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2. Preliminaries

Throughout the present paper, E denotes a real Banach space with norm ∥ · ∥,
E∗ the dual of E, ⟨x, x∗⟩ the value of x∗ ∈ E∗ at x ∈ E, N the set of positive
integers, and R the set of real numbers. The norm of E∗ is also denoted by ∥ · ∥.
Strong convergence of a sequence {xn} in E to x ∈ E is denoted by xn → x.
The identity mapping on E is denoted by I; the (normalized) duality mapping of
E is denoted by J , that is, it is a set-valued mapping of E into E∗ defined by
Jx =

{
x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2

}
for x ∈ E.

Let SE denote the unit sphere of E, that is, SE = {x ∈ E : ∥x∥ = 1}. The norm
of E is said to be Gâteaux differentiable if the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y ∈ SE . In this case, E is said to be smooth. It is known that the
duality mapping J is single-valued and norm-to-weak* continuous if E is smooth;
see [26]. The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ SE the limit (2.1) is attained uniformly for x ∈ SE . A Banach space E is
said to be strictly convex if x, y ∈ SE and x ̸= y imply ∥x+ y∥ < 2; E is said to
be uniformly convex if for any ϵ > 0 there exists δ > 0 such that x, y ∈ SE and
∥x− y∥ ≥ ϵ imply ∥x+ y∥ /2 ≤ 1 − δ. It is known that if E is uniformly convex,
then E is strictly convex and reflexive; see [26].

Let E be a strictly convex reflexive Banach space and C a nonempty closed
convex subset of E. It is known that for each x ∈ E there exists a unique point
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Such a point z is denoted by Px.
This defines a mapping P of E onto C and P is said to be the metric projection of
E onto C.

Let C be a nonempty subset of E and T : C → E a mapping. The set of
fixed points of T is denoted by F(T ). A mapping T is said to be nonexpansive
if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.

Let C be a nonempty subset of E, K a nonempty subset of C, and Q a mapping
of C onto K. Then Q is said to be a retraction if Qx = x for all x ∈ K; Q is
said to be sunny if Q

(
Qx + λ(x − Qx)

)
= Qx holds whenever x ∈ C, λ ≥ 0, and

Qx + λ(x − Qx) ∈ C; K is said to be a sunny nonexpansive retract of C if there
exists a sunny nonexpansive retraction [18] of C onto K; see also [15,16].

Using [15, Lemma 13.1] or [26, Lemma 5.1.6], we obtain the following; we give
the proof for the sake of completeness.

Lemma 2.1. Let E be a smooth Banach space, C a subset of E, K a nonempty
subset of C, and Q : C → K a mapping. Suppose that

⟨x−Qx, J(z −Qx)⟩ ≤ 0

for all x ∈ C and z ∈ K. Then Q is a sunny nonexpansive retraction of C onto K.

Proof. We first show that Q is a retraction. Let z ∈ K. Then z ∈ C. Thus, by
assumption, we have ∥z −Qz∥2 = ⟨z −Qz, J(z −Qz)⟩ ≤ 0, and hence z = Qz. As
a result, we conclude that Q is a retraction of C onto K.
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We next show that Q is nonexpansive. Let x, y ∈ C. Then Qx,Qy ∈ K. Since

⟨x−Qx, J(Qy −Qx)⟩ ≤ 0 and ⟨y −Qy, J(Qx−Qy)⟩ ≤ 0,

we have ⟨Qx−Qy − (x− y), J(Qx−Qy)⟩ ≤ 0, and hence,

∥Qx−Qy∥2 ≤ ⟨x− y, J(Qx−Qy)⟩ ≤ ∥x− y∥ ∥Qx−Qy∥ .

This shows that Q is nonexpansive.
We lastly show that Q is sunny. Let x ∈ C and t ≥ 0 such that zt = Qx+ t(x−

Qx) ∈ C. It is enough to show that Qzt = Qx. Taking into account Qx,Qzt ∈ K,
we obtain

(2.2) ⟨x−Qx, J(Qzt −Qx)⟩ ≤ 0 and ⟨zt −Qzt, J(Qx−Qzt)⟩ ≤ 0.

