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In this paper, using the idea of Mann’s iteration, we prove a weak convergence
theorem for finding a common element of the fixed point sets of two generalized
nonexpansive mappings and the zero point set of a maximal monotone operator
in a Banach space. We apply this result to get well-known and new weak conver-
gence theorems which are connected with generalized nonexpansive mappings and
maximal monotone operators in Hilbert spaces and in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and
norm ∥ · ∥, respectively. We have from [24] that

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2

for all x, y ∈ H and λ ∈ R. Furthermore, we have that for x, y, u, v ∈ H,

(2.2) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive, i.e.,

(2.3) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩

for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [24].

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δE of convexity of E is defined by

δE(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δE(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive. The duality mapping JE from E into 2E

∗
is defined by

JEx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. We also denote JE by J simply. Let U = {x ∈ E : ∥x∥ = 1}. The
norm of E is said to be Gâteaux differentiable if for each x, y ∈ U , the limit

(2.4) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E∗. The norm of E is said to be Fréchet
differentiable if for each x ∈ U , the limit (2.4) is attained uniformly for y ∈ U . The
norm of E is said to be uniformly smooth if the limit (2.4) is attained uniformly for
x, y ∈ U . If E is uniformly smooth, then J is uniformly norm-to-norm continuous
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on each bounded subset of E. We also know that E is reflexive if and only if J
is surjective, and E is strictly convex if and only if J is one-to-one. Therefore,
if E is a smooth, strictly convex and reflexive Banach space, then J is a single-
valued bijection and in this case, the inverse mapping J−1 coincides with the duality
mapping J∗ on E∗. For more details, see [22, 23]. We know the following result.

Lemma 2.1 ([22]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let E be a smooth Banach space. The function ϕ : E ×E → (−∞,∞) is defined
by

(2.5) ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for x, y ∈ E, where J is the duality mapping of E; see [1, 12]. We have from the
definition of ϕ that

(2.6) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩

for all x, y, z ∈ E. From (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) for all x, y ∈ E, we can see that
ϕ(x, y) ≥ 0. Furthermore, we can obtain the following equality:

(2.7) 2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w)

for x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then from
Lemma 2.1 we have

(2.8) ϕ(x, y) = 0 ⇐⇒ x = y.

Let E be a smooth, strictly convex and reflexive Banach space. Let ϕ∗ : E
∗×E∗ →

(−∞,∞) be the function defined by

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩+ ∥y∗∥2

for all x∗, y∗ ∈ E∗, where J is the duality mapping of E. It is easy to see that

(2.9) ϕ(x, y) = ϕ∗(Jy, Jx)

for all x, y ∈ E. The following lemma which was by Kamimura and Takahashi [12]
is well-known.

Lemma 2.2 ([12]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ ϕ(xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.

The following lemmas are in Xu [28] and Kamimura and Takahashi [12].

Lemma 2.3 ([28]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,∞) → [0,∞)
such that g(0) = 0 and

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)

for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.
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Lemma 2.4 ([12]). Let E be a smooth and uniformly convex Banach space and
let r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r] → R such that g(0) = 0 and

g(∥x− y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a smooth Banach space and let C be a nonempty subset of E. Then a
mapping T : C → E is called generalized nonexpansive [6] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y)

for all x ∈ C and y ∈ F (T ). Let D be a nonempty subset of a Banach space E. A
mapping R : E → D is said to be sunny [19] if

R(Rx+ t(x−Rx)) = Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction or
a projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth Banach
space E is said to be a generalized nonexpansive retract (resp. sunny generalized
nonexpansive retract) of E if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) R from E onto D; see [5, 6] for
more details. The following results are in Ibaraki and Takahashi [6].

Lemma 2.5 ([6]). Let C be a nonempty closed sunny generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.6 ([6]). Let C be a nonempty and closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (x, z) ∈ E × C. Then the following hold:

(i) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [14] proved the following results:

Lemma 2.7 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty and closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.8 ([14]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let
R be the sunny generalized nonexpansive retraction from E onto C and let (x, z) ∈
E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈Cϕ(x, y).

Using Lemma 2.7 , we also have the following result.
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Lemma 2.9. Let E be a smooth, strictly convex and reflexive Banach space and let
{Cα} be a family of sunny generalized nonexpansive retracts of E. Then ∩αCα is a
sunny generalized nonexpansive retract of E.

Let E be a Banach space and let B be a mapping of of E into 2E
∗
. A multi-valued

mapping B on E is said to be monotone if ⟨x − y, u∗ − v∗⟩ ≥ 0 for all u∗ ∈ Bx,
and v∗ ∈ By. A monotone operator B on E is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [2]; see also [23, Theorem 3.5.4].

