Linear and STonfinear Ancalysis
Volume 6, Number 2, 2020, 297-302

SOME NOTES ON TWO FIXED POINT THEOREMS OF ĆIRIĆ TYPE

JENJIRA PUIWONG AND SATIT SAEJUNG*

Abstract

In this paper, we discuss two fixed point theorems of Ćirić type recently proved by Kumam et al. [A generalization of Cirić fixed point theorems, Filomat, 29, 1549-1556 (2015)]. We show that their first result can be regarded a direct consequence of Walter's fixed point theorem [Remarks on a paper by F. Browder about contraction, Nonlinear Anal., 5, 21-25 (1981)]. Moreover, we establish an appropriate multivalued version of our theorem and deduced their second theorem with a weak assumption.

1. Introduction

Suppose that $X:=(X, d)$ is a complete metric space and $\operatorname{BN}(X)$ is the set of all nonempty bounded subsets of X. For $A, B \in \operatorname{BN}(X)$, we define

$$
\begin{aligned}
D(A, B) & :=\inf \{d(a, b): a \in A, b \in B\} \\
\rho(A, B) & :=\sup \{d(a, b): a \in A, b \in B\} .
\end{aligned}
$$

For $x \in X$, we also write $D(x, A):=D(\{x\}, A)$ and $\rho(x, A):=\rho(\{x\}, A)$.
Ćirić [1] proved the following two famous fixed point theorems.
Theorem 1.1. Suppose that $q \in(0,1)$ and $T: X \rightarrow X$ satisfies the following condition:

$$
d(T x, T y) \leq q \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for all $x, y \in X$. Then the following statements are true:
(a) T has a unique fixed point, that is, there exists a unique element $u \in X$ such that $u=T u$.
(b) $d\left(T^{n} x, u\right) \leq \frac{q^{n}}{1-q} d(x, T x)$ for all $x \in X$ and $n \geq 1$. In particular, $\lim _{n \rightarrow \infty} d\left(T^{n} x, u\right)=0$.

Theorem 1.2. Suppose that $q \in(0,1)$ and $F: X \rightarrow \operatorname{BN}(X)$ satisfies the following condition:

$$
\rho(F x, F y) \leq q \max \{d(x, y), \rho(x, F x), \rho(y, F y), D(x, F y), D(y, F x)\}
$$

for all $x, y \in X$. Then the following statements are true:
(a) F has a unique fixed point, that is, there exists a unique element $u \in X$ such that $\{u\}=F u$.

[^0](b) For each $x \in X$, there exists a sequence $\left\{x_{n}\right\}$ in X such that $x_{0}:=x$, $x_{n+1} \in F x_{n}$ and $d\left(x_{n}, u\right) \leq \frac{q^{(1-a) n}}{1-q^{1-a}} d\left(x_{0}, x_{1}\right)$ for all $n \geq 0$, where $a \in(0,1)$. In particular, $\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0$.

Recently, Kumam et al. [2] proposed the following two results which generalize Theorems 1.1 and 1.2, respectively.

Theorem 1.3. Suppose that $q \in(0,1)$ and $T: X \rightarrow X$ satisfies the following condition:

$$
d(T x, T y) \leq q \max \left\{\begin{array}{c}
d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x) \\
d\left(x, T^{2} x\right), d\left(y, T^{2} x\right), d\left(T x, T^{2} x\right), d\left(T y, T^{2} x\right)
\end{array}\right\}
$$

for all $x, y \in X$. Then the following statements are true:
(a) T has a unique fixed point u.
(b) $d\left(T^{n} x, u\right) \leq \frac{q^{n}}{1-q} d(x, T x)$ for all $x \in X$ and $n \geq 1$. In particular, $\lim _{n \rightarrow \infty} d\left(T^{n} x, u\right)=0$.

