

SOME NOTES ON TWO FIXED POINT THEOREMS OF ĆIRIĆ TYPE

JENJIRA PUIWONG AND SATIT SAEJUNG*

ABSTRACT. In this paper, we discuss two fixed point theorems of Ćirić type recently proved by Kumam *et al.* [A generalization of Ćirić fixed point theorems, Filomat, 29, 1549–1556 (2015)]. We show that their first result can be regarded a direct consequence of Walter's fixed point theorem [Remarks on a paper by F. Browder about contraction, Nonlinear Anal., 5, 21–25 (1981)]. Moreover, we establish an appropriate multivalued version of our theorem and deduced their second theorem with a weak assumption.

1. INTRODUCTION

Suppose that X := (X, d) is a complete metric space and BN(X) is the set of all nonempty bounded subsets of X. For $A, B \in BN(X)$, we define

$$D(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$$

$$\rho(A, B) := \sup\{d(a, b) : a \in A, b \in B\}.$$

For $x \in X$, we also write $D(x, A) := D(\{x\}, A)$ and $\rho(x, A) := \rho(\{x\}, A)$.

Ćirić [1] proved the following two famous fixed point theorems.

Theorem 1.1. Suppose that $q \in (0,1)$ and $T : X \to X$ satisfies the following condition:

 $d(Tx,Ty) \le q \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}$

for all $x, y \in X$. Then the following statements are true:

- (a) T has a unique fixed point, that is, there exists a unique element $u \in X$ such that u = Tu.
- (b) $d(T^n x, u) \leq \frac{q^n}{1-q} d(x, Tx)$ for all $x \in X$ and $n \geq 1$. In particular, $\lim_{n \to \infty} d(T^n x, u) = 0$.

Theorem 1.2. Suppose that $q \in (0,1)$ and $F : X \to BN(X)$ satisfies the following condition:

 $\rho(Fx, Fy) \le q \max\{d(x, y), \rho(x, Fx), \rho(y, Fy), D(x, Fy), D(y, Fx)\}$

for all $x, y \in X$. Then the following statements are true:

(a) F has a unique fixed point, that is, there exists a unique element $u \in X$ such that $\{u\} = Fu$.

²⁰¹⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. mapping of Ćirić type; fixed point theorem; metric space. *Corresponding author.

(b) For each $x \in X$, there exists a sequence $\{x_n\}$ in X such that $x_0 := x$, $x_{n+1} \in Fx_n \text{ and } d(x_n, u) \leq \frac{q^{(1-a)n}}{1-q^{1-a}} d(x_0, x_1) \text{ for all } n \geq 0, \text{ where } a \in (0, 1).$ In particular, $\lim_{n\to\infty} d(x_n, u) = 0$.

Recently, Kumam et al. [2] proposed the following two results which generalize Theorems 1.1 and 1.2, respectively.

Theorem 1.3. Suppose that $q \in (0,1)$ and $T : X \to X$ satisfies the following condition:

$$d(Tx,Ty) \le q \max \left\{ \begin{array}{l} d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx), \\ d(x,T^2x), d(y,T^2x), d(Tx,T^2x), d(Ty,T^2x) \end{array} \right\}$$

for all $x, y \in X$. Then the following statements are true:

- (a) T has a unique fixed point u.
- (b) $d(T^n x, u) \leq \frac{q^n}{1-q} d(x, Tx)$ for all $x \in X$ and $n \geq 1$. In particular, $\lim_{n\to\infty} d(T^n x, u) = 0$.

Theorem 1.4. Suppose that $q \in (0,1)$ and $F: X \to BN(X)$ satisfies the following condition:

$$\rho(Fx, Fy) \le q \max \left\{ \begin{array}{c} d(x, y), \rho(x, Fx), \rho(y, Fy), D(x, Fy), D(y, Fx), \\ D(x, F^2x), D(y, F^2x), D(Fx, F^2x), D(Fy, F^2x) \end{array} \right\}$$

for all $x, y \in X$. Here $F^2 x := \bigcup_{w \in Fx} Fw$. Then the following statements are true:

- (a) F has a unique fixed point u.
- (b) For each $x \in X$ and $a \in (0,1)$, there exists a sequence $\{x_n\}$ such that $x_0 := x, x_{n+1} \in Fx_n$ and $d(x_n, u) \le \frac{q^{(1-a)n}}{1-q^{1-a}}d(x_0, x_1)$ for all $n \ge 0$. In particular, $\lim_{n\to\infty} d(x_n, u) = 0.$

The purpose of the paper is to show that (1) Theorem 1.3 is not only a direct consequence of the result of Walter (Theorem 1.5 below) in 1981 [3] but also established under a weaker assumption; and (2) Theorem 1.4 can be established as a consequence of a multivalued version of our theorem.

