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A WEAK CONVERGENCE THEOREM UNDER MANN’S
ITERATION FOR GENERALIZED NONEXPANSIVE MAPPINGS
IN A BANACH SPACE

WATARU TAKAHASHI

ABSTRACT. In this paper, using the idea of Mann’s iteration, we prove a weak
convergence theorem for finding a common element of the fixed point sets of two
generalized nonexpansive mappings and the zero point set of a maximal monotone
operator in a Banach space. We apply this theorem to get well-known and new
weak convergence theorems which are connected with generalized nonexpansive
mappings and maximal monotone operators in Hilbert spaces and in Banach
spaces.

1. INTRODUCTION

Let E be a smooth Banach space and let £* be the dual space of E. Let C be a
nonempty subset of £ and let T" be a mapping of C' into E. We denote the set of
fixed points of T' by F(T'). A mapping T : C' — FE is called generalized nonexpansive
[6] if F(T) # () and

Tz, z) < ¢(x,2), Vel ze€ F(T),

where ¢(z,y) = ||z||? —2(z, Jy) + ||y||? for all 2,y € E and J is the duality mapping
of E.

In 1953, Mann [17] introduced the following iteration process. Let C be a
nonempty, closed and convex subset of a Banach space E and let T' : C' — C
be a nonexpansive mapping, that is, |7z — Ty|| < ||z — y|| for all 2,y € C. For an
initial guess x1 € C, an iteration process {z,} is defined recursively by

Tp41 = QpTp + (1 - Oén)Tl'n, Vn € N,

where {a,} is a sequence in [0,1]. Later, Reich [20] discussed Mann’s iteration
process in a uniformly convex Banach space with a Fréchet differentiable norm and
he obtained that the sequence {z,} converges weakly to a fixed point of 7" under
some conditions. On the other hand, Ibaraki and Takahashi [7] proved a weak
convergence theorem under Mann’s iteration process for generalized nonexpansive
mappings in a smooth and uniformly convex Banach space.
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In this paper, using the idea of Mann’s iteration, we prove a weak convergence
theorem for finding a common element of the fixed point sets of two generalized
nonexpansive mappings and the zero point set of a maximal monotone operator
in a Banach space. We apply this result to get well-known and new weak conver-
gence theorems which are connected with generalized nonexpansive mappings and
maximal monotone operators in Hilbert spaces and in Banach spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-,-) and
norm || - ||, respectively. We have from [24] that

(2.1) Iha + (1= Nyll* = Alz]* + (1 = Nlyl* = A1 = Nz - y]*

for all x,y € H and A € R. Furthermore, we have that for z,y,u,v € H,

(2.2) 20z —y,u—v) = e — ol + |y —ul® — llz — ul]* — [ly — >

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C' is denoted by Pc, that is, ||z — Poz|| < ||z — y|| for

all z € H and y € C. Such Pg is called the metric projection of H onto C'. We
know that the metric projection Pg is firmly nonexpansive, i.e.,

(2.3) |Pox — Poy||* < (Pex — Poy,z —y)

for all ,y € H. Furthermore (x — Pox,y— Pcx) < 0 holds for all z € H and y € C;
see [24].

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at © € E by (z,y*). When {z,} is a sequence
in FE, we denote the strong convergence of {z,,} to x € FE by x,, — x and the weak
convergence by x, — x. The modulus ég of convexity of E is defined by

o(0) = int {1 2oy < 1yl < 1o -0l 2
for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if

dp(€) > 0 for every e > 0. A uniformly convex Banach space is strictly convex and
reflexive. The duality mapping Jg from E into 2F" is defined by

Jpr ={a" € E*: (z,2") = ||z||* = ||=*[|*}

for every x € E. We also denote Jg by J simply. Let U = {x € E : ||z|| = 1}. The
norm of F is said to be Gateaux differentiable if for each z,y € U, the limit

- ety o]

t—0 t

exists. In this case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E*. The norm of F is said to be Fréchet
differentiable if for each x € U, the limit (2.4) is attained uniformly for y € U. The
norm of E is said to be uniformly smooth if the limit (2.4) is attained uniformly for
xz,y € U. If E is uniformly smooth, then J is uniformly norm-to-norm continuous
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on each bounded subset of E. We also know that E is reflexive if and only if J
is surjective, and F is strictly convex if and only if J is one-to-one. Therefore,
if F is a smooth, strictly convex and reflexive Banach space, then J is a single-
valued bijection and in this case, the inverse mapping J ! coincides with the duality
mapping J, on E*. For more details, see [22, 23]. We know the following result.

Lemma 2.1 ([22]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x —y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (v —y, Jx — Jy) = 0, then x = y.