Theorem 1.4. Suppose that $q \in(0,1)$ and $F: X \rightarrow \operatorname{BN}(X)$ satisfies the following condition:

$$
\rho(F x, F y) \leq q \max \left\{\begin{array}{c}
d(x, y), \rho(x, F x), \rho(y, F y), D(x, F y), D(y, F x) \\
D\left(x, F^{2} x\right), D\left(y, F^{2} x\right), D\left(F x, F^{2} x\right), D\left(F y, F^{2} x\right)
\end{array}\right\}
$$

for all $x, y \in X$. Here $F^{2} x:=\bigcup_{w \in F x} F w$. Then the following statements are true:
(a) F has a unique fixed point u.
(b) For each $x \in X$ and $a \in(0,1)$, there exists a sequence $\left\{x_{n}\right\}$ such that $x_{0}:=x, x_{n+1} \in F x_{n}$ and $d\left(x_{n}, u\right) \leq \frac{q^{(1-a) n}}{1-q^{1-a}} d\left(x_{0}, x_{1}\right)$ for all $n \geq 0$. In particular, $\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0$.

The purpose of the paper is to show that (1) Theorem 1.3 is not only a direct consequence of the result of Walter (Theorem 1.5 below) in 1981 [3] but also established under a weaker assumption; and (2) Theorem 1.4 can be established as a consequence of a multivalued version of our theorem.

To state Walter's Theorem, we recall the following notation: For $T: X \rightarrow X$ and $x, y \in X$, we write $\mathcal{O}(x):=\left\{x, T x, T^{2} x, \ldots\right\}$ and $\mathcal{O}(x, y):=\mathcal{O}(x) \cup \mathcal{O}(y)$.

Theorem 1.5. Suppose that $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing and continuous function and $\varphi(t)<t$ for all $t>0$. Suppose that $X:=(X, d)$ is a complete metric space and $T: X \rightarrow X$ is a mapping such that $\operatorname{diam} \mathcal{O}(x)<\infty$ for all $x \in X$ and

$$
d(T x, T y) \leq \varphi(\operatorname{diam} \mathcal{O}(x, y))
$$

for all $x, y \in X$. Then T has a unique fixed point u and $\lim _{n \rightarrow \infty} d\left(T^{n} x, u\right)=0$ for all $x \in X$.

2. Results

2.1. Theorem 1.3 is a consequence of Theorem 1.5. Theorem 1.3 can be regarded as a direct consequence of Theorem 1.5. In fact, we prove even more.

Theorem 2.1. Suppose that $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing and continuous function such that $\varphi(t)<t$ for all $t>0$ and $\lim _{t \rightarrow \infty}(t-\varphi(t))=\infty$. Suppose that $T: X \rightarrow X$ is a mapping such that

$$
d(T x, T y) \leq \varphi\left(\max \left\{\begin{array}{c}
d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x) \\
d\left(x, T^{2} x\right), d\left(y, T^{2} x\right), d\left(T x, T^{2} x\right), d\left(T y, T^{2} x\right)
\end{array}\right\}\right)
$$

for all $x, y \in X$. Then the following statements are true:
(a) For each $x \in X$, $\operatorname{diam} \mathcal{O}(x)<\infty$ and

$$
\operatorname{diam} \mathcal{O}(x)-\varphi(\operatorname{diam} \mathcal{O}(x)) \leq d(x, T x)
$$

(b) T has a unique fixed point u.
(c) $d\left(T^{n} x, u\right) \leq \varphi^{n}(\operatorname{diam} \mathcal{O}(x))$ for all $x \in X$ and for all $n \geq 1$. In particular, $\lim _{n \rightarrow \infty} d\left(T^{n} x, u\right)=0$.

Proof. (a) Let $x \in X$. The statement holds trivially if $x=T x$. We now assume that $x \neq T x$. For convenience, we write $\mathcal{O}(x ; n):=\left\{x, T x, T^{2} x, \ldots, T^{n} x\right\}$ where $n \geq 1$. Note that $\operatorname{diam} \mathcal{O}(x ; n) \geq d(x, T x)>0$ for all $n \geq 1$. Moreover, for $1 \leq i \leq n-1$ and $1 \leq j \leq n$, we have

$$
\begin{aligned}
d\left(T^{i} x, T^{j} x\right) & =d\left(T\left(T^{i-1} x\right), T\left(T^{j-1} x\right)\right) \\
& \leq \varphi\left(\max \left\{\begin{array}{c}
d\left(T^{i-1} x, T^{j-1} x\right), d\left(T^{i-1} x, T^{i} x\right), d\left(T^{j-1} x, T^{j} x\right) \\
d\left(T^{i-1} x, T^{j} x\right), d\left(T^{j-1} x, T^{i} x\right), \\
d\left(T^{i+1} x, T^{i-1} x\right), d\left(T^{i+1} x, T^{j-1} x\right), \\
d\left(T^{i+1} x, T^{i} x\right), d\left(T^{i+1} x, T^{j} x\right)
\end{array}\right\}\right) \\
& \leq \varphi(\operatorname{diam} \mathcal{O}(x ; n))<\operatorname{diam} \mathcal{O}(x ; n)
\end{aligned}
$$

