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(b) For each x ∈ X, there exists a sequence {xn} in X such that x0 := x,

xn+1 ∈ Fxn and d(xn, u) ≤ q(1−a)n

1−q1−ad(x0, x1) for all n ≥ 0, where a ∈ (0, 1).

In particular, limn→∞ d(xn, u) = 0.

Recently, Kumam et al. [2] proposed the following two results which generalize
Theorems 1.1 and 1.2, respectively.

Theorem 1.3. Suppose that q ∈ (0, 1) and T : X → X satisfies the following
condition:

d(Tx, Ty) ≤ qmax

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(y, T 2x), d(Tx, T 2x), d(Ty, T 2x)

}
for all x, y ∈ X. Then the following statements are true:

(a) T has a unique fixed point u.

(b) d(Tnx, u) ≤ qn

1−qd(x, Tx) for all x ∈ X and n ≥ 1. In particular,

limn→∞ d(Tnx, u) = 0.

Theorem 1.4. Suppose that q ∈ (0, 1) and F : X → BN(X) satisfies the following
condition:

ρ(Fx, Fy) ≤ qmax

{
d(x, y), ρ(x, Fx), ρ(y, Fy), D(x, Fy), D(y, Fx),
D(x, F 2x), D(y, F 2x), D(Fx, F 2x), D(Fy, F 2x)

}
for all x, y ∈ X. Here F 2x :=

∪
w∈Fx Fw. Then the following statements are true:

(a) F has a unique fixed point u.
(b) For each x ∈ X and a ∈ (0, 1), there exists a sequence {xn} such that

x0 := x, xn+1 ∈ Fxn and d(xn, u) ≤ q(1−a)n

1−q1−ad(x0, x1) for all n ≥ 0. In

particular, limn→∞ d(xn, u) = 0.

The purpose of the paper is to show that (1) Theorem 1.3 is not only a direct
consequence of the result of Walter (Theorem 1.5 below) in 1981 [3] but also es-
tablished under a weaker assumption; and (2) Theorem 1.4 can be established as a
consequence of a multivalued version of our theorem.

To state Walter’s Theorem, we recall the following notation: For T : X → X and
x, y ∈ X, we write O(x) := {x, Tx, T 2x, . . . } and O(x, y) := O(x) ∪ O(y).

Theorem 1.5. Suppose that φ : [0,∞) → [0,∞) is a nondecreasing and continuous
function and φ(t) < t for all t > 0. Suppose that X := (X, d) is a complete metric
space and T : X → X is a mapping such that diamO(x) <∞ for all x ∈ X and

d(Tx, Ty) ≤ φ(diamO(x, y))

for all x, y ∈ X. Then T has a unique fixed point u and limn→∞ d(Tnx, u) = 0 for
all x ∈ X.

2. Results

2.1. Theorem 1.3 is a consequence of Theorem 1.5. Theorem 1.3 can be
regarded as a direct consequence of Theorem 1.5. In fact, we prove even more.
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Theorem 2.1. Suppose that φ : [0,∞) → [0,∞) is a nondecreasing and continuous
function such that φ(t) < t for all t > 0 and limt→∞(t − φ(t)) = ∞. Suppose that
T : X → X is a mapping such that

d(Tx, Ty) ≤ φ

(
max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(y, T 2x), d(Tx, T 2x), d(Ty, T 2x)

})
for all x, y ∈ X. Then the following statements are true:

(a) For each x ∈ X, diamO(x) <∞ and

diamO(x)− φ(diamO(x)) ≤ d(x, Tx).

(b) T has a unique fixed point u.
(c) d(Tnx, u) ≤ φn(diamO(x)) for all x ∈ X and for all n ≥ 1. In particular,

limn→∞ d(Tnx, u) = 0.

Proof. (a) Let x ∈ X. The statement holds trivially if x = Tx. We now assume that
x ̸= Tx. For convenience, we write O(x;n) := {x, Tx, T 2x, . . . , Tnx} where n ≥ 1.
Note that diamO(x;n) ≥ d(x, Tx) > 0 for all n ≥ 1. Moreover, for 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ n, we have

d(T ix, T jx) = d(T (T i−1x), T (T j−1x))

≤ φ

max


d(T i−1x, T j−1x), d(T i−1x, T ix), d(T j−1x, T jx),

d(T i−1x, T jx), d(T j−1x, T ix),
d(T i+1x, T i−1x), d(T i+1x, T j−1x),
d(T i+1x, T ix), d(T i+1x, T jx)




≤ φ(diamO(x;n)) < diamO(x;n).