Let E be a smooth Banach space. The function ¢: F X E — (—o00,c0) is defined
by
(2.5) ¢z, y) = llzl® = 2(z, Jy) + Ily|*

for z,y € E, where J is the duality mapping of E; see [1, 12]. We have from the
definition of ¢ that

(2.6) O(z,y) = o(x,2) + ¢(2,9) + 2w — 2, Jz = Jy)

for all z,y,2 € E. From (||lz| — ||lyl})?* < ¢(z,y) for all z,y € E, we can see that
¢(x,y) > 0. Furthermore, we can obtain the following equality:

(2.7) 20z —y,Jz — Jw) = d(z,w) + ¢y, 2) — ¢(,2) — oy, w)

for x,y,z,w € E. If E is additionally assumed to be strictly convex, then from
Lemma 2.1 we have

(2.8) o(x,y) =0z =y.

Let E be a smooth, strictly convex and reflexive Banach space. Let ¢, : E* x E* —
(—00,00) be the function defined by

Ge(@”,y*) = la*|? = 20Ty ") + [y )12
for all x*,y* € E*, where J is the duality mapping of E. It is easy to see that

for all ,y € E. The following lemma which was by Kamimura and Takahashi [12]
is well-known.

Lemma 2.2 ([12]). Let E be a smooth and uniformly convexr Banach space and
let {xn} and {y,} be sequences in E such that either {x,} or {yn} is bounded. If
limp o0 ¢(Tn, yn) = 0, then limy o0 |20 — ynll = 0.

The following lemmas are in Xu [28] and Kamimura and Takahashi [12].

Lemma 2.3 ([28]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convez function g : [0,00) — [0, c0)
such that g(0) = 0 and

Az + (1= Nyl < Allzll* + (1 = Myl = A1 = Ng(llz - yl)
for all z,y € By and X\ with 0 < X\ <1, where B, ={z € E: ||z|| < r}.
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Lemma 2.4 ([12]). Let E be a smooth and uniformly conver Banach space and

let r > 0. Then there exists a strictly increasing, continuous and convezr function
g:10,2r] = R such that g(0) =0 and

g(lz —yl) < é(z,y)
for all x,y € B,, where B, ={z € E : ||z|]| <r}.

Let E be a smooth Banach space and let C' be a nonempty subset of £. Then a
mapping T : C — E is called generalized nonexpansive [6] if F(T) # () and

¢(Tx,y) < ¢(z,y)

for all x € C and y € F(T). Let D be a nonempty subset of a Banach space E. A
mapping R : F — D is said to be sunny [19] if

R(Rx +t(x — Rz)) = Rz

for all x € EF and t > 0. A mapping R : E — D is said to be a retraction or
a projection if Rx = x for all x € D. A nonempty subset D of a smooth Banach
space E is said to be a generalized nonexpansive retract (resp. sunny generalized
nonexpansive retract) of E if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) R from E onto D; see [5, 6] for
more details. The following results are in Ibaraki and Takahashi [6].

Lemma 2.5 ([6]). Let C be a nonempty closed sunny generalized nonerpansive
retract of a smooth and strictly convex Banach space E. Then the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.6 ([6]). Let C be a nonempty and closed subset of a smooth and strictly
convexr Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (z,z) € E x C. Then the following hold:

(i) z = Rz if and only if (x — z,Jy — Jz) <0 for ally € C;

(i) 6(Rz,2) + o(a, Re) < o(w, 2).

In 2007, Kohsaka and Takahashi [14] proved the following results:

Lemma 2.7 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C' be a nonempty and closed subset of E. Then the following are equivalent:
(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and conver.

Lemma 2.8 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let
R be the sunny generalized nonexpansive retraction from E onto C and let (z,z) €
E x C. Then the following are equivalent:

(i) z = Rx;

(ii) ¢(z,2) = minyecd(z,y).

Using Lemma 2.7 , we also have the following result.
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Lemma 2.9. Let E be a smooth, strictly conver and reflexive Banach space and let
{Cy} be a family of sunny generalized nonexpansive retracts of E. Then NaCy is a
sunny generalized nonexpansive retract of E.

Let E be a Banach space and let B be a mapping of of F into 2¢". A multi-valued
mapping B on E is said to be monotone if (x — y,u* —v*) > 0 for all u* € Bz,
and v* € By. A monotone operator B on F is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [2]; see also [23, Theorem 3.5.4].

Theorem 2.10 ([2]). Let E be a smooth, strictly convex and reflexive Banach space
and let J be the duality mapping of E into E*. Let B be a monotone operator of E
into 2F". Then B is mazimal if and only if for any r > 0,

R(J+rB) = E*,
where R(J + rB) is the range of J + rB.