To state Walter's Theorem, we recall the following notation: For $T: X \to X$ and $x, y \in X$, we write $\mathcal{O}(x) := \{x, Tx, T^2x, \dots\}$ and $\mathcal{O}(x, y) := \mathcal{O}(x) \cup \mathcal{O}(y)$.

Theorem 1.5. Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing and continuous function and $\varphi(t) < t$ for all t > 0. Suppose that X := (X, d) is a complete metric space and $T: X \to X$ is a mapping such that diam $\mathcal{O}(x) < \infty$ for all $x \in X$ and

$$d(Tx, Ty) \le \varphi(\operatorname{diam} \mathcal{O}(x, y))$$

for all $x, y \in X$. Then T has a unique fixed point u and $\lim_{n\to\infty} d(T^n x, u) = 0$ for all $x \in X$.

2. Results

2.1. Theorem 1.3 is a consequence of Theorem 1.5. Theorem 1.3 can be regarded as a direct consequence of Theorem 1.5. In fact, we prove even more.

298

Theorem 2.1. Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing and continuous function such that $\varphi(t) < t$ for all t > 0 and $\lim_{t\to\infty} (t - \varphi(t)) = \infty$. Suppose that $T: X \to X$ is a mapping such that

$$d(Tx, Ty) \le \varphi \left(\max \left\{ \begin{array}{l} d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), \\ d(x, T^2x), d(y, T^2x), d(Tx, T^2x), d(Ty, T^2x) \end{array} \right\} \right)$$

for all $x, y \in X$. Then the following statements are true:

(a) For each $x \in X$, diam $\mathcal{O}(x) < \infty$ and

diam
$$\mathcal{O}(x) - \varphi(\operatorname{diam} \mathcal{O}(x)) \le d(x, Tx).$$

- (b) T has a unique fixed point u.
- (c) $d(T^n x, u) \leq \varphi^n(\operatorname{diam} \mathcal{O}(x))$ for all $x \in X$ and for all $n \geq 1$. In particular, $\lim_{n \to \infty} d(T^n x, u) = 0$.

Proof. (a) Let $x \in X$. The statement holds trivially if x = Tx. We now assume that $x \neq Tx$. For convenience, we write $\mathcal{O}(x;n) := \{x, Tx, T^2x, \ldots, T^nx\}$ where $n \geq 1$. Note that diam $\mathcal{O}(x;n) \geq d(x,Tx) > 0$ for all $n \geq 1$. Moreover, for $1 \leq i \leq n-1$ and $1 \leq j \leq n$, we have

$$\begin{split} d(T^{i}x,T^{j}x) &= d(T(T^{i-1}x),T(T^{j-1}x)) \\ &\leq \varphi \left(\max \left\{ \begin{array}{c} d(T^{i-1}x,T^{j-1}x),d(T^{i-1}x,T^{i}x),d(T^{j-1}x,T^{j}x), \\ d(T^{i-1}x,T^{j}x),d(T^{j-1}x,T^{i}x), \\ d(T^{i+1}x,T^{i-1}x),d(T^{i+1}x,T^{j-1}x), \\ d(T^{i+1}x,T^{i}x),d(T^{i+1}x,T^{j}x) \end{array} \right\} \right) \\ &\leq \varphi(\operatorname{diam} \mathcal{O}(x;n)) < \operatorname{diam} \mathcal{O}(x;n). \end{split}$$

Hence diam $\mathcal{O}(x; n) = d(x, T^j x)$ for some $1 \leq j \leq n$. Now

diam
$$\mathcal{O}(x;n) = d(x,T^jx) \le d(x,Tx) + d(Tx,T^jx)$$

 $\le d(x,Tx) + \varphi(\text{diam }\mathcal{O}(x;n)).$

In particular,

diam
$$\mathcal{O}(x; n) - \varphi(\operatorname{diam} \mathcal{O}(x; n)) \le d(x, Tx).$$

If $\lim_{n\to\infty} \operatorname{diam} \mathcal{O}(x;n) = \infty$, then it follows from $\lim_{t\to\infty} (t-\varphi(t)) = \infty$ that $d(x,Tx) = \infty$ which is impossible. Hence $\operatorname{diam} \mathcal{O}(x) = \lim_{n\to\infty} \operatorname{diam} \mathcal{O}(x;n) < \infty$ and the conclusion follows from the continuity of φ .

