G1(x, y) and x 7→ G3(x, y) are lower semi-continuous
mappings on X for each y ∈ Y , and (x, y) 7→ G5(x, y) is a lower semi-
continuous mapping on X × Y ; and

(iii) for each w ∈ Y , there is an xw ∈ X, such that

maxG5(xw, w) ≤ max
∪
y∈Y

min
∪
x∈X

G5(x, y).

Thus, the relationship (S-H) holds.

Proof. We observe that the compactness of both sets
∪

y∈Y G1(x, y) and∪
x∈X G5(x, y) for all (x, y) ∈ X × Y will guarantee that the existences of

max
∪

y∈Y G1(x, y) and min
∪

x∈X G5(x, y) exist for each (x, y) ∈ X × Y . The
conclusion completes directly from Theorem 2.1. □

The following corollary is a special case of Theorem 2.1, which assumes that
G1 = F1, G2 = F2, G3 = G4 = F2, G5 = F4 in Theorem 2.1.

Corollary 2.3. Let X,Y be two nonempty compact convex subsets of locally convex
Hausdorff topological vector spaces, respectively. Let Fi : X × Y ⇒ R, for i =
1, 2, 3, 4, be a set-valued mapping, where maxFi(x, y) and min

∪
x∈X F4(x, y) exist
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for each (x, y) ∈ X × Y , such that maxFi(x, y) ≤ maxFi+1(x, y) for all (x, y) ∈
X×Y and for i = 1, 2, 3. Finally, suppose that the following conditions are satisfied:

(i) either y 7→ F1(x, y) or y 7→ F2(x, y) is above-properly R+-quasi-concave on
Y for each x ∈ X, whereas x 7→ F3(x, y) is above-R+-quasi-convex on X for
each y ∈ Y ;

(ii) (x, y) 7→ F1(x, y) is an upper semi-continuous mapping on X × Y , and
y 7→ F2(x, y) is an upper semi-continuous mapping on Y for each x ∈
X; meanwhile, x 7→ F1(x, y) and x 7→ F3(x, y) are lower semi-continuous
mappings on X for each y ∈ Y , and (x, y) 7→ F4(x, y) is a lower semi-
continuous mapping on X × Y ; and

(iii) for each w ∈ Y , there is an xw ∈ X, such that

maxF4(xw, w) ≤ max
∪
y∈Y

min
∪
x∈X

F4(x, y).

Thus, the relationship holds:

min
∪
x∈X

max
∪
y∈Y

F1(x, y) ≤ max
∪
y∈Y

min
∪
x∈X

F4(x, y).

It is noteworthy to compare Corollary 2.3 with Theorem 3.1[8]. We noted that
the convexity of F3 is weaker than that used in Theorem 3.1[8]. Furthermore,
we did not require the compactness of the both sets, namely

∪
x∈X F4(x, y) and∪

y∈Y F1(x, y). However, the conditions on F2 are highly different. As far as we
know, no relationship exists between the closed and upper semi-continuous map-
pings unless they possess compact values or compact codomain or closed values.
Moreover, F1 is weaker than that used in Theorem 3.1[8] because closed values are
not required. Notably, above-properly R+-quasi-concavity is weaker than above-
naturally R+-quasi-concavity; indeed, such a property is valid according to Lemma
1.5. Next, we propose another version of scalar hierarchical minimax result.

Theorem 2.4. Let X,Y be two nonempty compact convex subsets of locally convex
Hausdorff topological vector spaces, respectively. Let Gi : X × Y ⇒ R, for i =
1, 2, 3, 4, 5, be a set-valued mapping, such that both

∪
y∈Y G1(x, y) and

∪
x∈X G5(x, y)

are nonempty and compact, and the values maxG5(x, y) and Gi(x, y) ⊂ Gi+1(x, y)−
R+ exist for all (x, y) ∈ X × Y and for i = 1, 2, 3, 4. Finally, suppose that the
following conditions are satisfied:

(i) y 7→ G2(x, y) is above-properly R+-quasi-concave on Y for each x ∈ X,
whereas x 7→ G4(x, y) is above-naturally R+-quasi-convex on X for each
y ∈ Y ;

(ii) (x, y) 7→ G1(x, y) is a lower semi-continuous mapping on X × Y , y 7→
G3(x, y) is a lower semi-continuous mapping on Y for each x ∈ X; x 7→
G4(x, y) is lower semi-continuous on X for each y ∈ Y , and (x, y) 7→
G5(x, y) is a lower semi-continuous mapping on X × Y ; and

(iii) for each w ∈ Y , there is an xw ∈ X such that

maxG5(xw, w) ≤ max
∪
y∈Y

min
∪
x∈X

G5(x, y).
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Thus, the relationship (S-H) holds.

Proof. For any α, β ∈ R, where α > β. F1 : X ⇒ Y is defined by

(2.2) F1(x) = {y ∈ Y : ∃g ∈ G1(x, y), g ≥ α}

for all x ∈ X. F2, F3, F4, F5 are similar, with the triples (G1,≥, α) inside the braces
in (2.2) replaced by (G2,≥, α), (G3,≥, α), (G4, >, β), and (G5, >, β), respectively.
We performed the following four steps to confirm that all conditions of Lemma B
hold:

Step 1. Fi(x) ⊂ Fi+1(x) is calculated for i = 1, 2, 3, 4 and for each x ∈ X.
Step 2. F4(coA) ⊂ F5(A) is determined for each finite subset A of X to be true,

where coA indicates the convex hull of the set A;
Step 3. F1 : X ⇒ Y and (F−1

5 )c : Y ⇒ X are demonstrated to be upper semi-
continuous mappings; and

Step 4. F2(x) is confirmed to be the convex for each x ∈ X; both the F3(x) and
(F−1

4 )c(y) sets are compact for each x ∈ X and y ∈ Y .

Because we can use a similar method in Theorem 3.1[8] to determine that Steps
1 and 2 are valid, we omitted their proof.

Next, we claim that F1 : X ⇒ Y has a closed graph. Let the net (xν , yν) ∈
Graph(F1) with (xν , yν) → (x0, y0). Subsequently, yν ∈ F1(xν), and gν ∈ G1(xν , yν)
exists, such that gν ≥ α. Because (x, y) 7→ G1(x, y) is a lower semi-continuous
mapping on X × Y , for any g0 ∈ G1(x0, y0) there exists a subnet gνk ∈ G1(xνk , yνk)
such that gνk → g0. Hence, g0 ≥ α and y0 ∈ F1(x0); therefore, the graph of F1 is
closed. Moreover, because Y is compact, F1 is an upper semi-continuous mapping
with compact values. Similarly, F c

5 is also closed mapping; therefore, both F1 and
F c
5 are upper semi-continuous mappings, proving that Step 3 is valid.
For the final step, we determine that for any x ∈ X and y1, y2 ∈ F2(x), there

exist g1 ∈ G2(x, y1), g2 ∈ G2(x, y2) such that g1 ≥ α and g2 ≥ α. On the basis
of the above-properly R+-quasi-concavity of G2 in y, for any λ ∈ [0, 1], either
G2(x, y1) ⊂ G2(x, λy1+(1−λ)y2)−R+ or G2(x, y2) ⊂ G2(x, λy1+(1−λ)y2)−R+.
Therefore, there exist gλ ∈ G2(x, λy1 + (1 − λ)y2) and rλ ≥ 0, such that, either
g1 = gλ−rλ or g2 = gλ−rλ. This implies that gλ ≥ α. Thus, λy1+(1−λ)y2 ∈ F2(x),
and F2(x) is convex for all x ∈ X.