Let E be a smooth, strictly convex and reflexive Banach space and let B be a
maximal monotone operator of E into 2¥°. The set of null points of a maximal
monotone operator B is defined by B~'0 = {z € E: 0 € Bz}. We know that B~10
is closed and convex; see [23]. Let B C E* x E be a maximal monotone operator.
For all x € F and r > 0, we consider the following equation

T € x +rBJx,.

This equation has a unique solution x,.. We define J, by =, = J.x. Such J.,r > 0
is called the generalized nonexpansive resolvent [6, 8] of B.

From [6], we have thr following result for generalized nonexpansive resolvents in
a Banach space.

Lemma 2.11 ([6]). Let E be a smooth, strictly convex and reflexive Banach space
and let B C E* x E be a mazimal monotone operator. Let r > 0 and let J, be the
generalized nonexpansive resolvent of B. Then the following hold:

(i) F(J) = (BJ)~'0;
(i) o(z, Jrz) + ¢(Jrx,p) < ¢(,p). Vo € E, p € (BJ)~'0.

Furthermore, we can prove the following result for generalized nonexpansive re-
solvents in a Banach space.

Lemma 2.12. Let E be a smooth, strictly convex and reflexive Banach space and
let B C E* x E be a maximal monotone operator. Let r > 0 and let J. be the
generalized nonexpansive resolvent of B. Then

(2.10) (x — Jrx — (y — Jpy), JJrx — JJpy) > 0

forall z,y € E and r > 0,

Proof. Let x,y € F and r > 0. Put z, = J.x and y, = J,.y. Then we have that
x €x,+rBJz, and y € y, +rBJy,.
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Therefore, we get that
T — T,

€ BJz, and 2= ¢ By,
T

From the definition of B, we have that

<$_xr_y_yr
T T

Sy = Ty ) 2 0.
Since r > 0, we get that
( —ar — (y—yr), Jar — Jyr) 2 0.
This completes the proof. O

3. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem of Mann’s type iteration for
generalized nonexpansive mappings and maximal monotone operators in a Banach
space. Let E be a smooth Banach space and let Jg be the duality mapping of F.
Let D be a nonempty, closed and convex subset of E. A mapping U : D — FE is
called generalised demiclosed if for a sequence {x,} in D such that Jgx,, — Jgp
and Jgpx, — JgUx, — 0, it holds that p = Up. The following lemma was proved by
Matsushita and Takahashi [18].

Lemma 3.1 ([18]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convexr subset of E. Let T : C — FE be a
mapping with F(T) # 0 satisfying the following;

(3.1) d(z,Tx) < ¢(z,x), VexeC, ze F(T).
Then F(T) is closed and convez.

Using this result, we can prove the following lemma.

Lemma 3.2 ([9, 11]). Let E be a smooth, strictly conver and reflexive Banach space
and let C' be a nonempty, closed and convexr subset of E such that JgC' is closed
and convex. Let T : C — C be a generalized nonexpansive mapping with F(T) # 0,
that is;

(3.2) o(Tx,z) < ¢(z,2), VeelC, ze F(T).
Then F(T) is a sunny generalized nonexpansive retract of E.

Proof. Define the duality mapping T* of T by T+ = JgT ng. Then we have that
T is a mapping of JpC' into itself; see [4, 26]. We prove JpF(T) = F(T*). In fact,
we have that

2* eJpF(T) <= 2" = Jgz, z € F(T)
= "= JpTz = JpTJg Jpz = T* Jpz = T*%
— 2" € F(T™).
Furthermore, we have that, for z* = Jgz € F(T*) and z* = Jgz € JgC,
¢ (25 T*2*) = ¢u(Jpz, JET Iy Jpz)
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= ¢(TJg" Jgx,z) = (T, 2)
< ¢(z,2) = ¢«(Jpz, JpT)
= ¢u(2%,27)
and hence Tt satisfies (3.2). From Lemma 3.1, we have that F(T*) = JgF(T) is

closed and convex and hence F(T) is a sunny generalized nonexpansive retract of
E. O

The following is our main result.

Theorem 3.3. Let E be a uniformly conver and uniformly smooth Banach space
which the duality mapping Jg is weakly sequentially continuous. Let C be a
nonempty, closed and convexr subset of E such that JgC is closed and convex. Let
A C E* x E be a mazimal monotone operator satisfying D(A) C JgC and let J,, be
the generalized nonexpansive resolvent of A, i.e., J, = (I + pAJg)~t for all u > 0.
Let T and U be generalized nonexpansive mappings of C inti itself such that T and
U are generalized demiclosed. Suppose that

Q=FT)NFU)N(AJg)~10 # 0.
For any v1 =z € C, define {x,} as follows:
{yn =1 =rp)zp+r,UJdy,zn,
Tnt1 = (1= Bn)xn + BnTyn, VneN,
where {pn} C (0,00), {Bn} C (0,1), a,b,6,v € R and {r,} C (0,1) satisfy the
following:
0<a<pB,<b<1l,0<é6<r,<v<1 and 0<c<pu,, VneN.

