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to the expected utility theory. If, for example, we set ρ(Z) = −E[V (Z)] , where V is a
regular concave utility function in economics, then problem (1.1) is equivalent with the next
expectation utility maximization

min
x∈DX

E[−V (F (x, ω))] = − max
x∈DX

E[V (F (x, ω))]. (1.2)

This shows the relationship between the risk optimization problem (1.1) and the expected
utility approach.

The composite structure of the mapping ρ(F (x, ω)) brings about certain complications in
solving optimization problem (1.1). A popular approach is to transform the original problem
to a min-max problem by using the dual representation of ρ. Specifically, let ρ be a convex,
proper and lower semicontinuous risk function, then ρ∗∗ = ρ and it holds that

ρ(Z) = sup
Q∈Z∗

[E(ZQ)− ρ∗(Q)] , Z ∈ Z (1.3)

where ρ∗ is the conjugate function of ρ, and Z∗ is the dual space of Z. This means that
problem (1.1) with a convex risk function can be transformed into a min-max problem as
follws,

min
x∈DX

ρ[F (x, ω)] = min
x∈DX

sup
Q∈Z∗

[E(F (x, ω)Q(ω))− ρ∗(Q)] , with Z = F (x, ω). (1.4)

See [24] for the discussion on such methods for general convex risk functions.
However, when one wants to carry out such methods for practical problems, an immedi-

ately obstacle is that, it has to deal with the specific form of the conjugate ρ∗(Q), together
with the dual space Z∗. Up till now, most literature actually focuses on the case where ρ
is a coherent risk measure, which means a function satisfying the following four conditions
(Artzner et al. [4]):

C1 (Convexity): For any 0 ≤ λ ≤ 1, ρ((1− λ)Z1 + λZ2) ≤ (1− λ)ρ(Z1) + λρ(Z2);
C2 (Monotonicity): If Z1 ≤ Z2 a.e., then ρ(Z1) ≤ ρ(Z2);
C3 (Translation Invariance): For γ ∈ R, ρ(Z + γ) = ρ(Z) + γ;
C4 (Positive Homogeneity): If t ≥ 0, then ρ(tZ) = tρ(Z).
The typical examples of the coherent risk measures include the expectation, EVaR1−α

(the entropic Value-at-Risk, with α ∈ (0, 1)), CVaRα (conditional value at risk with α ∈
(0, 1)), see Example 5 and 6 in Section 5 for the details of the latter two examples.

A critical property of a coherent measure is that, the dual representation ρ(·) can be
simplified as follows (see e.g. [3]),

ρ(Z) = sup
Q∈Q

E(ZQ), Z ∈ Z, (1.5)

where Q is called a risk envelop, which is a nonempty closed subset of P := {Q ∈ Z∗ :
Q ⪰ 0,E(Q) = 1}. In this case, the ‘sup’ in equation (1.5) can be replaced by ‘max’. If
Z = L p(Ω,F , P ) with p ∈ (1,+∞), then Q is a closed set in its dual space L q(Ω,F , P ) (q
is determined by 1/q + 1/p = 1).

The dual representation (1.5) of a coherent risk measure means that (1.4) can be simpli-
fied to the form below, which is also related to the so-called distributional robust optimiza-
tion (DRO) problem (see e.g., [27, 15]),

min
x∈DX

ρ[F (x, ω)] = min
x∈DX

max
Q∈Q

E [F (x, ω)Q(ω)] , with Z = F (x, ω). (1.6)
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Following this approach, many methods have been proposed for problem (1.1) with
coherent risk measures. See [17] for a review of this approach. The application of the
coherent risk measures in portfolio optimization can be found in [2, 13].

From the practical perspective, however, the requirement on the risk function ρ to be
coherent can be too strong in financial and economical applications. In particular, only
the convexity condition C1 of ρ can be satisfied in most cases since it reflects a risk averse
attitude. As to the conditions C2-C4, in many cases they are not satisfied simultaneously.
The examples include the p-order lower semi-moment measure ρa(Z) = E(Z−E(Z))p+, where
(x)+ = max(x, 0), and the p-order lower partial moment measure ρb(Z) = E[(Z − τ)+]

p

(with τ be a fixed parameter). Clearly, ρa and ρb only have convexity, but do not satisfy
the conditions C2-C4. Furthermore, it can be observed (see e.g. [9]) from the expected
utility maximum problem (1.2) that, many utility functions U in (1.2) do not require the
conditions C2-C4 .