Theorem 2.10 ([2]). Let E be a smooth, strictly convex and reflexive Banach space
and let J be the duality mapping of E into E∗. Let B be a monotone operator of E
into 2E

∗
. Then B is maximal if and only if for any r > 0,

R(J + rB) = E∗,

where R(J + rB) is the range of J + rB.

Let E be a smooth, strictly convex and reflexive Banach space and let B be a
maximal monotone operator of E into 2E

∗
. The set of null points of a maximal

monotone operator B is defined by B−10 = {z ∈ E : 0 ∈ Bz}. We know that B−10
is closed and convex; see [23]. Let B ⊂ E∗ × E be a maximal monotone operator.
For all x ∈ E and r > 0, we consider the following equation

x ∈ xr + rBJxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
is called the generalized nonexpansive resolvent [6, 8] of B.

From [6], we have thr following result for generalized nonexpansive resolvents in
a Banach space.

Lemma 2.11 ([6]). Let E be a smooth, strictly convex and reflexive Banach space
and let B ⊂ E∗ × E be a maximal monotone operator. Let r > 0 and let Jr be the
generalized nonexpansive resolvent of B. Then the following hold:

(i) F (Jr) = (BJ)−10;
(ii) ϕ(x, Jrx) + ϕ(Jrx, p) ≤ ϕ(x, p). ∀x ∈ E, p ∈ (BJ)−10.

Furthermore, we can prove the following result for generalized nonexpansive re-
solvents in a Banach space.

Lemma 2.12. Let E be a smooth, strictly convex and reflexive Banach space and
let B ⊂ E∗ × E be a maximal monotone operator. Let r > 0 and let Jr be the
generalized nonexpansive resolvent of B. Then

(2.10) ⟨x− Jrx− (y − Jry), JJrx− JJry⟩ ≥ 0

for all x, y ∈ E and r > 0,

Proof. Let x, y ∈ E and r > 0. Put xr = Jrx and yr = Jry. Then we have that

x ∈ xr + rBJxr and y ∈ yr + rBJyr.



320 WATARU TAKAHASHI

Therefore, we get that

x− xr
r

∈ BJxr and
y − yr

r
∈ BJyr.

From the definition of B, we have that⟨x− xr
r

− y − yr
r

, Jxr − Jyr

⟩
≥ 0.

Since r > 0, we get that

⟨x− xr − (y − yr), Jxr − Jyr⟩ ≥ 0.

This completes the proof. □

3. Weak convergence theorem

In this section, we prove a weak convergence theorem of Mann’s type iteration for
generalized nonexpansive mappings and maximal monotone operators in a Banach
space. Let E be a smooth Banach space and let JE be the duality mapping of E.
Let D be a nonempty, closed and convex subset of E. A mapping U : D → E is
called generalised demiclosed if for a sequence {xn} in D such that JExn ⇀ JEp
and JExn−JEUxn → 0, it holds that p = Up. The following lemma was proved by
Matsushita and Takahashi [18].

Lemma 3.1 ([18]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let T : C → E be a
mapping with F (T ) ̸= ∅ satisfying the following;

(3.1) ϕ(z, Tx) ≤ ϕ(z, x), ∀x ∈ C, z ∈ F (T ).

Then F (T ) is closed and convex.

Using this result, we can prove the following lemma.

Lemma 3.2 ([9, 11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E such that JEC is closed
and convex. Let T : C → C be a generalized nonexpansive mapping with F (T ) ̸= ∅,
that is;

(3.2) ϕ(Tx, z) ≤ ϕ(x, z), ∀x ∈ C, z ∈ F (T ).

Then F (T ) is a sunny generalized nonexpansive retract of E.

Proof. Define the duality mapping T ∗ of T by T+ = JETJ
−1
E . Then we have that

T is a mapping of JEC into itself; see [4, 26]. We prove JEF (T ) = F (T ∗). In fact,
we have that

z∗ ∈JEF (T ) ⇐⇒ z∗ = JEz, z ∈ F (T )

⇐⇒ z∗ = JETz = JETJ
−1
E JEz = T ∗JEz = T ∗z:

⇐⇒ z∗ ∈ F (T ∗).