Then the sequence {x,} converges weakly to an elementt zg € ), where zy =
limy, oo Rox, anf Rq is the sunny generalized nonexpansive retraction of E onto

Q.

Proof. Since T' and U are generalized nonexpansive, we have that from Lemma
3.2 that F(T) and F(U) are sunny generalized nonexpansive retracts of £. From
Lemma 2.11, we have that (AJg)~10 is a sunny generalized nonexpansive retract
of E. Then, from Lemma 2.9,

Q=FT)NFEU)N(AJE)0

is a sunny generalized nonexpansive retract of £ and hence there exists a unique

sunny generalized nonexpansive retraction of E. We define by R this retraction.
Let z € Q. Then we have that 2 =Tz, 2 = Uz and J,,,z = z for all n € N. Put

Yn = (L =rp)xn+r,UJy, x, and z, = Jy, x, for all n € N. We have that, for z € Q,

O (Yn,2) = d((L = 1rp)xy + Uz, 2)
= ||(1 = rp)zpn + raUz |
—2((1 = )@ + 1 Uzn, JE2) + |2
(3.3) < (1 =ra)lzall? +ralUz?
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—2(1 —rp)(@p, Jg2) — 2r (Uzn, Juz) + || 2]
= (1 —=rp)d(xn,2) + rnd(Uzy, 2)
< (1 = rp)@(zn, 2) + (20, 2)
= ¢(z,zp).
Similarly, we have that

¢(-Tn+1> ) ¢((1 - /Bn)xn + B2 TYn, z)

(1 - Bn)qs(xna Z) + 5n¢(Tyna Z)
(3'4) ( n)(b(xna z) + Bn¢(yna Z)
(1 - /Bn)d)(!rna Z) + ﬁan)(l‘n, Z)

= (Z)(:En, )

Then lim, o0 ¢(xn, 2) exists. Thus {z,}, {Uzn}, {yn} and {Ty,} are bounded.
Putting

r = max { sup|lzal, sup [Uzall, sup | Tyn },
neN neN neN
we have from Lemma 2.3 that there exists a strictly increasing, continuous and
convex function g : [0,00) — [0, 00) such that ¢g(0) = 0 and
1Az + (1= N)yl* < Allz]* + (1 = Myll* = A1 = Ng(llz — yl)

for all z,y € B, and A with 0 < XA <1, where B, = {z € E : ||z|| < r}. Using this,
we have that for n € N and z €

O (Yn,2) = d((L = rp)xy + 1 Uz, 2)
= | (1 = r)zn + rUz|)?
—2((1 = rp)xn + Uz, Jpz) + |2
<(1- Tn)H‘Tn”z + Tn”UZnHz — (1 = 1n)g([|[zn — Uzn|)
—2((1 = )@ + Uz, Jp2) + |2
=1 —=rp)o(xn, 2) + rndp(Uzy, 2)
— (1 = 1p)g([[2n — Uznl)
< (1 =rn)o(zn, 2) + rnd(an, 2)
— (1 = 1p)g([[2n — Uznl)
= @(n, z) = rn(1 = rn)g([|zn — Uznl)).
Similarly, we have that
P(xn+1,2) = ¢((1 = Bp)xn + BpTyn, 2)
= (1 = Bn)zn + BnTyn”Q
= 2((1 = Bp)xn + BuTyn, Jr2) + ||2]?
< (1= Ba)llzall® + BallTynll* = Ba(1 = Ba)g(llen — Tyal)
—2((1 = Bn)n + BuTyn, Juz) + |2
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= (1= Bn)p(xn, 2) + Bnd(Tyn, 2)
= Bn(1 = Bn)g(llzn = Tynl))

< (1= Bn)o(zn, 2) + Bnd(yn, 2)
= Bn(1 = Bn)g([lzn — Tynll)
< (1= Bn)é(zn, 2)
+ ﬁn(ﬁb(%w z) = (1 = 1n)g(||7n — UZnH))
= Bn(1 = Bu)g(llzn — Tynl))

= (T, 2) — Bnrn(1 —rn)g(||2n — Uan))
= Bn(L = Bu)g(llzn — Tynl))-

Therefore, we have that

Bl = B)g(2n = Tyall)- < 9z, 2) — 9lwns1, 2)

and

Burn(L = rn)g(lvn — Uznll) < ¢(2n, 2) — d(2ny1, 2)-
We have from 0 <a <, <b<land 0<é <r, <~v<1that

