
LNALNA ISSN 2188-8167
2020

282 K. SHIMIZU AND H. IIDUKA

{u ∈ RN : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ RN)}. The fixed point set of a mapping
Q : RN → RN is denoted by Fix(Q) := {x ∈ RN : Q(x) = x}. The sublevel set of a
function g : RN → R is denoted by lev≤0g := {x ∈ RN : g(x) ≤ 0}.

2. Numerical comparisons

Here we consider the following problem [4, Problem 5.1]. Let ai,j > 0, bi,j , di ∈
R (i ∈ I = {1, 2, . . . , I}, j = 1, 2, . . . , N), and ci := (ci,j)

N
j=1 ∈ RN with ∥ci∥ = 1.

Then,

minimize f(x) :=
∑
i∈I

fi(x)subject to x ∈
∩
i∈I

Fix(Qi) =
∩
i∈I

lev≤0gi,(2.1)

where fi : RN → R and Qi : RN → RN are defined for all x := (xj)
N
j=1 ∈ RN by

fi(x) :=
N∑
j=1

ai,j |xj − bi,j | and Qi(x) :=

x− gi(x)

∥zi(x)∥2
zi(x) if gi(x) > 0,

x if x ∈ lev≤0gi,

and gi : RN → R is defined for all x ∈ RN by

gi(x) :=

{
⟨ci, x⟩+ di if ⟨ci, x⟩ > −di,
0 otherwise,

and zi(x) is any vector in ∂gi(x). Let Qα,i := αId + (1− α)Qi, where α ∈ (0, 1).
The incremental subgradient method (ISM) [4, Algorithm 4.1] is shown in Algo-

rithm 1.

Algorithm 1 ISM

Require: (γn)n∈N ⊂ (0,+∞)
1: n← 0, x0 := x0,0 ∈ H
2: loop
3: for i = 1 to i = I do
4: gn,i ∈ ∂fi(Qα,i(xn,i−1))
5: xn,i := Qα,i(xn,i−1)− γngn,i
6: end for
7: xn+1 = xn+1,0 := xn,I
8: n← n+ 1
9: end loop

The parallel subgradient method (PSM) [4, Algorithm 3.1] is shown in Algorithm
2.

COMPUTATION TIME OF ITERATIVE METHODS 283

Algorithm 2 PSM

Require: (γn)n∈N ⊂ (0,+∞)
1: n← 0, x0 ∈ H
2: loop
3: for i = 1 to i = I do
4: gn,i ∈ ∂fi(Qα,i(xn))
5: xn,i := Qα,i(xn)− γngn,i
6: end for

7: xn+1 =
1

I

∑
i∈I

xn,i

8: n← n+ 1
9: end loop

The parallel proximal point method (PPM) [7, Algorithm 1] is shown in Algo-
rithm 3.

Algorithm 3 PPM

Require: (γn)n∈N ⊂ (0,+∞)
1: n← 0, x0 ∈ H
2: loop
3: for i = 1 to i = I do
4: xn,i := Qi (Proxγnfi(xn))
5: end for

6: xn+1 =
1

I

∑
i∈I

xn,i

7: n← n+ 1
8: end loop

The actual computation times of these methods were determined experimentally
using a FUJITSU PRIMERGY RX2540 M4 system with a 2.40 GHz Intel Xeon
Gold 6148 CPU processor, 384 GB memory, and the Red Hat Enterprise Linux 7.6
OS. The three methods were implemented in Python 3.6.9 with the NumPy 1.18.1
package. We set I = 256, N = 1000, and α = 1/2 and chose randomly ai ∈ (0, 100],
bi ∈ [−100, 100), di ∈ [−1, 0), and ci,j ∈ [−0.5, 0.5). Step size was γn := 10−3/n,
which satisfies the conditions in the convergence analyses [4, 7] of PPM, PSM, and
ISM. Two performance measures were used for n ∈ N:

Dn :=
∑
i∈I
∥xn −Qi(xn)∥ and Fn :=

∑
i∈I

fi(xn),

where (xn)n∈N is the sequence generated by each of the three algorithms with the
randomly chosen initial point x0 ∈ [0, 1)N .

Figure 1 plots the actual calculation times against the number of cores. Since ISM
cannot be implemented on multi-core processors, the results for ISM are shown for
only one core. The stopping condition was n = 104. Figure 1 indicates that, when

284 K. SHIMIZU AND H. IIDUKA

!