Furthermore, we have that, for z∗ = JEz ∈ F (T ∗) and x∗ = JEx ∈ JEC,

ϕ∗(z
∗,T ∗x∗) = ϕ∗(JEz, JETJ

−1
E JEx)
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= ϕ(TJ−1
E JEx, z) = ϕ(Tx, z)

≤ ϕ(x, z) = ϕ∗(JEz, JEx)

= ϕ∗(z
∗, x∗)

and hence T+ satisfies (3.2). From Lemma 3.1, we have that F (T ∗) = JEF (T ) is
closed and convex and hence F (T ) is a sunny generalized nonexpansive retract of
E. □

The following is our main result.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping JE is weakly sequentially continuous. Let C be a
nonempty, closed and convex subset of E such that JEC is closed and convex. Let
A ⊂ E∗×E be a maximal monotone operator satisfying D(A) ⊂ JEC and let Jµ be
the generalized nonexpansive resolvent of A, i.e., Jµ = (I + µAJE)

−1 for all µ > 0.
Let T and U be generalized nonexpansive mappings of C inti itself such that T and
U are generalized demiclosed. Suppose that

Ω = F (T ) ∩ F (U) ∩ (AJE)
−10 ̸= ∅.

For any x1 = x ∈ C, define {xn} as follows:{
yn = (1− rn)xn + rnUJµnxn,

xn+1 = (1− βn)xn + βnTyn, ∀n ∈ N,

where {µn} ⊂ (0,∞), {βn} ⊂ (0, 1), a, b, δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the
following:

0 < a ≤ βn ≤ b < 1, 0 < δ ≤ rn ≤ γ < 1 and 0 < c ≤ µn, ∀n ∈ N.

Then the sequence {xn} converges weakly to an elementt z0 ∈ Ω, where z0 =
limn→∞RΩxn anf RΩ is the sunny generalized nonexpansive retraction of E onto
Ω.

Proof. Since T and U are generalized nonexpansive, we have that from Lemma
3.2 that F (T ) and F (U) are sunny generalized nonexpansive retracts of E. From
Lemma 2.11, we have that (AJE)

−10 is a sunny generalized nonexpansive retract
of E. Then, from Lemma 2.9,

Ω = F (T ) ∩ F (U) ∩ (AJE)
−10

is a sunny generalized nonexpansive retract of E and hence there exists a unique
sunny generalized nonexpansive retraction of E. We define by RΩ this retraction.

Let z ∈ Ω. Then we have that z = Tz, z = Uz and Jµnz = z for all n ∈ N. Put
yn = (1−rn)xn+rnUJµnxn and zn = Jµnxn for all n ∈ N. We have that, for z ∈ Ω,

ϕ(yn, z) = ϕ((1− rn)xn + rnUzn, z)

= ∥(1− rn)xn + rnUzn∥2

− 2⟨(1− rn)xn + rnUzn, JEz⟩+ ∥z∥2

≤ (1− rn)∥xn∥2 + rn∥Uzn∥2(3.3)
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− 2(1− rn)⟨xn, JEz⟩ − 2rn⟨Uzn, JEz⟩+ ∥z∥2

= (1− rn)ϕ(xn, z) + rnϕ(Uzn, z)

≤ (1− rn)ϕ(xn, z) + rnϕ(xn, z)

= ϕ(z, xn).

Similarly, we have that

ϕ(xn+1, z) = ϕ((1− βn)xn + βnTyn, z)

≤ (1− βn)ϕ(xn, z) + βnϕ(Tyn, z)

≤ (1− βn)ϕ(xn, z) + βnϕ(yn, z)(3.4)

≤ (1− βn)ϕ(xn, z) + βnϕ(xn, z)

= ϕ(xn, z).

Then limn→∞ ϕ(xn, z) exists. Thus {xn}, {Uzn}, {yn} and {Tyn} are bounded.
Putting

r = max
{
sup
n∈N

∥xn∥, sup
n∈N

∥Uzn∥, sup
n∈N

∥Tyn∥
}
,

we have from Lemma 2.3 that there exists a strictly increasing, continuous and
convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)

for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}. Using this,
we have that for n ∈ N and z ∈ Ω

ϕ(yn, z) = ϕ((1− rn)xn + rnUzn, z)

= ∥(1− rn)xn + rnUzn∥2

− 2⟨(1− rn)xn + rnUzn, JEz⟩+ ∥z∥2

≤ (1− rn)∥xn∥2 + rn∥Uzn∥2 − rn(1− rn)g(∥xn − Uzn∥)
− 2⟨(1− rn)xn + rnUzn, JEz⟩+ ∥z∥2

= (1− rn)ϕ(xn, z) + rnϕ(Uzn, z)

− rn(1− rn)g(∥xn − Uzn∥)
≤ (1− rn)ϕ(xn, z) + rnϕ(xn, z)

− rn(1− rn)g(∥xn − Uzn∥)
= ϕ(xn, z)− rn(1− rn)g(∥xn − Uzn∥).

