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unconstrained reformulation, Liao, Qi and Qi [9] established a differential equation
system for solving nonlinear complementarity problems.

In this paper, based on the projection operator, we establish a system of dif-
ferential equations for solving the variational inequality problem (1.1). An impor-
tant inequality for the cyclically monotone mapping is established. By using this
inequality, we prove that the accumulation points of the trajectory of the differen-
tial equation system are the solutions to the variational inequality problem (1.1).
Note that the KKT system of a convex optimization problem consists of a cyclically
monotone mapping, we know that the method is applicable to convex programming.

The paper is organized as follows. The next section presents the system of differ-
ential equations based on the projection operator, and proves an important inequal-
ity and the convergence theorem for the differential equation approach. Section 3
reports the numerical experiments performed for nonlinear convex programming
problems whose KKT mappings are cyclically monotone. The transient behaviors
of the trajectories of the differential equation system for solving these problems are
illustrated.

2. A differential equation system

The projection operator to a convex set is quite useful in reformulating the vari-
ational inequality (1.1) as an equation. Let C be a convex closed set, for every
x ∈ ℜn, there is a unique x̂ in C such that

∥x− x̂∥ = min{∥x− y∥ | y ∈ C}.

The point x̂ is the projection of x onto C, denoted by ΠC(x). The projection
operator ΠC : ℜn → C is well defined over ℜn and it is a nonexpensive mapping.

Lemma 2.1 ([11]). Let H be a real Hilbert space and C ⊂ H be a closed convex
set. For a given z ∈ H, u ∈ C satisfies the inequality

⟨u− z, v − u⟩ ≥ 0, ∀v ∈ C,

if and only if u−ΠC(z) = 0.

Therefore, from Lemma 2.1, the variational inequality problem (1.1) is equivalent
to finding a root of the following equation:

(2.1) Φµ(x) := ΠΩ(x− µF (x))− x = 0,

where µ > 0 and ΠΩ(·) is the operator projection a vector onto the set Ω.
Next we recall the definition of cyclically monotone mapping.

Definition 2.2 ([8]). A mapping T : ℜn → ℜn is called cyclically monotone if one
has

⟨x1 − x0, T (x0)⟩+ ⟨x2 − x1, T (x1)⟩+ · · ·+ ⟨x0 − xm, T (xm)⟩ ≤ 0

for any set of points {x0, x1, · · · , xm} ⊂ ℜn.
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It is well known that f(x) is continuously differentiable and convex if and only if
F (x) = ∇f(x) is cyclically monotone.

The following inequality plays an important role in demonstrating the conver-
gence theorem of the trajectory of the differential equation system.

Lemma 2.3. Suppose that F : ℜn → ℜn is cyclically monotone and Lipschitz
continuous with the constant L. Then the following inequality holds:

(2.2) ⟨F (x1)− F (x3), x2 − x1⟩ ≤ 2L∥x3 − x2∥2

for any x1, x2, x3 ∈ ℜn.

Proof. Since F is a cyclically monotone mapping, we have for any x1, x2, x3 ∈ ℜn

that

(2.3) ⟨x2 − x1, F (x1)⟩+ ⟨x3 − x2, F (x2)⟩+ ⟨x1 − x3, F (x3)⟩ ≤ 0

and

(2.4) ⟨x3 − x2, F (x2)− F (x3)⟩ ≤ 0.

Summing (2.3) and (2.4), we get that

⟨x2−x1, F (x1)⟩+ ⟨x3−x2, F (x2)⟩+ ⟨x1−x3, F (x3)⟩+ ⟨x3−x2, F (x2)−F (x3)⟩ ≤ 0,

which means that

⟨x2 − x1, F (x1)⟩+ ⟨x3 − x2, F (x2)⟩+ ⟨x1 − x2, F (x3)⟩
+⟨x2 − x3, F (x3)⟩+ ⟨x3 − x2, F (x2)− F (x3)⟩ ≤ 0.

From the above inequality, we obtain that

(2.5) ⟨x2 − x1, F (x1)− F (x3)⟩+ 2⟨x3 − x2, F (x2)− F (x3)⟩ ≤ 0.

Note that F is Lipschitz continuous with the constant L. It follows from (2.5) that

⟨x2 − x1, F (x1)− F (x3)⟩ ≤ 2⟨x2 − x3, F (x2)− F (x3)⟩
≤ 2∥x2 − x3∥∥F (x2)− F (x3)∥
≤ 2L∥x2 − x3∥2.

This completes the proof. □
Now we construct a differential equation system based on the equation (2.1) as

follows.

(2.6)
dx

dt
+ x = ΠΩ(x− µF (x)).