"!

#!

$!

%!

&!

'!

(!

)!

" # $ % & ' () "'

*
+
,-
.
/0
+
.
/+
-
/.
,1
2
3
0
,1
4
5

6-47580 290+285:

;;<

;=<

>=<

Figure 1. Actual calculation time against number of cores

the number of cores was one, the actual calculation time of PPM (resp. PSM) was
57.96 (resp. 71.37) s and the actual calculation time of ISM was 47.00 s. Although
ISM was the fastest on one core, PPM and PSM can be implemented on multiple
cores, so they can solve the problem faster than ISM. For example, when two cores
were used, PPM (resp. PSM) took 30.32 (resp. 37.76) s to solve the problem,
which is about half the time taken by PPM (resp. PSM) for serial calculation.
Furthermore, when 16 cores were used, PPM (resp. PSM) took 5.06 (resp. 6.24)
s. Therefore, the greater the number of cores, the shorter the actual computation
time of the parallel methods.

Table 1. Values of Fn and Dn when two cores were used

Fn Dn

PPM 640230921.5034176 0.5281329190044164

PSM 640229653.1002244 2.7151783607515156

Table 2. Values of Fn and Dn when four cores were used

Fn Dn

PPM 640230925.6562285 0.42034425426413835

PSM 640228917.1070017 0.7841617699210753

Tables 1, 2, 3, and 4 show the values of Fn and Dn when the number of cores used
were, respectively, 2, 4, 8, and 16 and the stopping condition was 4 s. There were
no significant differences in Fn. For PPM and PSM, Dn decreased as the number of
cores increased, with PPM showing a smaller value of Dn. This means that, when
the number of cores is fixed, PPM solves the problem faster than PSM.

COMPUTATION TIME OF ITERATIVE METHODS 285

Table 3. Values of Fn and Dn when eight cores were used

Fn Dn

PPM 640232204.0944406 0.34500715972864293

PSM 640228658.1872368 0.4505422109431341

Table 4. Values of Fn and Dn when 16 cores were used

Fn Dn

PPM 640236043.7194792 0.260459959391738

PSM 640229163.6883407 0.390958207796753

3. Conclusion

Experimental determination of the actual computation time of parallel incre-
mental and proximal methods for minimizing the sum of convex functions over the
intersection of fixed point constraints of quasi-nonexpansive mappings showed that
the parallel proximal point method has a shorter computation time than the parallel
and incremental subgradient methods.

Acknowledgments

The authors are grateful to Professor Wataru Takahashi of the Tokyo Institute
of Technology for giving us the chance to submit our paper to Linear and Nonlinear
Analysis. This work was supported by the Japan Society for the Promotion of
Science (JSPS KAKENHI Grant Number JP18K11184).

References

[1] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces, Springer, New York, 2011.

[2] Y. Hayashi and H. Iiduka, Optimality and convergence for convex ensemble learning with

sparsity and diversity based on fixed point optimization, Neurocomputing 273 (2018), 367–

372.

[3] H. Iiduka, Fixed point optimization algorithms for distributed optimization in networked sys-

tems, SIAM J. Optim. 23 (2013), 1–26.

[4] H. Iiduka, Convergence analysis of iterative methods for nonsmooth convex optimization over

fixed point sets of quasi-nonexpansive mappings, Math. Program. 159 (2016), 509–538.

[5] H. Iiduka, Distributed optimization for network resource allocation with nonsmooth utility func-

tions, IEEE Trans. Control. Netw. Syst. 6 (2019), 1354–1365.

[6] H. Iiduka, Stochastic fixed point optimization algorithm for classifier ensemble, IEEE Trans.

Cybern. (2020).

[7] K. Shimizu, K. Hishinuma and H. Iiduka, Parallel computing proximal method for nonsmooth

convex optimization with fixed point constraints of quasi-nonexpansive mappings, Applied Set-

Valued Analysis and Optimization 2 (2020), 1–17.

Manuscript received 14 July 2020

286 K. SHIMIZU AND H. IIDUKA

K. Shimizu

Computer Science Course, Graduate School of Science and Technology, Meiji University, 1-1-1

Higashimita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

E-mail address: kengo@cs.meiji.ac.jp

H. Iiduka

Department of Computer Science, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki-shi,

Kanagawa 214-8571, Japan

E-mail address: iiduka@cs.meiji.ac.jp