Similarly, we have that

ϕ(xn+1, z) = ϕ((1− βn)xn + βnTyn, z)

= ∥(1− βn)xn + βnTyn∥2

− 2⟨(1− βn)xn + βnTyn, JEz⟩+ ∥z∥2

≤ (1− βn)∥xn∥2 + βn∥Tyn∥2 − βn(1− βn)g(∥xn − Tyn∥)
− 2⟨(1− βn)xn + βnTyn, JEz⟩+ ∥z∥2
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= (1− βn)ϕ(xn, z) + βnϕ(Tyn, z)

− βn(1− βn)g(∥xn − Tyn∥)
≤ (1− βn)ϕ(xn, z) + βnϕ(yn, z)

− βn(1− βn)g(∥xn − Tyn∥)
≤ (1− βn)ϕ(xn, z)

+ βn
(
ϕ(xn, z)− rn(1− rn)g(∥xn − Uzn∥)

)
− βn(1− βn)g(∥xn − Tyn∥)

= ϕ(xn, z)− βnrn(1− rn)g(∥xn − Uzn∥)
)

− βn(1− βn)g(∥xn − Tyn∥).
Therefore, we have that

βn(1− βn)g(∥xn − Tyn∥). ≤ ϕ(xn, z)− ϕ(xn+1, z)

and

βnrn(1− rn)g(∥xn − Uzn∥) ≤ ϕ(xn, z)− ϕ(xn+1, z).

We have from 0 < a ≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1 that

(3.5) lim
n→∞

g(∥xn − Tyn∥) = 0 and lim
n→∞

g(∥xn − Uzn∥) = 0.

From the properties of g, we have that

(3.6) lim
n→∞

∥xn − Tyn∥ = 0. and lim
n→∞

∥xn − Uzn∥ = 0.

From the definition of yn, we also have that

∥xn − yn∥ ≤ rn∥xn − Uzn∥.
Since limn→∞ ∥xn−Uzn∥ = 0, we have that ∥xn−yn∥ → 0 and hence ∥yn−Tyn∥ →
0. Since E is uniformly smooth, we have that

(3.7) ∥JEyn − JETyn∥ → 0 and ∥JExn − JEUzn∥ → 0.

Using zn = Jµnxn and Lemma 2.11, we have that, for z ∈ Ω,

ϕ(xn, zn) = ϕ(xn, Jµnxn) ≤ ϕ(xn, z)− ϕ(Jµnxn, z) = ϕ(xn, z)− ϕ(zn, z).

It follows from (3.3) that

ϕ(xn, zn) ≤ ϕ(xn, z)− ϕ(zn, z)

≤ ϕ(xn, z)−
1

rn

(
ϕ(yn, z)− (1− rn)ϕ(xn, z)

)
=

1

rn

(
ϕ(xn, z)− ϕ(yn, z)

)
=

1

rn

(
∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, JEz⟩

)
≤ 1

rn

(
|∥xn∥2 − ∥yn∥2|+ 2|⟨xn − yn, JEz⟩|

)
≤ 1

rn

(
|∥xn∥ − ∥yn∥|(∥xn∥+ ∥yn∥) + 2∥z∥∥xn − yn∥

)
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≤ 1

rn

(
∥xn − yn∥(∥xn∥+ ∥yn∥) + 2∥z∥∥xn − yn∥

)
.

Since ∥xn − yn∥ → 0, we have that limn→∞ ϕ(zn, xn) = 0. Since E is uniformly
convex and smooth, we have from Lemma 2.2 that

(3.8) lim
n→∞

∥zn − xn∥ = 0.

Since

∥zn − Uzn∥ ≤ ∥zn − xn∥+ ∥xn − Uzn∥,

we obtain that

(3.9) lim
n→∞

∥zn − Uzn∥ = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging
weakly to w. Since the duality mapping JE is weakly sequentially continuous,
{JExni} convers weakly to JEw Using limn→∞ ∥JExn − JEUxn∥ = 0 and U is
generalized demiclosed, we have that w = Uw and hence w ∈ F (U). Since T is
generalized demiclosed, we have from JEyni ⇀ JEw.and ∥JEyn−JETyn∥ → 0 that
w ∈ F (T ). This implies that w ∈ F (T ) ∩ F (U). Next, we show w ∈ (AJE)

−10.
Since limn→∞ ∥xn − zn∥ = 0. we have from µn ≥ c that

lim
n→∞

1

µn
∥xn − zn∥ = 0.