Hence diamO(x;n) = d(x, T jx) for some 1 ≤ j ≤ n. Now

diamO(x;n) = d(x, T jx) ≤ d(x, Tx) + d(Tx, T jx)

≤ d(x, Tx) + φ(diamO(x;n)).

In particular,

diamO(x;n)− φ(diamO(x;n)) ≤ d(x, Tx).

If limn→∞ diamO(x;n) = ∞, then it follows from limt→∞(t − φ(t)) = ∞ that
d(x, Tx) = ∞ which is impossible. Hence diamO(x) = limn→∞ diamO(x;n) < ∞
and the conclusion follows from the continuity of φ.

(b) It follows from Theorem 1.5 that T has a unique fixed point u. In fact, for
each x, y ∈ X, it is clear that

max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(y, T 2x), d(Tx, T 2x), d(Ty, T 2x)

}
≤ diamO(x, y).

(c) Let x ∈ X. Note from (a) that diamO(Tx;n − 1) ≤ φ(diamO(x;n)) for all
n ≥ 1. In particular, letting n→ ∞ gives

diamO(Tx) ≤ φ(diamO(x)).
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By induction, we obtain that diamO(Tnx) ≤ φn(diamO(x)) for all n ≥ 1. Hence
d(Tnx, Tn+kx) ≤ φn(diamO(x)) for all n, k ≥ 1. It follows from Theorem 1.5 that
d(Tnx, u) ≤ φn(diamO(x)). □
Remark 2.2. If we let φ(t) := qt for all t ≥ 0 where q ∈ (0, 1), then (1 −
q) diamO(x) ≤ d(x, Tx) and hence we immediately obtain Theorem 1.3 via our
Theorem 2.1.

Remark 2.3. Suppose that φ(t) := t/(1 + t) for all t ≥ 0. It follows that φ
is a nondecreasing and continuous function such that φ(t) < t for all t > 0 and
limt→∞(t− φ(t)) = ∞. Moreover, there exists no q ∈ (0, 1) such that φ(t) ≤ qt for
all t ≥ 0. In particular, our Theorem 2.1 is a genuine extension of Theorem 1.3.

2.2. A further generalization of Theorem 1.4. The following lemma is obvious.

Lemma 2.4. Suppose that φ : [0,∞) → [0,∞) is a nondecreasing and continuous
function such that φ(t) < t for all t > 0 and limt→∞(t − φ(t)) = ∞. Suppose that
λ ∈ (0, 1). If ψ(t) := (1 − λ)t+ λφ(t) for all t ≥ 0, then ψ is a nondecreasing and
continuous function such that ψ(t) < t for all t > 0 and limt→∞(t− ψ(t)) = ∞.

The following result is a consequence of our Theorem 2.1.

Theorem 2.5. Suppose that φ : [0,∞) → [0,∞) is a nondecreasing and continuous
function such that φ(t) < t for all t > 0 and limt→∞(t − φ(t)) = ∞. Suppose that
F : X → BN(X) is a mapping such that

ρ(Fx, Fy) ≤ φ

(
max

{
d(x, y), ρ(x, Fx), ρ(y, Fy), D(x, Fy), D(y, Fx),
D(x, F 2x), D(y, F 2x), D(Fx, F 2x), D(Fy, F 2x)

})
for all x, y ∈ X. Suppose that λ ∈ (0, 1) and ψ(t) := (1− λ)t+ λφ(t) for all t ≥ 0.
Then the following statements are true.

(a) For each x ∈ X there exists a selection Tx ∈ Fx such that the following
condition holds:

d(Tx, Ty) ≤ ψ

(
max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(y, T 2x), d(Tx, T 2x), d(Ty, T 2x)

})
for all x, y ∈ X.

(b) F has a unique fixed point u.
(c) For each x ∈ X, there exists a sequence {xn} such that

• x0 := x and xn+1 ∈ Fxn for all n ≥ 0;
• δ − ψ(δ) ≤ d(x0, x1) where δ := diam{xn : n ≥ 0} <∞;
• d(xn, u) ≤ ψn(δ) for all n ≥ 0 and hence limn→∞ d(xn, u) = 0.