Hence $\operatorname{diam} \mathcal{O}(x ; n)=d\left(x, T^{j} x\right)$ for some $1 \leq j \leq n$. Now

$$
\begin{aligned}
\operatorname{diam} \mathcal{O}(x ; n) & =d\left(x, T^{j} x\right) \leq d(x, T x)+d\left(T x, T^{j} x\right) \\
& \leq d(x, T x)+\varphi(\operatorname{diam} \mathcal{O}(x ; n))
\end{aligned}
$$

In particular,

$$
\operatorname{diam} \mathcal{O}(x ; n)-\varphi(\operatorname{diam} \mathcal{O}(x ; n)) \leq d(x, T x)
$$

If $\lim _{n \rightarrow \infty} \operatorname{diam} \mathcal{O}(x ; n)=\infty$, then it follows from $\lim _{t \rightarrow \infty}(t-\varphi(t))=\infty$ that $d(x, T x)=\infty$ which is impossible. Hence $\operatorname{diam} \mathcal{O}(x)=\lim _{n \rightarrow \infty} \operatorname{diam} \mathcal{O}(x ; n)<\infty$ and the conclusion follows from the continuity of φ.
(b) It follows from Theorem 1.5 that T has a unique fixed point u. In fact, for each $x, y \in X$, it is clear that

$$
\max \left\{\begin{array}{c}
d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x), \\
d\left(x, T^{2} x\right), d\left(y, T^{2} x\right), d\left(T x, T^{2} x\right), d\left(T y, T^{2} x\right)
\end{array}\right\} \leq \operatorname{diam} \mathcal{O}(x, y) .
$$

(c) Let $x \in X$. Note from (a) that $\operatorname{diam} \mathcal{O}(T x ; n-1) \leq \varphi(\operatorname{diam} \mathcal{O}(x ; n))$ for all $n \geq 1$. In particular, letting $n \rightarrow \infty$ gives

$$
\operatorname{diam} \mathcal{O}(T x) \leq \varphi(\operatorname{diam} \mathcal{O}(x))
$$

By induction, we obtain that $\operatorname{diam} \mathcal{O}\left(T^{n} x\right) \leq \varphi^{n}(\operatorname{diam} \mathcal{O}(x))$ for all $n \geq 1$. Hence $d\left(T^{n} x, T^{n+k} x\right) \leq \varphi^{n}(\operatorname{diam} \mathcal{O}(x))$ for all $n, k \geq 1$. It follows from Theorem 1.5 that $d\left(T^{n} x, u\right) \leq \varphi^{n}(\operatorname{diam} \mathcal{O}(x))$.

Remark 2.2. If we let $\varphi(t):=q t$ for all $t \geq 0$ where $q \in(0,1)$, then ($1-$ $q) \operatorname{diam} \mathcal{O}(x) \leq d(x, T x)$ and hence we immediately obtain Theorem 1.3 via our Theorem 2.1.

Remark 2.3. Suppose that $\varphi(t):=t /(1+t)$ for all $t \geq 0$. It follows that φ is a nondecreasing and continuous function such that $\varphi(t)<t$ for all $t>0$ and $\lim _{t \rightarrow \infty}(t-\varphi(t))=\infty$. Moreover, there exists no $q \in(0,1)$ such that $\varphi(t) \leq q t$ for all $t \geq 0$. In particular, our Theorem 2.1 is a genuine extension of Theorem 1.3.
2.2. A further generalization of Theorem 1.4. The following lemma is obvious.

Lemma 2.4. Suppose that $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing and continuous function such that $\varphi(t)<t$ for all $t>0$ and $\lim _{t \rightarrow \infty}(t-\varphi(t))=\infty$. Suppose that $\lambda \in(0,1)$. If $\psi(t):=(1-\lambda) t+\lambda \varphi(t)$ for all $t \geq 0$, then ψ is a nondecreasing and continuous function such that $\psi(t)<t$ for all $t>0$ and $\lim _{t \rightarrow \infty}(t-\psi(t))=\infty$.