Since the duality mapping JE is weakly sequentially continuous, we have from ∥xn−
zn∥ → 0 that JEzni ⇀ JEw. We also have from zn = Jµnxn that

xn − zn
µn

∈ AJEzn.

For (p∗, p) ∈ A, from the monotonicity of A, we have ⟨p− xn−zn
µn

, p∗−JEzn⟩ ≥ 0 for

all n ≥ 0. Replacing n by ni and letting i → ∞, we get ⟨p, p∗−JEw⟩ ≥ 0. From the
maximallity of A, we have 0 ∈ AJEw and hence w ∈ (AJE)

−10, Therefore, w ∈ Ω.
We next show that if xni ⇀ u and xnj ⇀ v, then u = v. In fact, we have that

u, v ∈ Ω. Put a = limn→∞(ϕ(xn, u)− ϕ(xn, v). Since

ϕ(xn, u)− ϕ(xn, v) = 2⟨xn, JEv − JEu⟩+ ∥u∥2 − ∥v∥2,

we have a = 2⟨u, JEv− JEu⟩+ ∥u∥2 −∥v∥2 and a = 2⟨v, JEv− JEu⟩+ ∥u∥2 −∥v∥2.
From these equalities, we obtain 2⟨u−v, Jv−Ju⟩ = 0 and hence ⟨u−v, Ju−Jv⟩ = 0.
From Lemma 2.1, it follows that u = v. Therefore, {xn} converges weakly to an
element z0 ∈ Ω

Putting R = RΩ, we hava from Lemma 2.6 and (3.4) that

ϕ(xn+1, Rxn+1) ≤ ϕ(xn+1, Rxn+1) + ϕ(Rxn+1, Rxn)

≤ ϕ(xn+1, Rxn)

≤ ϕ(xn, Rxn)
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for all n ∈ N. Hence limn→∞ ϕ(xn, Rxn) exists. It follows from Lemma 2.6 that, for
k ∈ N,

ϕ(xn+k, Rxn) = ϕ(xn+k, Rxn+k) + ϕ(Rxn+k, Rxn)

+ 2⟨xn+k −Rxn+k, JERxn+k − JERxn⟩
≥ ϕ(xn+k, Rxn+k) + ϕ(Rxn+k, Rxn)

and hence

ϕ(Rxn+k, Rxn) ≤ ϕ(xn+k, Rxn)− ϕ(xn+k, Rxn+k) ≤ ϕ(xn, Rxn)− ϕ(xn+k, Rxn+k).

We also have from Lemma 2.6 that, for p ∈ Ω,

ϕ(Rxn, p) ≤ ϕ(Rxn, p) + ϕ(xn, Rxn) ≤ ϕ(xn, p) ≤ ϕ(x, p)

and hence {Rxn} is bounded. Using Lemma 2.4, we have that, for m,n ∈ N with
m > n,

g′(∥Rxn −Rxm∥) ≤ ϕ(Rxn, Rxm) ≤ ϕ(xn, Rxn)− ϕ(xm, Rxm),

where g′ is a strictly increasing, continuous and convex function such that g′(0) =
0. The the properties of g′ yieeld that {Rxn} ia a Cauchy sequence. Since E is
complete, {Rxn} converges strongly to a point u ∈ Ω. Furthermore, we have from
Lemma 2.6 that

⟨xn −Rxn, JERxn − JEz0⟩ ≥ 0.

Since xn ⇀ z0, we have that

⟨z0 − u, JEu− JEz0⟩ ≥ 0

and hence ϕ(z0, u) + ϕ((u, z0) ≤ 0. This implies that ϕ(z0, u) = ϕ(u, z0) = 0 and
hence u = z0. Therefore, z0 = limn→∞Rxn = limn→∞RΩxn. This completes the
proof. □

4. Applications

In this section, using Theorem 3.3, we get well-known and new weak convergence
theorems of Mann’s type iteration which are connected with generalized nonexpan-
sive mappings and maximal monotone operators in Hilbert spaces and in Banach
spaces. We first prove a weak convergence theorem for finding a zero point of a
maximal monotone operator in a Banach space.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping JE is weakly sequentially continuous. Let A ⊂ E∗ × E
be a maximal monotone operator and let Jµ be a generalized nonexpansive resolvent
of A, i.e., Jµ = (I + µAJE)

−1 for all µ > 0. Suppose that (AJE)
−10 ̸= ∅. For any

x1 = x ∈ E, define {xn} as follows:

xn+1 = J−1
E

(
(1− rn)JExn + rnJEJµnxn

)
for all n ∈ N, where {µn} ⊂ (0,∞), δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the following:

0 < δ ≤ rn ≤ γ < 1 and 0 < c ≤ µn, ∀n ∈ N.
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Then the sequence {xn} converges weakly to an elementt z0 ∈ (AJE)
−10, where

z0 = limn→∞R(AJE)−10xn.