Proof. (a) Note that φ(t) < ψ(t) < t for all t > 0. Let x ∈ X. If x ∈ Fx, then let
Tx := x. On the other hand, we assume that x /∈ Fx, that is, ρ(x, Fx) > 0. We
can choose Tx ∈ Fx such that

ψ(d(x, Tx)) ≥ φ(ρ(x, Fx)).

Otherwise, there exists {zn} ⊂ Fx such that limn→∞ d(x, zn) = ρ(x, Fx) and

ψ(d(x, zn)) < φ(ρ(x, Fx)) for all n ≥ 1.
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Since ψ is continuous, we have ψ(ρ(x, Fx)) ≤ φ(ρ(x, Fx)). This implies that
ρ(x, Fx) = 0 which is impossible.

Moreover, for each x, y ∈ X, we have the following inequalities:

D(x, Fy) ≤ d(x, Ty); D(y, Fx) ≤ d(y, Tx); D(x, F 2x) ≤ d(x, T 2x);

D(y, F 2x) ≤ d(y, T 2x); D(Fx, F 2x) ≤ d(Tx, T 2x); D(Fy, F 2x) ≤ d(Ty, T 2x).

This implies that

d(Tx, Ty) ≤ ρ(Fx, Fy)

≤ φ

(
max

{
d(x, y), ρ(x, Fx), ρ(y, Fy), D(x, Fy), D(y, Fx),
D(x, F 2x), D(y, F 2x), D(Fx, F 2x), D(Fy, F 2x)

})
≤ ψ

(
max

{
d(x, y), ρ(x, Tx), ρ(y, Ty), d(x, Ty), d(y, Tx),
d(x, T 2x), d(y, T 2x), d(Tx, T 2x), d(Ty, T 2x)

})
.

(b) It follows from our Theorem 2.1 that T has a unique fixed point u. Note that,
since u = Tu ∈ Fu, we have u = Tu = T 2u = T (Tu) ∈ F (Tu) ⊂

∪
z∈Fu Fz = F 2u

and
D(u, Fu) = D(u, F 2u) = D(Fu, F 2u) = 0.

In particular, it follows from the assumption that

ρ(u, Fu) ≤ ρ(Fu, Fu)

≤ φ

(
max

{
d(u, u), ρ(u, Fu), D(u, Fu),
D(u, F 2u), D(Fu, F 2u)

})
= φ(ρ(u, Fu)).

Hence ρ(u, Fu) = 0, that is, Fu = {u}.
(c) Let x ∈ X. Define x0 := x and xn+1 := Txn for all n ≥ 0. It follows from our

Theorem 2.1 that δ := diam{xn : n ≥ 0} <∞ and δ−ψ(δ) ≤ d(x0, Tx0) = d(x0, x1).
Moreover, d(xn, u) = d(Tnx0, u) ≤ ψn(δ) for all n ≥ 0. □

Remark 2.6. Suppose that all the assumptions of Theorem 2.5 hold where φ(t) :=
qt for all t ≥ 0 where q ∈ (0, 1). Then there exists u ∈ X such that Fu = {u}. Let
x ∈ X and λ ∈ (0, 1). Then, by Theorem 2.5, there exists a sequence {xn} ⊂ X
such that

• x0 := x and xn+1 ∈ Fxn for all n ≥ 0;
• d(xn, u) ≤ ψn(δ) where δ := diam{xn : n ≥ 0} and ψ(t) := (1− λ)t+ λqt.

Note that δ ≤ d(x0,x1)
λ(1−q) . It follows that

d(xn, u) ≤
(1− λ(1− q))n

λ(1− q)
d(x0, x1)

for all n ≥ 0. We now compare our estimate with the one in Theorem 1.4. It is easy
to see that for each a, λ ∈ (0, 1) there are a′, λ′ ∈ (0, 1) such that

(1− λ′(1− q))n

λ′(1− q)
<

q(1−a)n

1− q1−a
and

q(1−a′)n

1− q1−a′
<

(1− λ(1− q))n

λ(1− q)

for all n ≥ 1.
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