Since t(x−Qx) = zt −Qx, it follows from (2.2) that

0 ≥ t ⟨x−Qx, J(Qzt −Qx)⟩+ ⟨Qzt − zt, J(Qzt −Qx)⟩

= ⟨t(x−Qx) +Qzt − zt, J(Qzt −Qx)⟩ = ∥Qzt −Qx∥2 .

Therefore, Qzt = Qx. This completes the proof. □

Let A be a set-valued mapping of E into E. The domain of A is denoted by
D(A), the range of A by R(A), and the set of zeros of A by A−10, that is, D(A) =
{x ∈ E : Ax ̸= ∅}, R(A) =

∪
{Ax : x ∈ D(A)}, and A−10 = {x ∈ D(A) : 0 ∈ Ax}.

We say that A is an accretive operator on E if for any x, y ∈ D(A), u ∈ Ax, and
v ∈ Ay there exists j ∈ J(x − y) such that ⟨u− v, j⟩ ≥ 0; an accretive operator A
is m-accretive if R(I + λA) = E for all λ > 0.

Example 2.2 ([26, Theorem 4.6.4]). Let C be a nonempty closed convex subset
of a Banach space E and T : C → C a nonexpansive mapping. Then I − T is an
accretive operator on E and C = D(I − T ) ⊂ R

(
I + λ(I − T )

)
for all λ > 0.

Let A be an accretive operator on E and λ a positive real number. It is known
that (I + λA)−1 is a single-valued mapping of R(I + λA) onto D(A). The mapping
(I + λA)−1 is said to be the resolvent of A and is denoted by Jλ. It is also known
that Jλ is nonexpansive, F(Jλ) = A−10, and

(2.3)
x− Jλx

λ
∈ AJλx

for all λ > 0 and x ∈ R(I + λA); see [26].
Using (2.3), we obtain the following lemma:

Lemma 2.3. Let E be a smooth Banach space, A an accretive operator on E with
a zero, {sn} a positive sequence such that sn → ∞, x ∈

∩
λ>0R(I + λA), and

z ∈ A−10. Suppose that Jsnx → y ∈ E. Then ⟨y − x, J(y − z)⟩ ≤ 0.

Proof. Since
(I − Jsn)x

sn
∈ AJsnx
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by (2.3), 0 ∈ Az, and A is accretive, it follows that⟨
x− Jsnx

sn
− 0, J (Jsnx− z)

⟩
≥ 0.

As a result, we see that ⟨Jsnx− x, J (Jsnx− z)⟩ ≤ 0 for all n ∈ N. Thus we have

⟨y − x, J(y − z)⟩ ≤ 0

because Jsnx → y and J is norm-to-weak* continuous. □
Let ℓ∞ be the Banach space of bounded sequences in R with the supremum

norm. It is known that there exists a bounded linear functional µ on ℓ∞ such that
the following conditions hold: ∥µ∥ = 1; if tn = 1 for every n ∈ N, then µ({tn}) = 1;
µ({tn+1}) = µ({tn}) for all {tn} ∈ ℓ∞. Such a functional µ is said to be a Banach
limit and µ({tn}) is denoted by Limn tn for {tn} ∈ ℓ∞. We know that

lim inf
n

tn ≤ Lim
n

tn ≤ lim sup
n

tn and
∣∣∣Lim

n
tn

∣∣∣ ≤ Lim
n

|tn|

for all {tn} ∈ ℓ∞. We also know that if {sn}, {tn} ∈ ℓ∞ and sn ≤ tn for all n ∈ N,
then Limn sn ≤ Limn tn; see [26].

We need the following lemma. For the sake of completeness, we give the proof.

Lemma 2.4. Let C be a nonempty convex subset of a Banach space E, {xn} a

bounded sequence in E, and g : C → R a function defined by g(y) = Limn ∥xn − y∥2
for y ∈ C. Then g is convex and continuous.

Proof. Let y, z ∈ C and λ ∈ [0, 1]. Since ∥ · ∥2 is convex, we have∥∥xn − [λy + (1− λ)z]
∥∥2 ≤ λ ∥xn − y∥2 + (1− λ) ∥xn − z∥2 ,

and hence

g
(
λy + (1− λ)z

)
≤ Lim

n

(
λ ∥xn − y∥2 + (1− λ) ∥xn − z∥2

)
= λg(y) + (1− λ)g(z).