Proof. Putting C = E and T = U = I in Theorem 3.3, we obtain the desired result
from Theorem 3.3. □

Let E be a Banach space and let f : E → (−∞,∞] be a proper, lower semicon-
tinuous and convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ ⟨y − x, x∗⟩+ f(x), ∀y ∈ E}

for all x ∈ E. Then we know that ∂f is a maximal monotone operator; see [21] for
more details. Let E be a smooth, strictly convex and reflexive Banach space. Let C
be a nonempty and closed subset of E such that JEC is closed and convex. We have
from Lemma 2.7 that there exists the sunny generalized nonexpansive retraction RC

of E onto C. We also have that, for the indicator function iJEC , that is,

iJECx
∗ =

{
0, x∗ ∈ JEC,

∞, x∗ /∈ JEC,

the subdifferential ∂iJEC ⊂ E∗ × E is a maximal monotone operator and the gen-
eralized nonexpansive resolvent Jr = RC of ∂iJEC for every r > 0. In fact, for any
x ∈ E and r > 0, we have from Lemma 2.8 that

z = Jrx ⇔ z + r∂iJECJE(z) ∋ x

⇔ x− z ∈ r∂iJECJE(z)

⇔ iJEC(y) ≥
⟨
JEy − JEz,

x− z

r

⟩
+ iJEC(z), ∀y ∈ E(4.1)

⇔ 0 ≥ ⟨JEy − JEz, x− z⟩, ∀y ∈ C

⇔ z = argmin
y∈C

ϕ(x, y)

⇔ z = RCx.

Using (4.1) and Theorem 3.3, we get the following weak convergence theorem for
two generalized nonexpansive mappings in a Banach space.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping JE is weakly sequentially continuous. Let C be a nonempty,
closed and convex subset of E such that JEC is closed and convex. Let T and U be
generalized nonexpansive mappings of C into itself such that

Ω = F (T ) ∩ F (U) ̸= ∅.

For any x1 = x ∈ C, define {xn} as follows:{
yn = J−1

E

(
(1− rn)JExn + rnJEUxn

)
,

xn+1 = J−1
E

(
(1− βn)JExn + βnJETyn

)
, ∀n ∈ N,

where {βn} ⊂ (0, 1), a, b, δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1, ∀n ∈ N.
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Then the sequence {xn} converges weakly to an element z0 ∈ Ω, where z0 =
limn→∞RΩxn.

Proof. Putting A = ∂iJEC in Theorem 3.3, we obtain that Jµn = RC for all µn > 0.
Therefore, we obtain the desired result from Theorem 3.3. □

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. A mapping U : C → H is called generalized hybrid [13] if there exist α, β ∈ R
such that

α∥Ux− Uy∥2 + (1− α)∥x− Uy∥2 ≤ β∥Ux− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Such a mapping U is called (α, β)-generalized hybrid. Notice that
the class of (α, β)-generalized hybrid mappings covers several well-known mappings.
For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[15, 16] for α = 2 and β = 1, i.e.,

2∥Ux− Uy∥2 ≤ ∥Ux− y∥2 + ∥Uy − x∥2, ∀x, y ∈ C.

It is also hybrid [25] for α = 3
2 and β = 1

2 , i.e.,

3∥Ux− Uy∥2 ≤ ∥x− y∥2 + ∥Ux− y∥2 + ∥Uy − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [10]. Let
k be a real number with 0 ≤ k < 1. A mapping S : C → H is called a k-strict
pseudo-contraction [3] if

∥Sx− Sy∥2 ≤ ∥x− y∥2 + k∥x− Sx− (y − Sy)∥2

for all x, y ∈ C. Putting U = kI + (1 − k)S, we have that U is nonexpansive. In
fact, we have from (2.1) that, for x, y ∈ C and k ∈ R with 0 ≤ k < 1,

∥Ux− Uy∥2 = ∥(kI + (1− k)S)x− (kI + (1− k)S)y∥2

= ∥k(x− y) + (1− k)(Sx− Sy)∥2

= k∥x− y∥2 + (1− k)∥Sx− Sy∥2 − k(1− k)∥x− y − (Sx− Sy)∥2

≤ k∥x− y∥2 + (1− k)∥Sx− Sy∥2 + (1− k)(∥x− y∥2 − ∥Sx− Sy∥2)
= k∥x− y∥2 + (1− k)∥x− y∥2

= ∥x− y∥2.