In current literatures, there are some works that focus on the relaxation of the require-
ment of coherent risk measure and the extension of the min-max approach based on (1.4).
For example, Follmer and Schied ([11]) proposed the so-called convex risk measure, which
only requires ρ to satisfy C1-C3, they also explore the formulas for the conjugates of convex
risk measures. (See also [10, 8] for reference.) On the whole, in the case that ρ fails to be
coherent, the problem (1.1) will be much more complicated.

Even if ρ can be supposed to be a coherent measure, other problems may also cause
difficulty for numerical methods. For instance, in many cases, the specific form of Q may
cause the constraints to be too complex. Moreover, if Q is not polyhedral, then many
algorithms will be unsuitable or inefficient.

In the current paper, we try to challenge the solution approach of problem (1.1) with a
convex risk function ρ through an alternative way, i.e., the subgradient approach for problem
(1.1). The focal point is the computation of subgradient of ρ[F (x, ω)]. No matter whether
ρ is coherent or not, if the composite mapping ρ[F (x, ω)] is a convex function with respect
to x. Theoretically, we can use a subgradient-type of method to solve (1.1), as long as a
subgradient of ρ[F (x, ω)] can be computed.

Recall that, by the theory of the convex optimization, the general form of the subdiffer-
ential of ρ is (see e.g., [24, 25])

∂ρ(Z) = arg sup
Q∈Z∗

[E(ZQ)− ρ∗(Q)] . (1.7)

In the case when ρ is a coherent measure,

∂ρ(Z) = arg sup
Q∈Q

E(ZQ). (1.8)

Theoretically, (1.7) means that (1.4) can be equivalently rewritten as follows:

min
x∈DX

ρ[F (x, ω)] = min
x∈DX ,Q∗∈∂ρ(Z)

E [F (x, ω)Q∗(ω)− ρ∗(Q∗)] , with Z(ω) = F (x, ω). (1.9)

If we directly use (1.7) or (1.8) to obtain ∂ρ(Z), we have to deal with the specific form of
the conjugate ρ∗(Q) and the risk envelop. As we discussed above, the structure of Q may
not easy to obtain. On the other hand, the form (1.9) is very difficult for practical use.
Thus, we will instead focus on the specific forms of the subdifferential of many practically
used risk functions. Moreover, we notice that Rockafellar and Uryasev [20] proposed a new
paradigm, called the risk quadrangle, which links a great variety of measures from different
areas, especially the risk management and the statistics. Hence, our discussion is based on
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this new paradigm. We will discuss these three types of convex risk functions, which has
close relationship with the risk quadrangle in detail and will provide the general form of the
subdifferential of these risk functions. In summary, the contributions of this paper can be
stated as follows.

• We consider a risk minimization problem (1.1) with ρ being a convex risk function. In
stead of solving the original problem through a min-max representation like (1.4), we
provide a subdifferential approach to obtain the optimal solutions.

• We focus on the computation and theoretical properties of three classes of risk functions
of which the subdifferential can be calculated directly. The discussed risk functions are
all related to the risk quadrangle, which covers much more risk functions than the
coherent or convex risk measure does.

• We discuss the approach to construct a subgradient-type algorithm for risk minimiza-
tion problem and show the fundamental role of the computation of ∂ρ(·) in such
method.

The remainder of this paper is organized as follows. In Section 2, we will recall the
notion and the properites of the risk quadrangle, and then present three related types of
risk functions. In the following three sections, we will discuss the properties and computation
of these presented risk functions in details. Also included are some examples or applications
of these discussed risk functions. Finally, in Section 6, we will show the approach to develop
a standard subgradient algorithm for the problem (1.1) based on the subfifferential of ρ.

2 The Risk Quadrangle and Three Types of Risk Functions

Let us recall briefly the framework of the risk quadrangle theory by Rockafellar and Uryasev
([20]), which is based on their earlier work on the deviation measures (Rockafellar et al
[21]). See also Rockafellar and Royset [18] for reference. This paradigm links a great
variety of measures from different areas, classifies them into four classes, and establishes
their connections.

Table 1: The risk quadrangle
risk R ↔ D Deviation

Optimization ↑↓ S ↑↓ Estimation
regret V ↔ E Error

The four types of measures and their meanings are as follows:

R(Z) (risk measure): provides an overall measure of the “loss” or “damage” variable Z;

D(Z) (deviation measure): measures the “nonconstancy” in Z;

E(Z) (error measure): measures the “nonzeroness” in Z;

V(Z) (regret measure): measures the “regret” in facing the mix of outcomes of Z.

Moreover, the relationship among the four types of measures and the meaning of S are
as follows.