Note that ΠΩ is Lipschitz continuous when F is Lipschitz continuous, the existence
and uniqueness of solutions for the differential equation system (2.6) can be easily
obtained from [13].

For simplicity, we denote ẋ =
dx

dt
. According to Lemma 2.1, the differential

equation system (2.6) can be equivalent to the variational inequality

(2.7) ⟨ẋ+ µF (x), y − ẋ− x⟩ ≥ 0, ∀y ∈ Ω.

Now we prove the convergence theorem of the trajectory x(t) of the differential
equation system (2.6).
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Theorem 2.4. Assume that the set of solutions to problem (1.1) is not empty, and
F is cyclically monotone and Lipschitz continuous with the constant L. Then for

any x0 ∈ ℜn and 0 < µ <
1

2L
, the accumulation point of the trajectory x(t) of the

differential equation system (2.6) is a solution to the variational inequality problem
(1.1).

Proof. Let x∗ be one of the solutions to problem (1.1). Setting y = x∗ in (2.7) and
y = x+ ẋ in (1.1), we have

⟨ẋ+ µF (x), x∗ − ẋ− x⟩ ≥ 0

and

⟨F (x∗), ẋ+ x− x∗⟩ ≥ 0.

We sum the above two inequalities to obtain the following

(2.8) ⟨ẋ+ µ(F (x)− F (x∗)), x∗ − ẋ− x⟩ ≥ 0.

Using the inequality (2.2), we have

(2.9) ⟨F (x)− F (x∗), x∗ − x− ẋ⟩ ≤ 2L∥ẋ∥2.

Submitting (2.9) into (2.8), we get that

⟨ẋ, x− x∗ + ẋ⟩ − 2µL∥ẋ∥2 ≤ 0,

which implies that

(2.10)
1

2

d

dt
∥x− x∗∥2 + (1− 2µL)∥ẋ∥2 ≤ 0.

It follows from 0 < µ <
1

2L
that 1− 2µL > 0. By integrating inequality (2.10) over

the range [t0, t], we obtain that

(2.11)
1

2
∥x− x∗∥2 + (1− 2µL)

∫ t

t0

∥ẋ∥2dτ ≤ 1

2
∥x0 − x∗∥2,

where x0 = x(t0). It follows from (2.11) that

(2.12) ∥x(t)− x∗∥2 ≤ ∥x0 − x∗∥2

and

(2.13)

∫ t

t0

∥ẋ∥2dτ < ∞, t → ∞.

The inequality (2.13) shows that there exists a subsequence {ti} such that ∥ẋ(ti)∥ →
0, i → ∞. Otherwise, we assume that there exists an ε > 0 such that ∥ẋ∥ ≥ ε for
all t ≥ t0, then we obtain a contradiction with (2.13).

The inequality (2.12) shows that x(t) is bounded, hence the subsequence {x(ti)}
is also bounded. We can choose a subsequence {x(tij )} of the sequence {x(ti)} such
that there exists x′ ∈ ℜn and x(tij ) → x′, j → ∞ and ∥ẋ(tij )∥ → 0, j → ∞.

Let us consider the inequality (2.7) for x(tij ) and take the limit as j → ∞, then
we have

⟨F (x′), y − x′⟩ ≥ 0, ∀y ∈ Ω,
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which implies that x′ is the solution of the variational inequality problem (1.1).
This completes the proof. □

Remark 2.5. Under the certain condition, we can prove that the convergent sub-
sequence {x(tij )} of the trajectory x(t) of the differential equation system (2.6) is
exponential stable [10].

In fact, if there exist α > 0, ω > 0 and c > 0 such that

(2.14) ∥ẋ(tij )∥2 ≥
α∥x0 − x∗∥2

tij − t0
,

and

(2.15) 0 < µ ≤ 2α− [1− (ce−ωtij )2]

4Lα
.

From the inequality (2.11), we have

(2.16)
1

2
∥x(tij )− x∗∥2 + (1− 2µL)

∫ tij

t0

∥ẋ(tij )∥2dτ ≤ 1

2
∥x0 − x∗∥2,

where x0 = x(t0).
The inequality (2.14) means that

(1− 2µL)

∫ tij

t0

∥ẋ(tij )∥2dτ ≥ (1− 2µL)α∥x0 − x∗∥2.

Submitting the above inequality into (2.16), we get that

(2.17) ∥x(tij )− x∗∥2 ≤ [1− 2(1− 2µL)α]∥x0 − x∗∥2,

From the inequality (2.15) and (2.17), we deduce that

∥x(tij )− x∗∥ ≤ ce−ωtij ∥x0 − x∗∥,

which shows that the convergent subsequent {x(tij )} of the trajectory x(t) of the
differential equation is exponential stable. Hence the conclusion of Theorem 2.4 has
guaranteed the stability of the convergent subsequence.