(3.5) lim g(||zn — Tynl|) =0 and lim g(||z, — Uzy||) = 0.
n—oo n—o0
From the properties of g, we have that
(3.6) lim ||z, — Tyn|| =0. and lim |z, — Uz,|| =0.
n—oo n—oo
From the definition of y,, we also have that
|Zn — ynll < rollzn — Uzl

Since limy, o0 ||xn, — Uzy|| = 0, we have that ||z, —y,|| — 0 and hence ||y, — Ty, | —
0. Since FE' is uniformly smooth, we have that

(3.7) 1 TEYyn — JETyYn|l = 0 and ||Jpzn — JpUszn| — 0.
Using z, = J,, n and Lemma 2.11, we have that, for z € Q,
A(Tn, 2n) = O(2n, J,unl’n) < P(xp, 2) — ¢(J,unxn,z) = ¢(Tn,2) — ¢(2n, 2).
It follows from (3.3) that

¢(l’n, Zn) < QZ)(Im Z) - ¢(Zna Z)
< ¢<xn, ) - }(¢<yn, )= (1= )0z, )

n

¢ Ln,y 2 yna ))

IN

~(

(lznll® = llynll* = 2(zn = Y, J52))
(lnll® =yl + 2[{zn = yn, J52)1)
~

S L Ll L

IN

lanll = lynlll(lnll + lynll) + 2012l lzn — yal)
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1
7(!\% = ynll(znll + lyall) + 2ll2llllzn — ynll)-

n
Since ||z, — yn|| — 0, we have that lim, o ¢(2n,z,) = 0. Since E is uniformly
convex and smooth, we have from Lemma 2.2 that

(3.8) lim |z, —z,|| = 0.

n—00
Since
20 — Uzn|l < |l2n — @ull + |27 — Uzl

we obtain that

(3.9) lim ||z, — Uzy,| = 0.
n—oo

Since {z,} is bounded, there exists a subsequence {z,,} of {z,} converging
weakly to w. Since the duality mapping Jg is weakly sequentially continuous,
{Jgxy,} convers weakly to Jpw Using lim, 0 ||Jpzn, — JEUz,|| = 0 and U is
generalized demiclosed, we have that w = Uw and hence w € F(U). Since T is
generalized demiclosed, we have from Jgy,, — Jrpw.and ||Jgy, — JETyn|| — O that
w € F(T). This implies that w € F(T) N F(U). Next, we show w € (AJg)~!0.

Since limy, o0 || — 2n|| = 0. we have from p,, > ¢ that
. 1
lim — ||z, — 2z,|| = 0.
n—oo /-‘L’I'L

Since the duality mapping Jg is weakly sequentially continuous, we have from ||z, —
zp|| = 0 that Jgz,, = Jpw. We also have from z, = J,, x, that

Tp — Zn
Hn

c AJgz,.

For (p*,p) € A, from the monotonicity of A, we have (p — xnu;j",p* —Jpzp) > 0 for
all n > 0. Replacing n by n; and letting i — oo, we get (p, p* — Jgw) > 0. From the
maximallity of A, we have 0 € AJgw and hence w € (AJg)~10, Therefore, w € Q.

We next show that if z,, — u and z,,; — v, then u = v. In fact, we have that

u,v € Q. Put a = limy,_,o0 (¢(zp, u) — (x4, v). Since
3@, w) = G(an, v) = 2w, Jgv — Jpu) + ||ul* — o],

we have a = 2(u, Jpv — Jpu) + ||[u||* — [|v||* and a = 2(v, Jgv — Jgu) + |Jul|® — ||Jv||?.
From these equalities, we obtain 2(u—wv, Jv—Ju) = 0 and hence (u—v, Ju—Jv) = 0.
From Lemma 2.1, it follows that u = v. Therefore, {z,} converges weakly to an
element zg € Q

Putting R = Rq, we hava from Lemma 2.6 and (3.4) that

¢(Tny1, Rrpy1) < ¢(wpy1, Ropy1) + ¢(Rrpyr, Roy)
< (b(xn—i-l; Rxn)
< (b(.%n, Rxn)
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for all n € N. Hence lim;,_, o0 ¢(xy, Rx,,) exists. It follows from Lemma 2.6 that, for
keN,

(Tt Ren) = ¢(Tniky Rntr) + SRt Rn)
+ 2(xptk — Rrpsk, JERTp1k — JERTy)

> ¢(Tpiks Rrpyr) + o(Repqr, Roy)

and hence

¢(Rxn+k:a Rmn) S ¢($n+k7 Rxn) - ¢(xn+ka Ranrk) S ¢($n, Rxn) - ¢(xn+k7 Ranrk:)
We also have from Lemma 2.6 that, for p € €,