The relationship illustrated above requires the regular properties of all these four types
of measures. That is, all of the risk, deviation, regret, and error measures should be closed
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Table 2: General Relationships ([20])
R(Z) = E(Z) +D(Z) D(Z) = R(Z)− E(Z)
V(Z) = E(Z) + E(Z) E(Z) = V(Z)− E(Z)
R(Z) = inft{t+ V(Z − t)} D(Z) = inft E(Z − t)

argmint {t+ V(Z − t)} = S = argmint {E(Z − t)}

convex functions. Moreover, these measures should satisfy the following conditions respec-
tively:

• (risk measure) R(C) = C for constant C, and R(Z) > E(Z) for nonconstant Z;

• (deviation measure) D(Z) ≥ 0 for all Z, with D(0) = 0 and D(Z) > 0 for nonconstant
Z;

• (error measure) E(Z) = 0 but E(Z) > 0 when Z ̸≡ 0;

• (regret measure) V(Z) = 0 but V(Z) > E(Z) when X ̸≡ 0.

Motivated by the risk quadrangle, in particular the above transition formulas illustrated
in Table 2, in this paper we consider three special convex risk functions, including:

• a family of composite risk functions, which reflects the central place of the expectation
measure in the overall risk quadrangle;

• risk functions with the centralized transformation, which is critical in the deviation
measures;

• risk functions represented by optimal value functions, which covers the functions in-
duced by the risk and regret measures.

The discussed families of risk functions contain the extensions and unifications of many
commonly used risk measures. We will provide the general form of the subdifferential of these
measures with the specific results of some important measures as their examples. Unless
otherwise specified, in what follows, we consider Z := L 2(Ω,F , P ) to be the the space of
random variable.

3 A Family of Composite Risk Functions

In the construction of the risk quadrangle, the expectation operator plays the central role.
As is mentioned by the authors of [20] (see Page 19 of this paper), “the crucial role that
E(X) has in the fundamental risk quadrangle is our guide”.

In this section, we consider the family of risk functions as follows, which is the combina-
tion of a series of composite risk functions

ρ(Z) =

k∑
i=1

fi(E[gi(Z)]). (3.1)

To ensure the convexity of ρ, we give some assumptions on the functions fi(·) and gi(·)(i =
1, · · · , k).
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Assumption 3.1. Denote E be an open set in R. Assume that, for all i = 1, · · · , k,

(i) fi : E → R is a differentiable nondecreasing function;

(ii) gi : R → E is a convex nondecreasing function and the expectation E(gi(Z)) is well
defined and proper;

(iii) fi(E[gi(Z)]) is convex in Z.

Condition (i) and (ii) implies that the composite fi(E[gi(Z)]) is nondecreasing. Together
with Condition (iii), these further imply that the risk function defined by (3.1) is convex and
monotone. In addition, by convex analysis, Condition (ii) implies that gi is a continuous
function.

Notice that in Assumption 3.1, the functions fi itself is not required to be convex. This
will broaden the scope of application of this framework. A typical example is the next
measure, which is a combination of the expectation and the upper-semideviation of order p
from the objective τ ,

ρ(Z) = E(Z) + c
(
E(Z − τ)p+

)1/p
,with p ∈ [1,+∞), (3.2)

where c > 0. It can be observed that the second term of ρ(·) in (3.2) contains a non-convex
outer function f(z) = z1/p, while the entire risk measure is convex.

Proposition 3.1. Let Z ∈ Z and g : R → R be a finite-valued convex function and let
∂g(Z) : Ω ⇒ ∂g(Z(ω)) be the set-valued function. Define the mapping g̃ : Z → Z1

where g̃(Z)(ω) = g(Z(ω)). Suppose ρ : Z1 → R̄ is a convex and proper mapping, which
is differentiable and monotonically nondecreasing. Further denote the composite measure
ρ(g̃(Z)) by ρ̃(Z), then

∂ρ̃(Z) = ∇ρ(Y ) · S(∂g(Z),∇ρ(Y )) with Y = g̃(Z),

where

S(∂g(Z),∇ρ(Y )) := {ζ is F-measurable : ∇ρ(Y )ζ ∈ Z∗, ζ(ω) ∈ ∂g(Z(ω))a.e., ω ∈ Ω}.