Therefore, g is convex. We also have∣∣∣∥xn − y∥2 − ∥xn − z∥2
∣∣∣ ≤ (∥xn − y∥+ ∥xn − z∥)

∣∣∥xn − y∥ − ∥xn − z∥
∣∣

≤ (2 ∥xn − y∥+ ∥y − z∥) ∥y − z∥ .
Thus it follows that

|g(y)− g(z)| =
∣∣∣Lim

n

(
∥xn − y∥2 − ∥xn − z∥2

)∣∣∣
≤ Lim

n

∣∣∣∥xn − y∥2 − ∥xn − z∥2
∣∣∣ ≤ (

2g(y) + ∥y − z∥
)
∥y − z∥ .

This shows that g is continuous. □
We also need the following lemma, which is a direct consequence of [26, Theorem

1.3.11]:

Lemma 2.5. Let E be a reflexive Banach space, C a nonempty closed convex subset
of E, and g : C → R a convex continuous function. Suppose that g(xn) → ∞
whenever {xn} is a sequence in C such that ∥xn∥ → ∞. Then there exists u ∈ C
such that g(u) = inf g(C).
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3. Convergence theorems for resolvents of an accretive operator

In this section, we first prove a strong convergence theorem for resolvents of an
accretive operator in a Banach space, which is a variant of [23, Theorem 1] and [28,
Theorem 1]. Then we obtain convergence results for an m-accretive operator and a
nonexpansive mapping as corollaries of the theorem.

Theorem 3.1. Let E be a strictly convex reflexive Banach space whose norm is
uniformly Gâteaux differentiable, A an accretive operator on E with a zero, and C
a nonempty closed convex subset of E. Suppose that there exists η > 0 such that
Jη(C) ⊂ C, where Jη = (I + ηA)−1, and that

(3.1) D(A) ⊂ R(I + λA) and C ⊂ R(I + λA)

for all λ > 0. Then

(1) for each x ∈ C the strong limt→∞ Jtx exists and the limit is a point in
A−10 ∩ C, where Jt = (I + tA)−1 for t > 0.

Moreover, let Q : C → A−10 ∩ C be a mapping defined by Qx = limt→∞ Jtx for
x ∈ C. Then

(2) ⟨x−Qx, J(z −Qx)⟩ ≤ 0 for all x ∈ C and z ∈ A−10 ∩ C;
(3) Q is a sunny nonexpansive retraction of C onto A−10 ∩ C.

To prove Theorem 3.1 above, we need the following lemmas:

Lemma 3.2. Let E be a reflexive Banach space, C a nonempty closed convex subset
of E, A an accretive operator on E with a zero, x a point in C, and {sn} a positive
sequence such that sn → ∞. Suppose that there exists η > 0 such that Jη(C) ⊂ C,
and that (3.1) holds for all λ > 0. Then

(1) {Jsnx} is bounded.

Moreover, let g : C → R be a function defined by g(y) = Limn ∥Jsnx− y∥2 for y ∈ C,
r0 = inf{g(y) : y ∈ C}, and K = {y ∈ C : g(y) = r0}, where Limn is a Banach limit.
Then

(2) K is a nonempty closed convex subset of E;
(3) Jη(K) ⊂ K.

Proof. We first show (1). Let u ∈ A−10. Since u = Jsnu and Jsn is nonexpansive,
it follows that

∥Jsnx∥ ≤ ∥Jsnx− Jsnu∥+ ∥Jsnu∥ ≤ ∥x− u∥+ ∥u∥

for all n ∈ N. Therefore, {Jsnx} is bounded.
We next show (2). By virtue of (1), the function g is well-defined. Lemma 2.4

shows that g is continuous and convex. Set xn = Jsnx and let {zm} be a sequence
in C such that ∥zm∥ → ∞. Then it follows that

g(zm) = Lim
n

∥xn − zm∥2

≥ Lim
n

(
−2 ∥xn∥ ∥zm∥+ ∥zm∥2

)
= −2 ∥zm∥Lim

n
∥xn∥+ ∥zm∥2 → ∞
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as m → ∞. Thus Lemma 2.5 implies that K ̸= ∅. Since K = {y ∈ C : g(y) ≤ r0},
C is both closed and convex, and g is both lower semicontinuous and convex, we
see that K is a closed convex subset of E.