Let us claim that, for each x ∈ X, the set F3(x) is compact. Indeed, let the net
zν ∈ F3(x) where zν → z0. Thus, there exists gν ∈ G3(x, zν) where zν ≥ α. For
any g0 ∈ G3(x, z0), According to the lower semi-continuity of G3 in y, there also
exists a subnet gνk ∈ G3(x, zνk) such that gνk → g0. Hence, g0 ≥ α, and z0 ∈ F3(x).
Therefore, the set F3(x) is closed, and hence is compact because Y is compact.
According to the lower semi-continuity of G4 in x and a similar argument, the set
(F−1

4 )c(y) is compact for all y ∈ Y ; this confirms the validity of the final step.
With Steps 1 to 4, we have proved that all of the Lemma B conditions hold. Thus,

the conclusion of Lemma B is true. Consequently, there either exists an x0 ∈ X,
such that F1(x0) = ∅, or a y0 ∈ Y , such that

∩
x∈X F5(x) ̸= ∅, for all x ∈ X. That
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is, either there exists an x0 ∈ X, such that G1(x0, y) ⊂ (−∞, α), for all y ∈ Y , or
there exists a y0 ∈ Y , such that G5(x, y0) ∩ (β,∞) ̸= ∅, for all x ∈ X.

For any α > β > max
∪

y∈Y min
∪

x∈X G5(x, y) and y0 ∈ Y , by (iii), there exists

an xy0 ∈ X, such that maxG5(xy0 , y0) < β. Then, G5(xy0 , y0)
∩
(β,∞) = ∅. There-

fore, there exists an x0 ∈ X such that G1(x0, y) ⊂ (−∞, α), for all y ∈ Y . This
implies that

max
∪
y∈Y

G1(x0, y) ≤ α,

and hence,

min
∪
x∈X

max
∪
y∈Y

G1(x0, y) ≤ α.

Thus, the relationship (S-H) holds. □

Here, we compare Theorem 2.4 with Theorem 3.1[8] in several aspects. First, all
mapping we used are neither upper semi-continuous nor closed mapping. Second,
rather than using above-naturally R+-quasi-concavity, we adopt the more general
above-properly R+-quasi-concavity condition. Third, the numbers of set-valued
mappings are different. Furthermore, the methods for the proof in these theorems
are quite different. For instance, Steps 3 and 4 provide the proof for Theorem 2.4.
We illustrate our theorems through the following two examples.

Example 2. Let X = Y = [0, 1] and C = R+. The set-valued mappings Gi :
X × Y ⇒ R, where i = 1, 2, 3, 4, 5, are defined by

G1(x, y) := U(x, y),

where U is the same as in Example 1.

G2(x, y) :=


{t : t ∈ [0, 2]}, y = 0,
{t : t ∈ [1, 3.1]}, y = 1,
{t : t ∈ [1, 3− (y − 1)2]}, 0 < y < 1;

G3(x, y) :=

{
{3.1}, x = 0,
{t : t ∈ [3.1− y, 3.1 + y]}, 0 < x ≤ 1;

G4(x, y) :=

{
{t : t ∈ [4.1− y, 4.1 + y]}, x = 0,
{4.1 + y}, 0 < x ≤ 1;

G5(x, y) := [6, 6 + 4y2(x− x2]

for all (x, y) ∈ X × Y . We review the concavity of G2 herein but leave the review
of G4 to the readers. For any y1, y2 ∈ Y, y1 < y2 and λ ∈ [0, 1],

G2(x, λy1+(1−λ)y2) :=


G2(x, y2), λ = 0,
G2(x, y1), λ = 1,
{t : t ∈ [1, 3− (λy1 + (1− λ)y2 − 1)2]}, 0 < λ < 1.

Then,

G2(x, λy1 + (1− λ)y2) :
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=


{t : t ∈ [1, 3− (y2 − 1)2]}, 0 < y2 < 1, λ = 0,
{t : t ∈ [1, 3.1]}, y2 = 1, λ = 0,
{t : t ∈ [0, 2]}, y1 = 0, λ = 1,
{t : t ∈ [1, 3− (y1 − 1)2]}, 0 < y1 < 1, λ = 1,
{t : t ∈ [1, 3− (λy1 + (1− λ)y2 − 1)2]}, 0 < λ < 1.