Proof. It is easy to verify that ρ̃ is convex and is directional differentiable. For any Z,Z0 ∈ Z,
denote h = Z − Z0, then the directionally derivative of ρ̃ at Z0 along h is

ρ̃′(Z0, h) = ⟨∇ρ(Y0), g̃′(Z0, h)⟩ = E[∇ρ(Y0)g̃′(Z0, h)],

where Y0 = g(Z0). The first equality follows from the chain rule of the directionally derivative
(see Proposition 2.47 in [7]). Choose any ζ ∈ S(∂g(Z0),∇ρ(Y0)), we have g̃′(Z0, h) ≥ ζh
a.e. and

ρ̃(Z)− ρ̃(Z0) ≥ ρ̃′(Z0, h) ≥ E[ζ∇ρ(Y0)h] = ⟨ζ∇ρ(Y0), h⟩. (3.3)

Hence, ∇ρ(Y0)ζ ∈ ∂ρ(Z0). Consequently,

∇ρ(Y ) · S(∂g(Z),∇ρ(Y )) ⊆ ∂ρ̃(Z).

Conversely, choose any η ∈ ∂ρ̃(Z0). Notice that ∇ρ(Y0) ≥ 0 a.e., then

E[∇ρ(Y0)g̃′(Z0, h)] = E

[
sup

d(ω)∈∂g(Z0(ω))

∇ρ(Y0)(ω)d(ω)h(ω)

]
= sup

d∈S(∂g(Z0),∇ρ(Y0))

⟨∇ρ(Y0)d, h⟩.
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The first equality follows from the properties of g̃′(Z0, h) and the measurability holds from
Theorem 7.37 of in [22]. The second equality follows from the the interchangeability of
minimization and integration theorem (see Theorem 14.60 in [22]). Hence,

⟨η, h⟩ ≤ ρ̃′(Z0, h) = sup
d∈S(∂g(Z0),∇ρ(Y0))

⟨∇ρ(Y0)d, h⟩ = sup
ξ∈A

⟨ξ, h⟩,

where A = ∇ρ(Y0) · S(Z0,∇ρ(Y0)), which is a closed convex set. Since h is an arbitrary
direction, by the separate theorem of convex set, η ∈ A, it holds that ∂ρ̃(Z) ⊆ ∇ρ(Y ) ·
S(∂g(Z),∇ρ(Y )).

Corollary 3.2. Suppose that Z ∈ Z, and the function g : R → R satisfies Assumption
3.1(ii). Denote ρ̃(Z) := E(g(Z)), then

∂ρ̃(Z) = S(∂g(Z)), where S(∂g(Z)) := {ζ ∈ Z∗ : ζ(ω) ∈ ∂g(Z(ω))a.e., ω ∈ Ω}.

Proof. In Proposition 3.1, let ρ(Z) := E(Z), then ∇ρ(Z) = 1, and the asserted statement
follows immediately.

Based on Proposition 3.1 and Corollary 3.2, we can now discuss the subdifferential of
the risk measure with the form of (3.1).

Proposition 3.3. Suppose that Z ∈ Z, consider the risk measure ρ(·) defined by (3.1),
with fi(·) and gi(·) satisfying Assumption 3.1, then:

∂ρ(Z) = Q0 :=

k∑
i=1

f ′i (E[gi(Z)])S(∂gi(Z)). (3.4)

Proof. First denote ρi(Z) := E(gi(Z)). By Corollary 3.2, we have that ∂ρi(Z) = S(∂gi(Z)).
Given Z0 ∈ Z, for any Z ∈ Z, denote h = Z − Z0.

We first show that Q0 ⊆ ∂ρ(Z0). It follows from the convexity of ρi that ρi(Z)−ρi(Z0) ≥
ρ′i(Z0, h), where ρ

′
i(Z0, h) is the directional derivative of ρi at Z0 along h. Also by convex

analysis, we have that
ρ′i(Z0, h) = sup

ζ∈∂ρi(Z0)

⟨ζ, Z − Z0⟩. (3.5)

Further denote the composite function fi ◦ ρi(Z) := fi(ρi(Z)). Since fi is differentiable, the
chain rule holds, i.e.,

(fi ◦ ρi)′(Z0, h) = f ′i(ρi(Z0))ρ
′
i(Z0, h).

Since fi ◦ ρi is convex, for any ζi ∈ ∂ρi(Z0), we have

fi(ρi(Z))− fi(ρi(Z0)) ≥ (fi ◦ ρi)′(Z0, h)

= f ′i(ρi(Z0))ρ
′
i(Z0, h)

≥ f ′i(ρi(Z0))⟨ζi, Z − Z0⟩.

The last inequality follows from the monontoncity of fi and (3.5). This implies that
f ′i(ρi(Z0))ζi ∈ ∂(fi ◦ ρi)(Z0).