This implies that U is nonexpansive. We also know the following result obtained
by Kocourek, Takahashi and Yao [13]; see also [27].

Lemma 4.3 ([13, 27]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let U : C → H be generalized hybrid. If xn ⇀ z and
xn − Uxn → 0, then z ∈ F (U).

The following are two weak convergence theorems for two nonlinear mappings in
Hilbert spaces.
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Theorem 4.4. Let H bea Hilbert space and let C be a nonempty, closed and convex
subset of H. Let A ⊂ H×H be a maximal monotone operator satisfying D(A) ⊂ C
and let Jµ be the resolvent of A, i.e., Jµ = (I+µA)−1 for all µ > 0. Let T : C → C
be a nonspreading mapping and let U : C → C be a nonepansive mapping. Suppose
that

Ω = F (T ) ∩ F (U) ∩A−10 ̸= ∅.
For any x1 = x ∈ C, define {xn} as follows:{

yn = (1− rn)xn + rnUJµnxn,

xn+1 = (1− βn)xn + βnTyn, ∀n ∈ N,

where {βn} ⊂ (0, 1), a, b, δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the following:

0 < a ≤ βn ≤ b < 1, 0 < δ ≤ rn ≤ γ < 1 and 0 < c ≤ µn, ∀n ∈ N.

Then the sequence {xn} converges weakly to an element z0 ∈ Ω, where z0 =
limn→∞ PΩxn anf PΩ is the metric projection of H onto Ω.

Proof. Since T is nonspreading of C into C, it satisfies the following:

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Putting y = p for p ∈ F (T ), we have that

2∥Tx− p∥2 ≤ ∥Tx− p∥2 + ∥p− x∥2, ∀x ∈ C

and hence

∥Tx− p∥2 ≤ ∥p− x∥2, ∀x ∈ C.

This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.3
that T is demiclosed. On the other hand, since U is a nonexpansive mapping of C
into C such that F (U) ̸= ∅, U is quasi-nonexpansive. Furthermore, from Lemma
4.3, U is demiclosed. Therefore, we have the desired result from Theorem 3.3. □

Theorem 4.5. Let H be a Hilbert space and let C b4 a nonempty, closed and convex
subset of H. Let A ⊂ H×H be a maximal monotone operator satisfying D(A) ⊂ C
and let Jµ be the resolvent of A, i.e., Jµ = (I +µA)−1 for all µ > 0. Let k be a real
number with 0 ≤ k < 1. Let T : C → C be a hybrid mapping and let S : C → C be
a k-strict pseudo-contraction. Suppose that

Ω = F (T ) ∩ F (S) ∩A−10 ̸= ∅.

For any x1 = x ∈ C, define {xn} as follows:{
yn = (1− rn)xn + rn(kI + (1− k)S)Jµnxn,

xn+1 = (1− βn)xn + βnTyn, ∀n ∈ N,

where {βn} ⊂ (0, 1), a, b, δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the following:

0 < a ≤ βn ≤ b < 1, 0 < δ ≤ rn ≤ γ < 1 and 0 < c ≤ µn, ∀n ∈ N.

Then the sequence {xn} converges weakly to an elementt z0 ∈ Ω, where z0 =
limn→∞ PΩxn anf PΩ is the metric projection of H onto Ω.
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Proof. Since T is a hybrid mapping of C into C such that F (T ) ̸= ∅, it satisfies the
following:

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Putting y = p for p ∈ F (T ), we have that

3∥Tx− p∥2 ≤ ∥x− p∥2 + ∥Tx− p∥2 + ∥p− x∥2, ∀x ∈ C

and hence

∥Tx− p∥2 ≤ ∥p− x∥2, ∀x ∈ C.

This implies that T is quasi-nonexpansive. Furthermore, we have from Lemma 4.3
that T is demiclosed. Putting U = kI + (1− k)S, we have that U is nonexpansive
and demiclosed. Furthermore, we have F (S) = F (U). Therefore, we have the
desired result from Theorem 3.3. □

The following is a weak convergence theorems for finding a common element of
three sets of a Banach space.