Lastly, we show (3). Set xn = Jsnx and yn = (x − xn)/sn. Then (2.3) shows
that xn + ηyn ∈ (I + ηA)xn, and hence Jη(xn + ηyn) = xn. Since xn ∈ D(A) ⊂
R(I + ηA) = D(Jη) by assumption and Jη is nonexpansive, it follows from (1) that

∥xn − Jηxn∥ = ∥Jη(xn + ηyn)− Jηxn∥

≤ ∥xn + ηyn − xn∥ = η

∥∥∥∥x− xn
sn

∥∥∥∥ ≤ η

sn

(
∥x∥+ ∥xn∥

)
→ 0

as n → ∞. Let z ∈ K. Taking into account Jη(C) ⊂ C, we see that Jηz ∈ C. Thus
we have

g(Jηz) ≤ Lim
n

(
∥xn − Jηxn∥+ ∥Jηxn − Jηz∥

)2
≤ Lim

n

[
∥xn − Jηxn∥

(
∥xn − Jηxn∥+ 2 ∥xn − z∥

)
+ ∥xn − z∥2

]
= Lim

n
∥xn − z∥2 = g(z) = r0.

Therefore we conclude that Jηz ∈ K. □

Lemma 3.3. Under the assumptions of Lemma 3.2, suppose that E is smooth and
strictly convex, and let P be the metric projection of E onto K and u ∈ A−10. Then

(1) Pu ∈ A−10 ∩ C;
(2) Limn ⟨Jsnx− x, J(Jsnx− Pu)⟩ ≤ 0.

Proof. We first show (1). It follows from Lemma 3.2 (2) that P is well-defined.
Taking into account Pu ∈ K, we have Pu ∈ C ⊂ R(I + ηA) = D(Jη). Since
u ∈ A−10 = F(Jη) and Jη is nonexpansive, we have

∥JηPu− u∥ = ∥JηPu− Jηu∥ ≤ ∥Pu− u∥ .

On the other hand, Lemma 3.2 (3) implies that JηPu ∈ K. Hence JηPu = Pu,
that is, Pu ∈ F(Jη). This shows that Pu ∈ A−10, and thus Pu ∈ A−10 ∩ C.

We next show (2). It follows from (1) that Pu ∈ A−10, and hence 0 ∈ APu.
Set xn = Jsnx. Since (x − xn)/sn ∈ Axn by (2.3), 0 ∈ APu, and A is accre-
tive, we have ⟨(x− xn)/sn − 0, J(xn − Pu)⟩ ≥ 0. As a result, it turns out that
⟨xn − x, J(xn − Pu)⟩ ≤ 0 for all n ∈ N. Therefore we conclude that

Lim
n

⟨xn − x, J(xn − Pu)⟩ ≤ lim sup
n

⟨xn − x, J(xn − Pu)⟩ ≤ 0. □

Using lemmas above and Lemma 2.3, we complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We first show (1). Let {tm} be a positive sequence such that
tm → ∞ and x ∈ C. It is enough to verify that {Jtmx} converges strongly to some
point in A−10 ∩ C as m → ∞. Now we confirm that for any subsequence {xn}
of {Jtmx} there exists a subsequence {xni} of {xn} which converges to a point in
A−10∩C, and that the limit does not depend on {xn}. Let {xn} be a subsequence
of {Jtmx}. Then we know that there exists a subsequence {sn} of {tm} such that
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xn = Jsnx for all n ∈ N, and moreover, it is clear that sn → ∞. Let g and K be
the same as in Lemma 3.2, P the metric projection of E onto K, and u ∈ A−10.
Taking into account Pu ∈ K, we have g(Pu) = inf{g(y) : y ∈ C}. Thus [28, Lemma
1] implies that

(3.2) Lim
n

⟨x− Pu, J(Jsnx− Pu)⟩ ≤ 0.