Denote ψi = fi ◦ ρi. Thus, ρ =
∑k

i=1 ψi. It follows from Assumption 3.1 and the

Moreau-Rockafellar Theorem (see e.g. Theorem 7.4 in [25]) that ∂ρ =
∑k

i=1 ∂ψi. Hence,

k∑
i=1

f ′i(ρi(Z0))ζi ∈ ∂ρ(Z0).
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Now we prove ∂ρ(Z) ⊆ Q0. Since ∂ρ =
∑k

i=1 ∂ψi, it suffices to show that, if ξi ∈
∂(fi ◦ ρi)(Z0), then ξi ∈ f ′i (ρi(Z0)) ∂gi(Z0) a.e.

It follows from ξi ∈ ∂(fi ◦ ρi)(Z0) that

⟨ξi, Z − Z0⟩ ≤ (fi ◦ ρi)′(Z0, h) = f ′i(ρi(Z0))ρ
′
i(Z0, h).

If f ′i(ρi(Z0)) = 0, then ⟨ξi, Z − Z0⟩ ≤ 0. In this case, from the arbitrariness of Z ∈ Z, we
have that ξi(ω) = 0 a.e., ω ∈ Ω. If, on the other hand, f ′i(ρi(Z0)) > 0, then

E
[

ξi
f ′i(ρi(Z0))

(Z − Z0)

]
≤ ρ′i(Z0, h) ≤ ρi(Z)− ρi(Z0),

which implies ξi/f
′
i(ρi(Z0)) ∈ ∂ρi(Z0). Since ∂ρi(Z0) = S(∂gi(Z0)), then it holds that

∂ρ(Z0) ⊆ Q0.

If Assumption 3.1(i) is replaced by: i’) fi : R → R is a convex and monotonically nonde-
creasing function. Together with Condition (ii), this guarantees that Condition (iii) holds,
i.e., fi(E[gi(Z)]) are convex. In this case, the next result, which is similar to Proposition
3.3, can be established.

Proposition 3.4. Suppose that Z ∈ Z, ρ(·) is defined by (3.1), with fi(·) being convex and
monotonically nondecreasing and gi(·) satisfying Assumption 3.1 (ii). Then

∂ρ(Z) ⊇ Q0 :=

{
k∑

i=1

diS(∂gi(Z))|di ∈ ∂fi(E[gi(Z)])

}
. (3.6)

Proof. Since fi is monotonically nondecreasing and convex, we have di ≥ 0. Similar with in
Proposition 3.3, denote ρi(Z) := E(gi(Z)). Choose any ζi ∈ S(∂gi(Z)), by Proposition 3.3,
ζi ∈ ∂ρi(Z), then

fi(ρi(Z))− fi(ρi(Z0)) ≥ di(ρi(Z)− ρi(Z0))

≥ di⟨ζi, Z − Z0⟩.

Consequently, diζi ∈ ∂(fi ◦ ρi).

As a special case, we consider the case when the probability space is discrete, denote
{ω1, · · · , ωS} be the finite support of Ω, for fixed Z ∈ Z, let Z(ωs) = zs, P (Z = zs) = αs,
satisfying αs ≥ 0 and ΣS

s=1αs = 1. If Assumption 3.1 holds, then it follows from Proposition
3.3 that, a subgradient q = (q1, · · · , qS)⊤ ∈ ∂ρ(Z) can be computed as follows

qs =

k∑
i=1

f ′i

(
S∑

s=1

αsgi(zs)

)
· dis s = 1, · · · , S, (3.7)

where dis ∈ ∂gi(zs).
Finally, we discuss two examples of this type of risk functions.

Example 1. The first example is ρ1(Z) =
(
E
[
eZ
])1/p

where p ∈ [1,+∞). By defining

f(y) = y1/p(y > 0) and g(z) = ez, ρ1 is an obvious example of (3.1) with k = 1. Let
Y = eZ/p, which is a convex transformation with respect to Z, then we have

ρ1(Z) = (E[Y p])
1/p

,
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which is convex and monotonic for all Y ≥ 0. Hence ρ1(Z) is a convex risk function. By
using Proposition 3.3, it holds that, if p > 1

∂ρ1(Z) =
1

p

eZ

(E [eZ ])
1/q

,

where q satisfies 1/q + 1/p = 1. If p = 1, then ∂ρ1(Z) = eZ .
Example 2. Another important example is ρ2(Z) := lnE(eZ). This function is convex,
monotone and translation-equivalent, i.e., it satisfies conditions C1-C3 but does not satisfy
C4. This function can be further developed to a coherent risk measure, called EVaRα ([1]),
which will be discussed in Section 5.

It can be verified that Assumption 3.1 holds. Hence, by using Proposition 3.3, it readily

holds that ∂ρ(Z) = eZ

E(eZ)
.