The following result is a consequence of our Theorem 2.1.
Theorem 2.5. Suppose that $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing and continuous function such that $\varphi(t)<t$ for all $t>0$ and $\lim _{t \rightarrow \infty}(t-\varphi(t))=\infty$. Suppose that $F: X \rightarrow \mathrm{BN}(X)$ is a mapping such that

$$
\rho(F x, F y) \leq \varphi\left(\max \left\{\begin{array}{l}
d(x, y), \rho(x, F x), \rho(y, F y), D(x, F y), D(y, F x), \\
D\left(x, F^{2} x\right), D\left(y, F^{2} x\right), D\left(F x, F^{2} x\right), D\left(F y, F^{2} x\right)
\end{array}\right\}\right)
$$

for all $x, y \in X$. Suppose that $\lambda \in(0,1)$ and $\psi(t):=(1-\lambda) t+\lambda \varphi(t)$ for all $t \geq 0$. Then the following statements are true.
(a) For each $x \in X$ there exists a selection $T x \in F x$ such that the following condition holds:

$$
d(T x, T y) \leq \psi\left(\max \left\{\begin{array}{c}
d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x), \\
d\left(x, T^{2} x\right), d\left(y, T^{2} x\right), d\left(T x, T^{2} x\right), d\left(T y, T^{2} x\right)
\end{array}\right\}\right)
$$

for all $x, y \in X$.
(b) F has a unique fixed point u.
(c) For each $x \in X$, there exists a sequence $\left\{x_{n}\right\}$ such that

- $x_{0}:=x$ and $x_{n+1} \in F x_{n}$ for all $n \geq 0$;
- $\delta-\psi(\delta) \leq d\left(x_{0}, x_{1}\right)$ where $\delta:=\operatorname{diam}\left\{x_{n}: n \geq 0\right\}<\infty$;
- $d\left(x_{n}, u\right) \leq \psi^{n}(\delta)$ for all $n \geq 0$ and hence $\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0$.

Proof. (a) Note that $\varphi(t)<\psi(t)<t$ for all $t>0$. Let $x \in X$. If $x \in F x$, then let $T x:=x$. On the other hand, we assume that $x \notin F x$, that is, $\rho(x, F x)>0$. We can choose $T x \in F x$ such that

$$
\psi(d(x, T x)) \geq \varphi(\rho(x, F x))
$$

Otherwise, there exists $\left\{z_{n}\right\} \subset F x$ such that $\lim _{n \rightarrow \infty} d\left(x, z_{n}\right)=\rho(x, F x)$ and

$$
\psi\left(d\left(x, z_{n}\right)\right)<\varphi(\rho(x, F x)) \text { for all } n \geq 1
$$

Since ψ is continuous, we have $\psi(\rho(x, F x)) \leq \varphi(\rho(x, F x))$. This implies that $\rho(x, F x)=0$ which is impossible.

Moreover, for each $x, y \in X$, we have the following inequalities:

$$
\begin{aligned}
& D(x, F y) \leq d(x, T y) ; \quad D(y, F x) \leq d(y, T x) ; \quad D\left(x, F^{2} x\right) \leq d\left(x, T^{2} x\right) \text {; } \\
& D\left(y, F^{2} x\right) \leq d\left(y, T^{2} x\right) ; \quad D\left(F x, F^{2} x\right) \leq d\left(T x, T^{2} x\right) ; \quad D\left(F y, F^{2} x\right) \leq d\left(T y, T^{2} x\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
d(T x, T y) & \leq \rho(F x, F y) \\
& \leq \varphi\left(\max \left\{\begin{array}{c}
d(x, y), \rho(x, F x), \rho(y, F y), D(x, F y), D(y, F x), \\
D\left(x, F^{2} x\right), D\left(y, F^{2} x\right), D\left(F x, F^{2} x\right), D\left(F y, F^{2} x\right)
\end{array}\right\}\right) \\
& \leq \psi\left(\max \left\{\begin{array}{c}
d(x, y), \rho(x, T x), \rho(y, T y), d(x, T y), d(y, T x), \\
d\left(x, T^{2} x\right), d\left(y, T^{2} x\right), d\left(T x, T^{2} x\right), d\left(T y, T^{2} x\right)
\end{array}\right\}\right) .
\end{aligned}
$$