(b) It follows from Theorem 1.5 that T has a unique fixed point u. In fact, for each $x, y \in X$, it is clear that

$$\max\left\{\begin{array}{l}d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx),\\d(x,T^{2}x),d(y,T^{2}x),d(Tx,T^{2}x),d(Ty,T^{2}x)\end{array}\right\} \leq \operatorname{diam} \mathcal{O}(x,y).$$

(c) Let $x \in X$. Note from (a) that diam $\mathcal{O}(Tx; n-1) \leq \varphi(\operatorname{diam} \mathcal{O}(x; n))$ for all $n \geq 1$. In particular, letting $n \to \infty$ gives

$$\operatorname{diam} \mathcal{O}(Tx) \le \varphi(\operatorname{diam} \mathcal{O}(x)).$$

By induction, we obtain that diam $\mathcal{O}(T^n x) \leq \varphi^n(\text{diam }\mathcal{O}(x))$ for all $n \geq 1$. Hence $d(T^n x, T^{n+k} x) \leq \varphi^n(\text{diam }\mathcal{O}(x))$ for all $n, k \geq 1$. It follows from Theorem 1.5 that $d(T^n x, u) \leq \varphi^n(\text{diam }\mathcal{O}(x))$.

Remark 2.2. If we let $\varphi(t) := qt$ for all $t \ge 0$ where $q \in (0,1)$, then $(1-q) \operatorname{diam} \mathcal{O}(x) \le d(x,Tx)$ and hence we immediately obtain Theorem 1.3 via our Theorem 2.1.

Remark 2.3. Suppose that $\varphi(t) := t/(1+t)$ for all $t \ge 0$. It follows that φ is a nondecreasing and continuous function such that $\varphi(t) < t$ for all t > 0 and $\lim_{t\to\infty}(t-\varphi(t)) = \infty$. Moreover, there exists no $q \in (0,1)$ such that $\varphi(t) \le qt$ for all $t \ge 0$. In particular, our Theorem 2.1 is a genuine extension of Theorem 1.3.

2.2. A further generalization of Theorem 1.4. The following lemma is obvious.

Lemma 2.4. Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing and continuous function such that $\varphi(t) < t$ for all t > 0 and $\lim_{t\to\infty} (t - \varphi(t)) = \infty$. Suppose that $\lambda \in (0, 1)$. If $\psi(t) := (1 - \lambda)t + \lambda\varphi(t)$ for all $t \ge 0$, then ψ is a nondecreasing and continuous function such that $\psi(t) < t$ for all t > 0 and $\lim_{t\to\infty} (t - \psi(t)) = \infty$.

The following result is a consequence of our Theorem 2.1.

Theorem 2.5. Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing and continuous function such that $\varphi(t) < t$ for all t > 0 and $\lim_{t\to\infty} (t - \varphi(t)) = \infty$. Suppose that $F: X \to BN(X)$ is a mapping such that

$$\rho(Fx, Fy) \le \varphi \left(\max \left\{ \begin{array}{c} d(x, y), \rho(x, Fx), \rho(y, Fy), D(x, Fy), D(y, Fx), \\ D(x, F^2x), D(y, F^2x), D(Fx, F^2x), D(Fy, F^2x) \end{array} \right\} \right)$$

for all $x, y \in X$. Suppose that $\lambda \in (0, 1)$ and $\psi(t) := (1 - \lambda)t + \lambda \varphi(t)$ for all $t \ge 0$. Then the following statements are true.

(a) For each $x \in X$ there exists a selection $Tx \in Fx$ such that the following condition holds:

$$d(Tx, Ty) \le \psi \left(\max \left\{ \begin{array}{l} d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), \\ d(x, T^2x), d(y, T^2x), d(Tx, T^2x), d(Ty, T^2x) \end{array} \right\} \right)$$

for all $x, y \in X$.

- (b) F has a unique fixed point u.
- (c) For each $x \in X$, there exists a sequence $\{x_n\}$ such that
 - $x_0 := x$ and $x_{n+1} \in Fx_n$ for all $n \ge 0$;
 - $\delta \psi(\delta) \le d(x_0, x_1)$ where $\delta := \operatorname{diam}\{x_n : n \ge 0\} < \infty;$
 - $d(x_n, u) \le \psi^n(\delta)$ for all $n \ge 0$ and hence $\lim_{n \to \infty} d(x_n, u) = 0$.

Proof. (a) Note that $\varphi(t) < \psi(t) < t$ for all t > 0. Let $x \in X$. If $x \in Fx$, then let Tx := x. On the other hand, we assume that $x \notin Fx$, that is, $\rho(x, Fx) > 0$. We can choose $Tx \in Fx$ such that

$$\psi(d(x, Tx)) \ge \varphi(\rho(x, Fx)).$$

Otherwise, there exists $\{z_n\} \subset Fx$ such that $\lim_{n\to\infty} d(x, z_n) = \rho(x, Fx)$ and

$$\psi(d(x, z_n)) < \varphi(\rho(x, Fx)) \text{ for all } n \ge 1.$$

300

Since ψ is continuous, we have $\psi(\rho(x, Fx)) \leq \varphi(\rho(x, Fx))$. This implies that $\rho(x, Fx) = 0$ which is impossible.