4 Risk Functions with Centralized Transformation

As is mentioned in Section 2, the deviation measure is to quantify the nonconstancy in a
random variable X. In [21], a general deviation measure is defined as follows:

Definition 4.1. a function D : L 2(Ω,F , P ) → R is called a general deviation measure if it
satisfies the next four conditions:

D1: D(Z + C) = D(Z) for all Z and constant C;
D2: D(0) = 0 and D(λZ) = λD(Z) for all Z and λ > 0;
D3: D(Z1 + Z2) ≤ D(Z1) +D(Z2) for all Z1 and Z2;
D4: D(Z) ≥ 0 for all Z, with D(Z) > 0 if Z is not a constant.

D2 is the positive homogeneity condition. D3 is called the subadditive condition. In case
when D2 holds, D3 can be equivalently replaced by the convexity condition. Moreover, if the
measure D is closed and convex, then D4, together with D(0) = 0, implies that D is a regular
deviation measure. On the other hand, conditions D1-D3 mean that the corresponding risk
measure R generated by R(Z) = E(Z)+D(Z) is at least a convex risk measure (i.e., satisfies
condition C1-C3).

It is easy to observe that, a risk function ρ satisfying D1 depends on Z − E(Z) (by
setting C = −E(Z)), which is usually called the centralization of the random variable Z.
This means that, in practice, there exists lots of risk functions which can be formulated as
ρ(Z − E(Z)).

The composition ρ(Z −E(Z)) can be viewed as an extension of the function family (3.1)
discussed in the previous section. Since the inner operator includes both Z and E(Z), the
problem now turns to be more complicated. Notice that T0(Z) := Z − E(Z) is in fact a
linear operator from Z to Z, that is, for any Z1, Z2 ∈ Z and any scalars a, b ∈ R, we have
T0(aZ1 + bZ2) = a · T0(Z1) + b · T0(Z2).

Furthermore, for any linear operator T , an operator T ∗ is called its conjugate operator,
if for any Z ∈ Z and Z∗ ∈ Z∗, it holds that ⟨Z∗, T (Z)⟩ = ⟨T ∗(Z∗), Z⟩. Notice that, For T0
defined above, it can be verified that its conjugate operator is T ∗

0 (Z
∗) = Z∗ − E(Z∗), i.e.,

⟨Z∗, Z − E(Z)⟩ = ⟨Z∗ − E(Z∗), Z⟩. Hence, the type of risk function ρ(Z − E(Z)) can be
covered by the risk function family ρ(T (·)), in which T is a generic linear operator, with T ∗

as its conjugate.
In abstract, the subdifferential of a convex function with a linear operator has been

discussed in locally convex spaces (see e.g. [30]). Here we only have to focus on the case when
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Z is the space of random variables. We first cite the definition of Hadamard differentiability
as follows.

Definition 4.2. ([7], Definition 2.45) Let X and Y be vector (linear) normed spaces and
consider a mapping g : X → Y , We say that g is directionally differentiable at x in the
Hadamard sense if the directional derivative g′(x, h) exists for all h and, moreover,

g′(x, h) = lim
t↓0,h′→h

g(x+ th′)− g(x)

t
.

If in addition g′(x, h) is linear in h, it is said that g is Hadamard differentiable at x.

Proposition 4.3. Let ρ be a convex, proper, Hadamard directional differentiable risk mea-
sure, and T : Z → Z be a linear operator, with T ∗ be its conjugate operator. Denote
ρ̃(·) := ρ(T (·)), then ρ̃ is convex and

∂ρ̃(Z) = Q0 := cl{T ∗(ζ) : ζ ∈ ∂ρ(Y ), with Y = T (Z)}, (4.1)

where cl is the closure operation.

Proof. The convexity of ρ̃ is obvious. To prove (4.1), for any fixed Z, first choose any ξ ∈ Q0.
By the definition of Q0, there exists a series of ζn ∈ ∂ρ(Y ), such that T ∗(ζn) → ξ (in the
sense of ∥T ∗(ζn)− ξ∥2 → 0). Denote ξn := T ∗(ζn). For any Z1 ∈ Z, we have

⟨ξ, Z1 − Z⟩ = lim
n→∞

⟨ξn, Z1 − Z⟩.

Furthermore, we have

⟨ξn, Z1 − Z⟩ = ⟨T ∗(ζn), Z1 − Z⟩ = ⟨ζn, T (Z1 − Z)⟩
≤ ρ(T (Z1))− ρ(T (Z)).

The last inequality is by the definition of ∂ρ(Y ). Consequently, we have ξ ∈ ∂ρ̃(Z), which
means Q0 ⊆ ∂ρ̃(Z).