For both cases of 0 < y2 < 1, λ = 0 and y2 = 1, λ = 0, G2(x, y2) = G2(x, λy1 +
(1 − λ)y2). Hence, G2(x, y2) ⊂ G2(x, λy1 + (1 − λ)y2) − R+. For both cases of
y1 = 0, λ = 1 and 0 < y1 < 1, λ = 1, G2(x, y1) = G2(x, λy1 + (1 − λ)y2). Hence,
G2(x, y1) ⊂ G2(x, λy1 + (1− λ)y2)− R+. The final case is 0 < λ < 1, where

G2(x, y1) :=

{
{t : t ∈ [0, 2]}, y1 = 0,
{t : t ∈ [1, 3− (y1 − 1)2]}, 0 < y1 < 1.

Hence, G2(x, y1) ⊂ G2(x, λy1 + (1 − λ)y2) − R+. Therefore, the mapping of y 7→
G2(x, y) is above-properly R+-quasi-concave on Y for each x ∈ X. This proves that
condition (i) of Theorem 2.1 is valid.

We claim that the continuities of G1, G2, G3, and G5 satisfied condition (ii) of
Theorem 2.1. Example 1 claimed that (x, y) 7→ G1(x, y) is an upper semi-continuous
mapping on X ×Y , and the other cases will leave the proofs to the readers. There-
fore, the condition (ii) of Theorem 2.1 is true.

In addition, note that

maxG1(x, y) =

{
2, x = 0
1, 0 < x ≤ 1,

maxG2(x, y) =


3− (y − 1)2, 0 < y < 1,
2, y = 0,
3.1, y = 1,

maxG3(x, y) =

{
3.1, x = 0
3.1 + y, 0 < x ≤ 1,

maxG4(x, y) = 4.1 + y,

maxG5(x, y) = 6 + 4y2(x− x2),

max
∪
y∈Y

G1(x, y) =

{
2, x = 0
1, 0 < x ≤ 1,

min
∪
x∈X

G5(x, y) = 6

for all (x, y) ∈ X × Y .
Condition (iii) of Theorem 2.1 is true if we take xw = 1/3 when w = 0 and

xw = 1 when w ̸= 0. Then, all conditions of Theorem 2.1 are fulfilled. Thus,
the relationship (S-H) is valid, and min

∪
x∈X max

∪
y∈Y G1(x, y) = 1 ≤ 6 =

max
∪

y∈Y min
∪

x∈X G5(x, y).
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Example 3. Let X = Y = [0, 1] and C = R+. The set-valued mappings Gi :
X × Y ⇒ R, where i = 1, 2, 3, 4, 5, are defined by

G1(x, y) := V (x, y),

where V is the same as in Example 1;

G2(x, y) : =


{t : t ∈ [0, 1]}, y = 0,
{t : t ∈ [1, 2.1]}, y = 1,
{t : t ∈ [1, 2− (y − 1)2]}, 0 < y < 1;

G3(x, y) : =

{
{2.1}, y = 1/2,
{t : t ∈ [2.1, 3.1]}, y ̸= 1/2;

G4(x, y) : =

{
{3.1}, x = 0,
{t : t ∈ [2.1, 3.1]}, 0 < x ≤ 1;

G5(x, y) : =

{
{3.1}, x = 0, y = 0,
{t : t ∈ [3.1, 3.1 + y(1− x]}, others

for all (x, y) ∈ X × Y . Thus, we know that Gi(x, y) ⊂ Gi+1(x, y) − R+ is valid
for all (x, y) ∈ X × Y and for i = 1, 2, 3, 4; moreover, the lower semi-continuities
of G1, G3, G4, and G5 are fulfilled. Indeed, Example 1 indicates that G1 is a lower
semi-continuous mapping on X × Y . We can derive the other properties are valid
by using similar methods; herein, we have omitted them and leave the proofs to the
reader. Furthermore, we leave the readers to review whether the convexities of G2

and G4 are valid. Notably, these properties can be derived from definitions.
Note that

maxG5(x, y) =

{
3.1, x = 0, y = 0,
3.1 + y(1− x), otherwise

exists for all x ∈ X, y ∈ Y . Both sets ∪y∈Y G1(x, y) = [−1, 1] and ∪x∈XG5(x, y) =
[3.1, 3.1 + y] are compact for all x ∈ X, y ∈ Y . Finally, to determine whether
condition (iii) of Theorem 2.4 is true. For any w ∈ Y , let us select

xw =

{
1, w ̸= 0,
1/2, w = 0.