Since xn = Jsnx, it follows from Lemma 3.3 (2) and (3.2) that

0 ≤ g(Pu) = Lim
n

⟨xn − Pu, J(xn − Pu)⟩

= Lim
n

⟨xn − x, J(xn − Pu)⟩+ Lim
n

⟨x− Pu, J(xn − Pu)⟩ ≤ 0.

Therefore, g(Pu) = 0, and hence

0 ≤ lim inf
n

∥xn − Pu∥2 ≤ Lim
n

∥xn − Pu∥2 = 0.

Thus we deduce from Lemma 3.3 (1) that there exists a subsequence {xni} of
{xn} which converges strongly to some point in A−10 ∩ C, that is, there exists
a subsequence {sni} of {sn} such that

{
Jsni

x
}

converges strongly to some point

v ∈ A−10∩C. Let {yk} be a subsequence of {Jtmx}. Similarly, we know that there
exists a subsequence {rk} of {tm} such that yk = Jrkx for all k ∈ N, and moreover,
we also deduce that there exists a subsequence

{
rkj

}
of {rk} such that

{
Jrkjx

}
converges strongly to some point w ∈ A−10 ∩ C. Hence Lemma 2.3 implies that

∥v − w∥2 = ⟨v − x, J(v − w)⟩+ ⟨w − x, J(w − v)⟩ ≤ 0.

Consequently, v = w. Therefore we conclude that {Jtmx} converges strongly to
some point in A−10 ∩ C.

We next show (2) and (3). Let {tm} be a positive sequence such that tm → ∞,
x ∈ C, and z ∈ A−10∩C. Then, by assumption, x ∈ R(I +λA) for all λ > 0. Since
Jtmx → Qx as m → ∞, Lemma 2.3 implies that ⟨x−Qx, J(z −Qx)⟩ ≤ 0. Thus
(2) holds, and (3) follows from Lemma 2.1. □

Remark 3.4. It is known that Q in Theorem 3.1 is the unique sunny nonexpansive
retraction of C onto A−10 ∩ C; see [15, Lemma 13.1].

As a direct consequence of Theorem 3.1, we obtain the following corollary:

Corollary 3.5. Let E be the same as in Theorem 3.1, A an m-accretive operator
on E with a zero, and x ∈ E. Then the strong limt→∞ Jtx exists and the limit
w is a point in A−10 such that ⟨x− w, J(z − w)⟩ ≤ 0 for all z ∈ A−10, where
Jt = (I + tA)−1 for t > 0.

Proof. Set C = E. Then it is clear that C is a nonempty closed convex subset of
E. Since A is m-accretive, Jλ(C) ⊂ C and (3.1) hold for all λ > 0. Therefore
Theorem 3.1 implies the conclusion. □

We also obtain the following corollary. Similar results can be found in [15,19,23,
26].
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Corollary 3.6. Let E be a strictly convex reflexive Banach space whose norm is
uniformly Gâteaux differentiable, C a nonempty closed convex subset of E, T : C →
C a nonexpansive mapping with a fixed point, u a point in C, and zs a point in C
such that zs = su+ (1− s)Tzs for s ∈ (0, 1). Then zs → Qu as s ↓ 0, where Q is a
sunny nonexpansive retraction of C onto F(T ).

Proof. Set A = I − T . Then Example 2.2 implies that A is an accretive operator
and C = D(A) ⊂ R

(
I + λA

)
for all λ > 0. It is not hard to verify that Jtu = zs

for all s ∈ (0, 1), where t = 1/s − 1 and Jt = (I + tA)−1. Since A−10 = F(T ) and
t → ∞ as s ↓ 0, Theorem 3.1 implies the conclusion. □

4. Approximation of common fixed points of strongly nonexpansive
sequences

In this section, we derive some strong convergence results from Corollary 3.6.
Before describing the results, we need some preliminaries. Recall that a Banach

space E is said to have the fixed point property for nonexpansive mappings if every
nonexpansive self-mapping of a bounded closed convex subset K of E has a fixed
point inK; see [20,22]. Let C be a nonempty subset of a Banach space E, T : C → E
a mapping, {Sn} a sequence of mappings of C into E, and F the set of common fixed
points of {Sn}, that is, F =