Qb(Rxnap) < qi)(Rxn,p) + qb(xna RSUn) < qb(l‘n,p) < ¢($,p)

and hence {Rx,} is bounded. Using Lemma 2.4, we have that, for m,n € N with
m > n,

g/(||R$n — Rayl|) < ¢(Ran, Rey) < ¢(wn, Rrp) — ¢(m, Rem),

where ¢’ is a strictly increasing, continuous and convex function such that ¢’(0) =
0. The the properties of ¢’ yieeld that {Rxz,} ia a Cauchy sequence. Since FE is
complete, { Rz, } converges strongly to a point u € 2. Furthermore, we have from
Lemma 2.6 that

(xn — Rxy, JERxy — Jpz0) >0

Since x,, — 29, we have that
<Zo — U, JEU - JEZO) > 0

and hence ¢(zg,u) + ¢((u, z9) < 0. This implies that ¢(zp,u) = ¢(u, z9) = 0 and
hence u = zy. Therefore, zp = lim,,_,o Rz, = lim, o Rqx,. This completes the
proof. O

4. APPLICATIONS

In this section, using Theorem 3.3, we get well-known and new weak convergence
theorems of Mann’s type iteration which are connected with generalized nonexpan-
sive mappings and maximal monotone operators in Hilbert spaces and in Banach
spaces. We first prove a weak convergence theorem for finding a zero point of a
maximal monotone operator in a Banach space.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping Jg is weakly sequentially continuous. Let A C E* X E
be a maximal monotone operator and let J,, be a generalized nonexpansive resolvent
of A, i.e., J, = (I + pAJg)~t for all p > 0. Suppose that (AJg)~'0 # 0. For any
x1 =x € E, define {x,} as follows:

Tpal = ng ((1 —rp) BTy + rnJEJMnxn)
for alln € N, where {u,} C (0,00), §,7 € R and {r,} C (0,1) satisfy the following:

0<o<r,<v<1l and 0<c< pp, VnéeN.
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Then the sequence {x,} converges weakly to an elementt zo € (AJg)~'0, where
20 — limn_mo R(AJE)—10$n'

Proof. Putting C' = F and T'= U = I in Theorem 3.3, we obtain the desired result
from Theorem 3.3. g

Let E be a Banach space and let f : E — (—00, 0] be a proper, lower semicon-
tinuous and convex function. Define the subdifferential of f as follows:

Of(x) ={z" € E*: f(y) = (y —x,2") + f(z), Vy € E}

for all z € E. Then we know that df is a maximal monotone operator; see [21] for
more details. Let E be a smooth, strictly convex and reflexive Banach space. Let C
be a nonempty and closed subset of E such that JgC' is closed and convex. We have
from Lemma 2.7 that there exists the sunny generalized nonexpansive retraction R¢o
of E onto C'. We also have that, for the indicator function i;,c, that is,

. % 0, T* e JEC,
lj,cx” =
L oo, z*¢ JgC,
the subdifferential 0ij,c C E* x E is a maximal monotone operator and the gen-
eralized nonexpansive resolvent J, = R¢c of dij,c for every r > 0. In fact, for any
x € E and r > 0, we have from Lemma 2.8 that
z=Jrx & 2+ 1rdij,cJp(z) 5
& —zerdij,cJe(z)

r—z

(4.1) < ir,o(y) > <JEy — Jgz, > +isc(2), Vye E
< 0> (Jpy — Jpz,x —2z2), VYye C
&z = i
za%ﬂ@@w
&z = Reoz.

Using (4.1) and Theorem 3.3, we get the following weak convergence theorem for
two generalized nonexpansive mappings in a Banach space.

Theorem 4.2. Let E be a uniformly convexr and uniformly smooth Banach space
which the duality mapping Jg is weakly sequentially continuous. Let C be a nonempty,
closed and convex subset of E such that JgC' is closed and convex. Let T and U be
generalized nonexpansive mappings of C into itself such that

Q=F(T)NFU)#0.
For any x1 =z € C, define {z,} as follows:
{%_5%uﬂm@%+m@wm,
Tnp1 = J5" (1 = Bu)Jgan + BudgTyn), Vn €N,
where {Bn} C (0,1), a,b,0,7 € R and {r,} C (0,1) satisfy the following:
0<a<pB,<b<l and 0<é6<r,<y<1l, VneN.
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Then the sequence {x,} converges weakly to an element zy € S, where zg =

Proof. Putting A = 0ij,c in Theorem 3.3, we obtain that J,,, = R¢ for all p, > 0.
Therefore, we obtain the desired result from Theorem 3.3. O