Then, maxG5(xw, w) = 3.1; hence, condition (iii) is valid. In short, all
conditions of Theorem 2.4 are fulfilled and the relation (S-H) holds. Indeed,
min

∪
x∈X max

∪
y∈Y G1(x, y) = 0 ≤ 3.1 = max

∪
y∈Y min

∪
x∈X G5(x, y).

3. Hierarchical structures for set-valued mappings

In this section, we propose some hierarchical structures of minimax theorems in
locally convex topological vector spaces. Why and how such structures exist has
been discussed and developed previously[5, 3, 7, 4, 6, 8], and we leave their proofs
to the reader.

First, let W be a Hausdorff topological vector space, C ⊂ W be a closed convex
and pointed cone with its apex at the origin and intC ̸= ∅. Let C∗ := {g ∈ W∗ :
g(c) ≥ 0 for all c ∈ C}, whereW∗ is the set of all continuous linear functionals onW.
We also apply the notations MaxΛ,MinΛ,MaxwΛ, and MinwΛ of a nonempty set
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Λ in W, which represent the set of maximal points, minimal points, weakly maximal
points, and weakly minimal points of Λ[5], respectively. The notation “A ⪯ B”[6]
indicates

MaxwA ⊂ MaxwB − C

for two nonempty sets A and B in W. In the rest of this section, we describe three
versions of hierarchical minimax theorems. The first one is concerned about the
relationship (H1) is as follows:

Theorem 3.1. Let X,Y be two nonempty compact convex subsets of locally con-
vex Hausdorff topological vector spaces, respectively. Moreover, let W be a com-
plete locally convex Hausdorff topological vector space. Let Fi : X × Y ⇒ W, for
i = 1, 2, 3, 4, 5, be set-valued mappings where MaxwFi(x, y) is nonempty for each
(x, y) ∈ X × Y , such that Fi(x, y) ⪯ Fi+1(x, y), both values, max ξFi(x, y), and
max

∪
x∈X ξF5(x, y) exist for all (x, y) ∈ X×Y , for any ξ ∈ C⋆, and for i = 1, 2, 3, 4.

Finally, suppose that the following conditions are satisfied:

(i) either y 7→ F1(x, y) or y 7→ F2(x, y) is above-properly C-quasi-concave on Y
for each x ∈ X, whereas x 7→ F4(x, y) is above-naturally C-quasi-convex on
X for each y ∈ Y ;

(ii) (x, y) 7→ F1(x, y) is an upper semi-continuous mapping on X × Y and
y 7→ F2(x, y) is an upper semi-continuous mapping on Y for each x ∈ X,
meanwhile, x 7→ F1(x, y) and x 7→ F3(x, y) are lower semi-continuous map-
pings on X for each y ∈ Y , and (x, y) 7→ F5(x, y) is continuous on X × Y ;

(iii) for any ξ ∈ C⋆ and for each w ∈ Y , there is an xw ∈ X such that

max ξF5(xw, w) ≤ max
∪
y∈Y

min
∪
x∈X

ξF5(x, y); and

(iv) for each y ∈ Y ,

Max
∪
y∈Y

Minw

∪
x∈X

F5(x, y) ⊂ Minw

∪
x∈X

F5(x, y) + C.

Thus, the following relationship holds:

(H1) Min co(
∪
x∈X

Maxw
∪
y∈Y

F1(x, y)) ⊂ Max
∪
y∈Y

Minw

∪
x∈X

F5(x, y) + C.