∩∞
n=1 F(Sn). Recall that {Sn} is said to be a strongly

nonexpansive sequence [4, 7, 8] if each Sn is nonexpansive and xn − yn − (Snxn −
Snyn) → 0 whenever {xn} and {yn} are sequences in C, {xn − yn} is bounded,
and ∥xn − yn∥ − ∥Snxn − Snyn∥ → 0; {Sn} is said to satisfy the NST condition (I)
with T [17, 27] if F is nonempty, F(T ) ⊂ F , and xn − Txn → 0 whenever {xn} is
a bounded sequence in C and xn − Snxn → 0. We know that if {Sn} satisfies the
NST condition (I) with T , then F(T ) = F ; see [12, Remark 2.4].

Using Corollary 3.6 and [12, Lemma 3.3], we obtain the following strong conver-
gence theorem for a strongly nonexpansive sequence:

Theorem 4.1. Let E be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, C a nonempty closed convex subset of E, {Sn} a strongly nonexpan-
sive sequence of self-mappings of C, T a nonexpansive self-mapping of C, {αn} a
sequence in (0, 1], u a point in C, and {xn} a sequence defined by x1 ∈ C and

xn+1 = αnu+ (1− αn)Snxn

for n ∈ N. Suppose that αn → 0,
∑∞

n=1 αn = ∞, and {Sn} satisfies the NST
condition (I) with T . If either

(1) E is strictly convex or
(2) E has the fixed point property for nonexpansive mappings,

then {xn} converges strongly to Qu, where Q is a sunny nonexpansive retraction of
C onto F(T ) =

∩∞
n=1 F(Sn).

Proof. In the case of (2), we directly obtain the conclusion from [12, Theorem 3.1].
Suppose that (1) holds and let zs be a unique point in C such that zs = su+(1−s)Tzs
for s ∈ (0, 1). Then it follows from Corollary 3.6 that zs → Qu as s ↓ 0. Therefore
[12, Lemma 3.3] implies the conclusion. □
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Remark 4.2. For more information about strong nonexpansiveness for a sequence
of mappings; see [1–5,7–12].

It is known that a uniformly convex Banach space is strictly convex and reflexive.
Thus the following corollary is a direct consequence of Theorem 4.1.

Corollary 4.3 ([12, Corollary 3.4]). Let E be a uniformly convex Banach space
whose norm is uniformly Gâteaux differentiable. Let C, {Sn}, T , {αn}, u, {xn},
and Q be the same as in Theorem 4.1. Then {xn} converges strongly to Qu.

Remark 4.4. We can apply Corollary 4.3 to explicit iterative methods for

• the common fixed point problem of a sequence of nonexpansive mappings;
• the zero point problem of an accretive operator;

see [11, Theorem 3.1] and [12, Theorems 4.1 and 4.5] for more details.

Lastly, we deal with a strong convergence result for a strongly nonexpansive
mapping. Let C be a nonempty subset of a Banach space E and T : C → E a
mapping. Recall that T is said to be strongly nonexpansive [13] if T is nonexpansive
and xn−yn−(Txn−Tyn) → 0 whenever {xn} and {yn} are sequences in C, {xn−yn}
is bounded, and ∥xn − yn∥ − ∥Txn − Tyn∥ → 0. It is clear that if T is a strongly
nonexpansive mapping with a fixed point and Sn = T for all n ∈ N, then {Sn} is
a strongly nonexpansive sequence and {Sn} satisfies the NST condition (I) with T .
Therefore Theorem 4.1 leads to the following:

Corollary 4.5. Let E, C, {αn}, and u be the same as in Theorem 4.1, T : C → C
a strongly nonexpansive mapping with a fixed point, and {xn} a sequence defined by
x1 ∈ C and

xn+1 = αnu+ (1− αn)Txn

for n ∈ N. Then {xn} converges strongly to Qu, where Q is a sunny nonexpansive
retraction of C onto F(T ).

Remark 4.6. Corollary 4.5 is a generalization of [24, Theorem 4]; see [12, Remark
3.7].
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