Moreover, for each $x, y \in X$, we have the following inequalities:

$$\begin{split} D(x,Fy) &\leq d(x,Ty); & D(y,Fx) \leq d(y,Tx); & D(x,F^2x) \leq d(x,T^2x); \\ D(y,F^2x) &\leq d(y,T^2x); & D(Fx,F^2x) \leq d(Tx,T^2x); & D(Fy,F^2x) \leq d(Ty,T^2x). \end{split}$$

This implies that

$$\begin{split} d(Tx,Ty) &\leq \rho(Fx,Fy) \\ &\leq \varphi \left(\max \left\{ \begin{array}{l} d(x,y),\rho(x,Fx),\rho(y,Fy),D(x,Fy),D(y,Fx),\\ D(x,F^2x),D(y,F^2x),D(Fx,F^2x),D(Fy,F^2x) \end{array} \right\} \right) \\ &\leq \psi \left(\max \left\{ \begin{array}{l} d(x,y),\rho(x,Tx),\rho(y,Ty),d(x,Ty),d(y,Tx),\\ d(x,T^2x),d(y,T^2x),d(Tx,T^2x),d(Ty,T^2x) \end{array} \right\} \right). \end{split}$$

(b) It follows from our Theorem 2.1 that T has a unique fixed point u. Note that, since $u = Tu \in Fu$, we have $u = Tu = T^2u = T(Tu) \in F(Tu) \subset \bigcup_{z \in Fu} Fz = F^2u$ and

$$D(u, Fu) = D(u, F^2u) = D(Fu, F^2u) = 0.$$

In particular, it follows from the assumption that

$$\begin{split} \rho(u,Fu) &\leq \rho(Fu,Fu) \\ &\leq \varphi \left(\max \left\{ \begin{array}{l} d(u,u),\rho(u,Fu),D(u,Fu),\\ D(u,F^2u),D(Fu,F^2u) \end{array} \right\} \right) \\ &= \varphi(\rho(u,Fu)). \end{split}$$

Hence $\rho(u, Fu) = 0$, that is, $Fu = \{u\}$.

(c) Let $x \in X$. Define $x_0 := x$ and $x_{n+1} := Tx_n$ for all $n \ge 0$. It follows from our Theorem 2.1 that $\delta := \operatorname{diam}\{x_n : n \ge 0\} < \infty$ and $\delta - \psi(\delta) \le d(x_0, Tx_0) = d(x_0, x_1)$. Moreover, $d(x_n, u) = d(T^n x_0, u) \le \psi^n(\delta)$ for all $n \ge 0$.

Remark 2.6. Suppose that all the assumptions of Theorem 2.5 hold where $\varphi(t) := qt$ for all $t \ge 0$ where $q \in (0, 1)$. Then there exists $u \in X$ such that $Fu = \{u\}$. Let $x \in X$ and $\lambda \in (0, 1)$. Then, by Theorem 2.5, there exists a sequence $\{x_n\} \subset X$ such that

• $x_0 := x$ and $x_{n+1} \in Fx_n$ for all $n \ge 0$;

• $d(x_n, u) \leq \psi^n(\delta)$ where $\delta := \operatorname{diam}\{x_n : n \geq 0\}$ and $\psi(t) := (1 - \lambda)t + \lambda qt$. Note that $\delta \leq \frac{d(x_0, x_1)}{\lambda(1-q)}$. It follows that

$$d(x_n, u) \le \frac{(1 - \lambda(1 - q))^n}{\lambda(1 - q)} d(x_0, x_1)$$

for all $n \ge 0$. We now compare our estimate with the one in Theorem 1.4. It is easy to see that for each $a, \lambda \in (0, 1)$ there are $a', \lambda' \in (0, 1)$ such that

$$\frac{(1-\lambda'(1-q))^n}{\lambda'(1-q)} < \frac{q^{(1-a)n}}{1-q^{1-a}} \quad \text{and} \quad \frac{q^{(1-a')n}}{1-q^{1-a'}} < \frac{(1-\lambda(1-q))^n}{\lambda(1-q)}$$

for all $n \ge 1$.

J. PUIWONG AND S. SAEJUNG

Acknowledgement

JP was supported by the Science Achievement Scholarship of Thailand and SS was supported by the Thailand Research Fund and Khon Kaen University under grant RSA6280002.

References

- L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.
- [2] P. Kumam, V.D. Nguyen and K. Sitthithakerngkiet, A generalization of Ciric fixed point theorems, Filomat 29 (2015), 1549–1556.
- [3] W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal. 5 (1981), 21-25.

Manuscript received 6 July 2020

13 August 2020

J. Puiwong

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

E-mail address: jenjira.puiwong@kkumail.com

S. SAEJUNG

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand; and Center of Excellence on Hazardous Substance Management (HSM), Patumwan, Bangkok, 10330, Thailand

E-mail address: saejung@kku.ac.th