Conversely, choose any ξ1 ∈ ρ̃(Z). Let ρ̃′(Z, h) be the directional derivative of ρ̃′ at Z
along the direction h := Z1 − Z. Since ρ(·) is Hadamard directional differentiable, then the
chain rule of directional derivative holds, i.e.,

ρ̃′(Z, h) = (ρ ◦ T )′(Z, h) = ρ′(T (Z), T (h)).

It follows that

⟨ξ1, h⟩ ≤ ρ̃′(Z, h) (4.2)

= ρ′(T (Z), T (h)) = sup
ζ∈∂ρ(Y )

⟨ζ, T (h)⟩

= sup
ζ∈∂ρ(Y )

⟨T ∗(ζ), h⟩ = sup
ξ∈Q0

⟨ξ, h⟩.

Since the direction h is arbitrary, there must be that ξ1 ∈ Q0. In fact, if ξ1 /∈ Q0, by the
separate theorem of convex set, there must exist a direction h0 such that

⟨ξ1, h0⟩ > sup
ξ∈Q0

⟨ξ, h0⟩,

which is contrary to (4.2). Hence, ∂ρ̃(Z) ⊆ Q0. The proof is completed.
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Remark: The Hadamard directional differentiability of ρ holds if Z is a Banach space and
ρ is a continuous risk function (see e.g., Proposition 2.126 in [7]). Hence this condition is
not difficult to satisfy.
Example 3. A commonly used deviation measure of this family is ρ3(Z) = E[(Z−E(Z))+]2,
called upper semi-variance, which is a special case of ρa (with p = 2) mentioned in Section 1.
To use Proposition 4.3, we can define ρ(Z) = E[Z+]

2, and T0(Z) = Z −E(Z), thus ρ3(Z) =
ρ(T0(Z)). Denote Y = T0(Z). Since ρ(·) is convex and differentiable with ∇ρ(Y ) = 2Y+, it
holds that

∇ρ3(Z) = T ∗
0 (∇ρ(Y )) = 2(Z − E[Z])+ − 2E[(Z − E[Z])+].

Example 4. Based on ρ1 in Example 1, we can construct a new deviation measure ρ4(Z) =(
E
[
eZ−EZ])1/p where p ∈ [1,+∞). By Proposition 4.3, it can be directly verified that, in

case that p > 1, it holds that

∂ρ4(Z) =
1

peE(Z)/p

eZ − E[eZ ]
(E [eZ ])

1/q
.

In case that p = 1, we have

∂ρ4(Z) =
eZ − E[eZ ]

eE[Z]
.

5 Risk Functions Represented by Optimal Value Functions

In the risk quadrangle, a regret measure V describes the displeasure in facing the mix of
outcomes of X. In economics, a typical regret measure ν is defined as a negative utility
(i.e., V(Z) = −u(−Z), where u is a utility function of −Z). As is shown in Table 2, the
connection between a regret measure and its corresponding risk function can be established
by

R(Z) := E(Z) + inf
t∈R

V(Z − t). (5.1)

In this section, we consider a broader form of risk functions as follows:

ρ(Z) := inf
t∈T

ρ0(Z, t), (5.2)

here T is a convex set in R (in fact, this means T must be an interval). Suppose that ρ0 is
convex jointly in Z and t. Furthermore, for each t ∈ T , ρt(Z) := ρ0(Z, t) is a convex and
proper function. For each Z ∈ Z, suppose that the optimal value of the right-side problem
in (5.2) is finite and is attainable by some t∗ ∈ T . Hence, ρ is a convex and finite valued
function and the “inf” in (5.2) can be replaced by “min”. Further suppose ρt and ρ are both
lower semi-continuous, then ρt = ρ∗∗t , ρ = ρ∗∗, and both ρt(·) and ρ(·) are subdifferentiable.

Formula (5.2) covers (5.1) as an example by defining

ρ0(Z, t) = t+ ν0(Z − t) (5.3)

in (5.2) and setting ν0(Z) = V(Z) + E(Z). Another important example is as follows:

ρ(Z) := inf
t>0

tρ̃(Z/t). (5.4)

It can be verified that, no matter whatever V is, R in (5.1) always satisfies condition C3,
i.e., the translation equivalence, and will keep C1,C2 and C4 if V satisfies these conditions.
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Similarly, ρ defined in (5.4) always satisfies C4, i.e., the positive homogeneity, and will keep
C1-C3 if ρ̃ satisfies these conditions. Thus these two families are often used to construct a
new measure to improve the property of the original function V or ρ̃. Hence formula (5.2)
is an important approach to construct new risk measures, in particular coherent or convex
risk measures.