(b) It follows from our Theorem 2.1 that T has a unique fixed point u. Note that, since $u=T u \in F u$, we have $u=T u=T^{2} u=T(T u) \in F(T u) \subset \bigcup_{z \in F u} F z=F^{2} u$ and

$$
D(u, F u)=D\left(u, F^{2} u\right)=D\left(F u, F^{2} u\right)=0
$$

In particular, it follows from the assumption that

$$
\begin{aligned}
\rho(u, F u) & \leq \rho(F u, F u) \\
& \leq \varphi\left(\max \left\{\begin{array}{c}
d(u, u), \rho(u, F u), D(u, F u), \\
D\left(u, F^{2} u\right), D\left(F u, F^{2} u\right)
\end{array}\right\}\right) \\
& =\varphi(\rho(u, F u)) .
\end{aligned}
$$

Hence $\rho(u, F u)=0$, that is, $F u=\{u\}$.
(c) Let $x \in X$. Define $x_{0}:=x$ and $x_{n+1}:=T x_{n}$ for all $n \geq 0$. It follows from our Theorem 2.1 that $\delta:=\operatorname{diam}\left\{x_{n}: n \geq 0\right\}<\infty$ and $\delta-\psi(\delta) \leq d\left(x_{0}, T x_{0}\right)=d\left(x_{0}, x_{1}\right)$. Moreover, $d\left(x_{n}, u\right)=d\left(T^{n} x_{0}, u\right) \leq \psi^{n}(\delta)$ for all $n \geq 0$.

Remark 2.6. Suppose that all the assumptions of Theorem 2.5 hold where $\varphi(t):=$ $q t$ for all $t \geq 0$ where $q \in(0,1)$. Then there exists $u \in X$ such that $F u=\{u\}$. Let $x \in X$ and $\lambda \in(0,1)$. Then, by Theorem 2.5, there exists a sequence $\left\{x_{n}\right\} \subset X$ such that

- $x_{0}:=x$ and $x_{n+1} \in F x_{n}$ for all $n \geq 0$;
- $d\left(x_{n}, u\right) \leq \psi^{n}(\delta)$ where $\delta:=\operatorname{diam}\left\{x_{n}: n \geq 0\right\}$ and $\psi(t):=(1-\lambda) t+\lambda q t$.

Note that $\delta \leq \frac{d\left(x_{0}, x_{1}\right)}{\lambda(1-q)}$. It follows that

$$
d\left(x_{n}, u\right) \leq \frac{(1-\lambda(1-q))^{n}}{\lambda(1-q)} d\left(x_{0}, x_{1}\right)
$$

for all $n \geq 0$. We now compare our estimate with the one in Theorem 1.4. It is easy to see that for each $a, \lambda \in(0,1)$ there are $a^{\prime}, \lambda^{\prime} \in(0,1)$ such that

$$
\frac{\left(1-\lambda^{\prime}(1-q)\right)^{n}}{\lambda^{\prime}(1-q)}<\frac{q^{(1-a) n}}{1-q^{1-a}} \quad \text { and } \quad \frac{q^{\left(1-a^{\prime}\right) n}}{1-q^{1-a^{\prime}}}<\frac{(1-\lambda(1-q))^{n}}{\lambda(1-q)}
$$

for all $n \geq 1$.

Acknowledgement

JP was supported by the Science Achievement Scholarship of Thailand and SS was supported by the Thailand Research Fund and Khon Kaen University under grant RSA6280002.

References

[1] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
[2] P. Kumam, V.D. Nguyen and K. Sitthithakerngkiet, A generalization of Cirić fixed point theorems, Filomat 29 (2015), 1549-1556.
[3] W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal. 5 (1981), 21-25.

Manuscript received 6 July 2020
13 August 2020
J. Puiwong

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

E-mail address: jenjira.puiwong@kkumail.com
S. Saejung

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand; and Center of Excellence on Hazardous Substance Management (HSM), Patumwan, Bangkok, 10330, Thailand

E-mail address: saejung@kku.ac.th

[^0]: 2010 Mathematics Subject Classification. 47H10.
 Key words and phrases. mapping of Ćirić type; fixed point theorem; metric space.
 *Corresponding author.