3. Numerical results

In this section, we test four examples by our differential equation system (2.6).
For each test problem, we also compare the numerical performance of the proposed
differential equation system (2.6) from various initial points. The numerical imple-
mentation is coded by Matlab 7.8 running on a PC Intel Pentium IV of 2.93 GHz
CPU and the ordinary differential equation solver adopted is ode45, which uses an
Runge-Kutta (4,5) formula. The parameter is chosen as µ = 0.03 in all examples.

Example 3.1 Consider the variational inequality problem

(3.1) ⟨Dx+ b, y − x⟩ ≥ 0, ∀y ∈ [−5, 5]4,
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where D =


4 2 2 1
2 4 0 1
2 0 2 2
1 1 2 0

 and b = (−8,−6,−4, 3)T . Its solution is x∗ =

(−5/6, 19/6, 5,−5)T .
Figure 1 describes the convergence behaviors of the trajectory x(t) of the differen-

tial equation system (2.6) with nine random initial points converging to its solution
(−0.8333, 3.1666, 4.9998, −5.0000)T .
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Figure 1. Transient behavior of x(t) of the differential equation
system (2.6) in Example 3.1 with nine random initial points

Example 3.2 Consider the following variational inequality problem

(3.2) ⟨F (x), y − x⟩ ≥ 0, ∀y ∈ Ω,

where F (x) =


3x31 − 8

x2 − x3 + x32 + 3
−x2 + x3 + 2x33 − 3

x4 + 2x34

 , Ω = {x ∈ ℜ4 | a ≤ x ≤ b}, a =

{−1, 0,−2,−8}T and b = {6, 3, 5, 0}T . Its solution is x∗ = (2, 0, 1, 0)T .
The solution trajectory x(t) of the differential equation system (2.6) converging

to (2.0000, 0.0000, 1.0000, 0.0000)T for the variational inequality problem (3.2) with
six random initial points are illustrated in Figure 2.

Example 3.3 Consider the nonlinear convex programming problem

min f(x) s.t. x ∈ ℜ5
+,
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Figure 2. Transient behavior of x(t) of the differential equation
system (2.6) in Example 3.2 with six random initial points

where f(x) = x21/2+x22/2+x23/2+x24/2+x25/2 +x1x2x3x4x5/50 −3x2−x3+x4/2.
Its optimal solution is x∗ = (0, 3, 1, 0, 0)T .

This problem can be transformed into the following nonlinear complementarity
problem

(3.3) F (x) =


x1 + x2x3x4x5/50

x2 + x1x3x4x5/50− 3
x3 + x1x2x4x5/50− 1
x4 + x1x2x3x5/50 + 1/2

x5 + x1x2x3x4/50

 ,

which have been considered in [12].
For the complementarity problem (3.3), Figure 3 describes the convergence behav-

iors of the trajectory x(t) of the differential equation system (2.6) with eight random
initial points converging to its solution (0.0000, 3.0000, 1.0000, 0.0000, 0.0000)T .

Example 3.4 Consider the nonlinear convex programming problem

min exp
( 5∑

i=1

(xi − i+ 2)2
)

s.t. x ∈ K5,

where K5 := {x ∈ ℜ5 | xn ≥ ∥xt∥}, xt = (x1, x2, · · · , xn−1) and ∥ · ∥ stands for the
Euclidean norm. Its optimal solution is x∗ = (−1, 0, 1, 2, 3)T .

This problem can be transformed into the following variational inequality

(3.4) ⟨F (x), y − x⟩ ≥ 0, ∀y ∈ K5,
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Figure 3. Transient behavior of x(t) of the differential equation
system (2.6) in Example 3.3 with eight random initial points

where F (x) = 2 exp(
∑5

i=1(xi − i+ 2)2)


x1 + 1
x2

x3 − 1
x4 − 2
x5 − 3

 .

The solution trajectory x(t) of the differential equation system (2.6) converging to
(−1.0000, −0.0000, 1.0000, 1.9999, 2.9999)T for the variational inequality problem
(3.4) with five random initial points are showed in Figure 4.

4. Conclusions

In this paper, we establish a system of differential equations based on the projec-
tion operator for solving the variational inequality problems with cyclically mono-
tone mappings. An important inequality is proved for the cyclically monotone
mapping based on which it proved that the accumulate points of the trajectory
of the differential equation system are the solutions to the variational inequality
problem.

However, we have a problem worth studying whether the method converges when
the mapping F is only monotone rather than cyclically monotone.
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Figure 4. Transient behavior of x(t) of the differential equation
system (2.6) in Example 3.4 with five random initial points
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