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of
H. A mapping U : C — H is called generalized hybrid [13] if there exist o, 5 € R
such that

o||Uz — Uyl + (1 - a)llz = Uy|* < B|Uz — y|* + (1 = B) |z — y®

for all x,y € C. Such a mapping U is called («, ()-generalized hybrid. Notice that
the class of («, 5)-generalized hybrid mappings covers several well-known mappings.
For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[15, 16] for « =2 and B =1, i.e.,

2(Uz — Uyl* < Uz —y|? + |Uy — z||*, Va,y € C.
It is also hybrid [25] for a = % and 8 = %, ie.,
3|Uz — Uyl]* < |z — y* + Uz — y|* + Uy — 2|, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [10]. Let
k be a real number with 0 < k < 1. A mapping S : C — H is called a k-strict
pseudo-contraction [3] if

1Sz — Sy|* < ||z — y||* + kllz — Sz — (y — Sy)|I?

for all z,y € C. Putting U = kI + (1 — k)S, we have that U is nonexpansive. In
fact, we have from (2.1) that, for z,y € C and k € R with 0 < k < 1,

Uz — Uy|* = (kI + (1 = k)S)x — (kI + (1 - k)S)y|?
= |lk(z —y) + (1 — k)(Sz — Sy)|”

= kllz = y* + (1 = k)| Sz = Sy|I* = k(1 = k)||lz — y — (Sz — Sy)|*
< kllz = yl* + (1 = k)[[Sz — SylI* + (1 = k)(llz = y[|* — Sz — Sy||*)
= kllz = y* + (1 = k) |z - y|

2
= [z —yll*.
This implies that U is nonexpansive. We also know the following result obtained

by Kocourek, Takahashi and Yao [13]; see also [27].

Lemma 4.3 ([13, 27]). Let H be a Hilbert space, let C be a nonempty, closed and
conver subset of H and let U : C — H be generalized hybrid. If x, — z and
Xy — Uxy — 0, then z € F(U).

The following are two weak convergence theorems for two nonlinear mappings in
Hilbert spaces.
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Theorem 4.4. Let H bea Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let A C H x H be a mazximal monotone operator satisfying D(A) C C
and let J,, be the resolvent of A, i.e., J, = (I+pA)~t forallp > 0. LetT:C — C
be a nonspreading mapping and let U : C — C be a nonepansive mapping. Suppose
that

Q=F(T)NFU)NA0#0.
For any x1 = x € C, define {x,} as follows:
{yn =1 —rp)zp +r,Udy, 20,
Tnt1 = (1= Bn)xn + BpTyYn, Vn €N,
where {Br} C (0,1), a,b,0,7 € R and {r,} C (0,1) satisfy the following:
0<a<B,<b<1,0<6<r,<v<1 and 0<c< pp, VneN.

Then the sequence {x,} converges weakly to an element zo € ), where zp =
lim,, oo Poz, anf Pq is the metric projection of H onto €.

Proof. Since T is nonspreading of C' into C, it satisfies the following:
2Tz — Ty|® < || Tz — y|* + | Ty — «|®, Va,y e C.
Putting y = p for p € F(T'), we have that
2|Tz —pl® < Tz —pl* + |lp— 2|, VzeC
and hence
Tz —pl* < |lp—=|?, VzeC.
This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.3
that T is demiclosed. On the other hand, since U is a nonexpansive mapping of C

into C' such that F(U) # ), U is quasi-nonexpansive. Furthermore, from Lemma
4.3, U is demiclosed. Therefore, we have the desired result from Theorem 3.3. [

Theorem 4.5. Let H be a Hilbert space and let C' b4 a nonempty, closed and convex
subset of H. Let A C H x H be a maximal monotone operator satisfying D(A) C C
and let J,, be the resolvent of A, i.e., J, = (I 4+ pA)~! for all n > 0. Let k be a real
number with 0 < k < 1. Let T : C — C be a hybrid mapping and let S : C' — C' be
a k-strict pseudo-contraction. Suppose that

Q=F(T)NFES)NA0#0.
For any 1 =z € C, define {x,} as follows:
{yn =1 =rp)zp+rokl + (1 —k)S)Ju,Tn,
Tnt1 = (1 = Bp)xn + BnTyn, VneN,
where {6y} C (0,1), a,b,0,v € R and {r,} C (0,1) satisfy the following:
0<a<pB,<b<1l,0<6<r,<v<1 and 0<c< pp, VnéeN.