Notably, the relationship between Theorem 3.1 and Propositions 3.12-3.13[5] is
crucial, because these propositions facilitate understanding the relationship that
(H1) holds. The second relationship (H2) is as follows:

Theorem 3.2. Let X, Y be nonempty compact convex subsets of locally convex
Hausdorff topological vector spaces, respectively. Let W be a Hausdorff topological
vector space. Under the framework of Theorem 3.1, excluding condition (iii), and
any Gerstewitz function φkw[5] and for each y ∈ Y , there is an xy ∈ X, such that

(iii′) maxφkwF5(xy, y) ≤ max
∪
y∈Y

min
∪
x∈X

φkwF5(x, y).
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Thus, the following relationship is valid:

(H2) Min
∪
x∈X

Maxw
∪
y∈Y

F1(x, y) ⊂ Max
∪
y∈Y

Minw

∪
x∈X

F5(x, y) + C.

We encourage readers to review Proposition 3.9[5] and Remark 3.15[5] to further
understand the reason that relationship (H2) is valid in Theorem 3.2. The third
relationship (H3) is as follows:

Theorem 3.3. Under the framework of Theorem 3.2, excluding condition (iv), the
following equation is valid:

(H3) Max
∪
y∈Y

Minw

∪
x∈X

F5(x, y) ⊂ Min
∪
x∈X

Maxw
∪
y∈Y

F1(x, y) +W \ (C \ {0}).

The results of Theorems 3.1-3.3 are closely related to Theorem 2.1. By contrast,
the results of Theorems 3.4-3.6 are highly dependent on Theorem 2.4.

Theorem 3.4. Let X,Y be two nonempty compact convex subsets of locally con-
vex Hausdorff topological vector spaces, respectively. Let W be a complete locally
convex Hausdorff topological vector space. Moreover, let Fi : X × Y ⇒ W, for
i = 1, 2, 3, 4, 5, be set-valued mappings where the value max ξF5(x, y) exists for each
(x, y) ∈ X×Y , such that both

∪
y∈Y F1(x, y) and

∪
x∈X F5(x, y) are nonempty com-

pact sets, and Fi(x, y) ⪯ Fi+1(x, y) for all (x, y) ∈ X × Y and for i = 1, 2, 3, 4.
Finally, suppose that the following conditions are satisfied:

(i) y 7→ F2(x, y) is above-properly C-quasi-concave on Y for each x ∈ X,
whereas x 7→ F4(x, y) is above-naturally C-quasi-convex on X for each
y ∈ Y ;

(ii) (x, y) 7→ F1(x, y) and (x, y) 7→ F5(x, y) are lower semi-continuous mappings
on X × Y , y 7→ F3(x, y) is a lower semi-continuous mapping on Y for each
x ∈ X, an x 7→ F4(x, y) is a lower semi-continuous mapping on X for each
y ∈ Y ;

(iii) for any ξ ∈ C⋆ and for each w ∈ Y , there is an xw ∈ X such that

max ξF5(xw, w) ≤ max
∪
y∈Y

min
∪
x∈X

ξF5(x, y); and

(iv) for each y ∈ Y ,

Max
∪
y∈Y

Minw

∪
x∈X

F5(x, y) ⊂ Minw

∪
x∈X

F5(x, y) + C.

Thus, the relationship (H1) holds.

Theorem 3.5. Let X, Y be nonempty compact convex subsets of locally convex
Hausdorff topological spaces, respectively. Let W be a Hausdorff topological vector
space. Under the framework of Theorem 3.4, excluding condition (iii), and any
Gerstewitz function φkw and for each y ∈ Y , there is an xy ∈ X such that

(iii′′) maxφkwF5(xy, y) ≤ max
∪
y∈Y

min
∪
x∈X

φkwF5(x, y).
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Thus, the relationship (H2) is valid.

Theorem 3.6. Under the framework of Theorem 3.5, excluding condition (iv),
equation (H3) is valid.
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