Theorem 4.6. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping JE of E is weakly sequentially continuous. Let C, D and
F be nonempty, closed and convex subsets of E . Let RC , RD and RF be the sunny
generalized nonexpansive retractions of E onto C, D and F , respectively. Suppose
that C ∩D ∩ F ̸= ∅. For any x1 = x ∈ E, define {xn} as follows:{

yn = (1− rn)xn + rnRDRFxn,

xn+1 = (1− βn)xn + βnRCyn, ∀n ∈ N,

where {βn} ⊂ (0, 1), a, b, δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1, ∀n ∈ N.

Then the sequence {xn} converges weakly to an elementt z0 ∈ C∩D∩F , where z0 =
limn→∞RC∩D∩Fxn anf RC∩D∩F is the sunny generalized nonexpansive retraction
of E onto C ∩D ∩ F .

Proof. Take A = ∂iJEF in Theorem 3.3. Then we have that Jµn = RF for all n ∈ N.
Furthermore, since RC is the sunny generalized nonexpansive retraction of E onto
C, we have from Lemma 2.6 that

ϕ(RCxz) ≤ ϕ(x, z), ∀x ∈ E, z ∈ C.

We show that RC is generalized demiclosed. In fact, assume that JExn ⇀ JEp a nd
JExn−JERCxn → 0. It is clear that JERCxn ⇀ JEp. Since E

∗ is uniformly smooth,
we have that ∥xn − RCxn∥ → 0. Since RC is the sunny generalized nonexpansive
retraction of E onto C, we have from Lemma 2.12 and (4.1) that

⟨xn −RCxn − (p−RCp), JERCxn − JERCp⟩ ≥ 0.

Therefore, ⟨−(p− RCp), JEp− JERCp⟩ ≥ 0 and hence ϕ(p,RCp) + ϕ(RCp, p) ≤ 0.
This implies that p = RCp and hence RC is generalized demiclosed.

Similarly, RD is generalized nonexpansive and RD is generalized demiclosed.
Therefore, we have the desired result from Theorem 3.3. □
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The following is a weak convergence theorems for finding a common point of zero
point sets of three maximal monotone operators of a Banach space.

Theorem 4.7. Let E be a uniformly convex and uniformly smooth Banach space
which the duality mapping JE of E is weakly sequentially continuous. Let A, B
and G be maximal monotone operators of E∗ into E. Let JA

r be the generalized
nonexpansive resolvent of A for r > 0, let JB

µ be the generalized nonexpansive

resolvent of B for µ > 0 and let JG
λ be the generalized nonexpansive resolvent of G

for λ > 0, respectively. Suppose that

Ω = (AJE)
−10 ∩ (BJE)

−10 ∩ (GJE)
−10 ̸= ∅.

For any x1 = x ∈ E, define {xn} as follows:{
yn = (1− rn)xn + rnJ

G
λ JA

r xn,

xn+1 = (1− βn)xn + βnJ
B
µ yn, ∀n ∈ N,

where {βn} ⊂ (0, 1), a, b, δ, γ ∈ R and {rn} ⊂ (0, 1) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < δ ≤ rn ≤ γ < 1, ∀n ∈ N.

Then the sequence {xn} converges weakly to an element z0 ∈ Ω, where z0 =
limn→∞RΩxn anf RΩ is the sunny generalized nonexpansive retraction of E onto
Ω.

Proof. Take µn = r for r > 0 in Theorem 3.3. Then we have that JA
µn

= JA
r for all

n ∈ N. Furthermore, since JB
µ is the generalized nonexpansive resolvent of B, we

have from Lemma 2.11 that

ϕ(JB
µ x, z) ≤ ϕ(x, z), ∀x ∈ E, z ∈ (BJE)

−10.

Next, we show that JB
µ is generalized demiclosed. In fact, assume that JExn ⇀ JEp

and JExn − JEJ
B
µ xn → 0. It is clear that JEJ

B
µ xn ⇀ JEp. Since E∗ is unifrmly

smooth, we have that ∥xn − JB
µ xn∥ → 0. Since JB

µ is the generalized nonexpansive
resolvent of B, we have from Lemma 2.12 that

⟨xn − JB
µ xn − (p− JB

µ p), JEJ
B
µ xn − JEJ

B
µ p⟩ ≥ 0.

Therefore, ⟨−(p − JB
µ p), JF p − JEJ

B
µ p⟩ ≥ 0 and hence ϕ(p, JB

µ p) + ϕ(JB
µ p, p) ≤ 0.

This implies that p = JB
µ p and hence JB

µ is generalized demiclosed.

Similarly JG
λ is generalized nonexpansive and generalized demiclosed. Therefore,

we have the desired result from Theorem 3.3. □
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