Then the sequence {x,} converges weakly to an elementt zy € ), where zy =
limy, o0 Poxyn anf Pq is the metric projection of H onto ).
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Proof. Since T is a hybrid mapping of C into C such that F(T') # (), it satisfies the
following:
3Tz — Ty|* < |l — yl* + | Tx — y|* + | Ty — x|, Va,yeC.
Putting y = p for p € F(T), we have that
3Tz —pl” < |l —p|* + Tz = p|* + lp — z[*, VeeC
and hence
1Tz —p|* < [lp - 2|*, VzeC

This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.3
that T' is demiclosed. Putting U = kI + (1 — k)5S, we have that U is nonexpansive

and demiclosed. Furthermore, we have F(S) = F(U). Therefore, we have the
desired result from Theorem 3.3. O

The following is a weak convergence theorems for finding a common element of
three sets of a Banach space.

Theorem 4.6. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping Jg of E is weakly sequentially continuous. Let C, D and
F' be nonempty, closed and convex subsets of E . Let Rc, Rp and Rp be the sunny
generalized nonexpansive retractions of E onto C, D and F, respectively. Suppose
that CNDNF # (. For any x1 = x € E, define {x,} as follows:

Yn = (L —1p)xy + rnRpRpxy,
{an = (1—-Bn)zn+ BnRcyn, YneN,
where {Br} C (0,1), a,b,0,7 € R and {r,} C (0,1) satisfy the following:
0<a<pB,<b<l and 0<6<r, <v<1l, VneN
Then the sequence {x,} converges weakly to an elementt zo € CNDNF, where zy =

lim,, 00 Ronpnrxn anf Ronpnr s the sunny gemeralized nonerpansive retraction
of E onto CNDNF.

Proof. Take A = 01, F in Theorem 3.3. Then we have that J,, = Rp for alln € N.
Furthermore, since R¢ is the sunny generalized nonexpansive retraction of E onto
C, we have from Lemma 2.6 that

d(Reoxz) < ¢p(x,2), VereE, z€C.
We show that R is generalized demiclosed. In fact, assume that Jpx, — Jgp a nd
Jpxn—JgpRoxy, — 0. It is clear that Jp Rox, — Jgp. Since E* is uniformly smooth,

we have that ||z, — Rcxy|| — 0. Since Rc is the sunny generalized nonexpansive
retraction of E onto C, we have from Lemma 2.12 and (4.1) that

(xn — Rcxn — (p — Rep), JERcxn — JERcp) > 0.

Therefore, (—(p — Rep), Jep — JeRep) > 0 and hence ¢(p, Rep) + ¢(Rep, p) < 0.
This implies that p = Rop and hence R¢ is generalized demiclosed.

Similarly, Rp is generalized nonexpansive and Rp is generalized demiclosed.
Therefore, we have the desired result from Theorem 3.3. O



330 WATARU TAKAHASHI

The following is a weak convergence theorems for finding a common point of zero
point sets of three maximal monotone operators of a Banach space.

Theorem 4.7. Let E be a uniformly convexr and uniformly smooth Banach space
which the duality mapping Jp of E is weakly sequentially continuous. Let A, B
and G be mazximal monotone operators of E* into E. Let J;4 be the generalized
nonexpansive resolvent of A for r > 0, let Jf be the generalized nonexpansive
resolvent of B for pu > 0 and let J)\G be the generalized nonexpansive resolvent of G
for X\ > 0, respectively. Suppose that

Q= (AJg)ton(BJp)~ton (GJg)~10 # 0.
For any x1 =z € E, define {x,} as follows:
{yn =1 —=rp)z, + TanJ;“:zn,
Tny1 = (1 — Bn)zy + 6anyn, Vn €N,
where {Br} C (0,1), a,b,0,7 € R and {r,} C (0,1) satisfy the following:
0<a<pB,<b<l and 0<6<r,<vy<1l, VneN.

Then the sequence {x,} converges weakly to an element zy € 2, where zy =

lim,, o0 Roxn anf Rq is the sunny generalized monexpansive retraction of E onto
Q.

Proof. Take p,, = r for r > 0 in Theorem 3.3. Then we have that J, fn = JA for all
n € N. Furthermore, since Jf is the generalized nonexpansive resolvent of B, we
have from Lemma 2.11 that

gb(Jfa:,z) < $(z,2), VxeE, ze (BJg) 0.
Next, we show that J f is generalized demiclosed. In fact, assume that Jgx,, — Jgp
and Jgx, — JEfon — 0. It is clear that JEfon — Jgp. Since E* is unifrmly
smooth, we have that ||z, —J, f Zp| — 0. Since Jf is the generalized nonexpansive
resolvent of B, we have from Lemma 2.12 that
(xn — fon —(p— pr), JEfon - JEpr) > 0.

Therefore, (—(p — pr), Jrp — JEpr) > 0 and hence ¢(p, pr) + (b(pr,p) <0.
This implies that p = J f p and hence J f is generalized demiclosed.

Similarly Jf is generalized nonexpansive and generalized demiclosed. Therefore,
we have the desired result from Theorem 3.3. O
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