Now we start to explore the subdifferential of the risk function family (5.2). First notice
that, in literature ρ(Z) defined by (5.2) with T = R is usually called a marginal function.
Furthermore, a theoretical result on the subdifferential of a marginal function is as follows.

Proposition 5.1. ([30]) Let Φ : X × Y → R̄ be a convex function and h : Y → R̄ be the
marginal function associated to Φ (both X and Y are real linear spaces). Let (x̄, ȳ) ∈ X×Y
such that Φ(x̄, ȳ) ∈ R, then

(0, y∗) ∈ ∂Φ(x̄, ȳ) ⇔ h(ȳ) = Φ(x̄, ȳ), and y∗ ∈ ∂h(ȳ).

In particular, the use of Proposition 5.1 involves the extension of ρ0 to a new function
ρ̂0 : T̂ × Z → R̄ with T̂ = R, of which its subdifferential coincides with ρ0 on T . It also
involves the computation of ∂Φ with respect to the combination of Z and t. Hence, in many
cases, the direct use of the above conclusion is not easy. In what follows, we further discuss
the specific characteristic of ∂ρ.

Denote ρ∗t (ζ) be the conjugate function of ρt(Z). Since ρt = ρ∗∗t and ρ = ρ∗∗, then,
ρ(Z) = inft∈T supζ∈Z∗ {⟨ζ, Z⟩ − ρ∗t (ζ)}.

On the other hand, the conjugate ρ∗(ζ) of ρ(Z) can be expressed by

ρ∗(ζ) = sup
Z∈Z

{
⟨ζ, Z⟩ − inf

t∈T
ρ0(Z, t)

}
= sup

Z∈Z
sup
t∈T

{⟨ζ, Z⟩ − ρt(Z)}

= sup
t∈T

ρ∗t (ζ).

Consequently,

ρ(Z) = sup
ζ∈Z∗

{⟨ζ, Z⟩ − ρ∗(ζ)} = sup
ζ∈Z∗

inf
t∈T

{⟨ζ, Z⟩ − ρ∗t (ζ)} .

Hence, we have

inf
t∈T

sup
ζ∈Z∗

{⟨ζ, Z⟩ − ρ∗t (ζ)} = sup
ζ∈Z∗

inf
t∈T

{⟨ζ, Z⟩ − ρ∗t (ζ)} . (5.5)

On the left side of (5.5), for each fixed t ∈ T , a solution ζ of the inner maximum problem
is also an element of ∂ρt(Z). On the other hand, on the right side of (5.5), ζ is a solution of
the outer problem if and only if ζ ∈ ∂ρ(Z). To take use of (5.5) to compute ∂ρ(Z), we first
need the next result to illustrate the relationship between ∂ρt(Z) and ∂ρ(Z).

Lemma 5.2. For given Z ∈ Z, denote ϑ(Z) ⊆ T be the solution set of the inner problem
in (5.2). Suppose ϑ(Z) ̸= ∅, and denote U(Z) :=

∩
t∈ϑ(Z) ∂ρt(Z), then

∂ρ(Z) ⊆ U(Z).

Proof. For fixed Z ∈ Z, choose any d ∈ ∂ρ(Z) and t0 ∈ ϑ(Z), for any Z1 ∈ Z, we have

⟨d, Z1 − Z⟩ ≤ ρ(Z1)− ρ(Z) ≤ ρ0(Z1, t0)− ρ0(Z, t0).

Thus, d ∈ ∂ρt0(Z). It follows from the arbitrariness of t0 that ∂ρ(Z) ⊆ U(Z).
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Lemma 5.2 provides a framework to compute the ∂ρ(Z).

Algorithm 1 (A Framework to compute ∂ρ(Z))
Step 1. Compute all the solutions t∗ which solves the inner problem in (5.2);
Step 2. Compute U(Z), which consists of the common solutions ζ of the inner maximum

problem in the left side of (5.5) for all t∗ obtained by step 1;
Step 3. Choose ζ ∈ U(Z) such that there exists t∗, t

∗ ∈ T , so that t∗ ∈ ϑ(Z), (t∗, ζ)
is the solutions of the right side problem in (5.5), and ρ∗t∗(ζ) = ρ∗t∗(ζ), which implies the
duality relationship holds.

The ζ obtained in Step 3 must be a subgradient of ρ(Z). Furthermore, if t∗ = t∗, then
a saddle point is also obtained.

If the inner risk function ρt(Z) is a coherent risk measure, or at least satisfies condition
C1 and C4 (convexity and positive homogeneity), then ρ∗t (ζ) = 0 in the case when ζ ∈ ∂t(0),
and ρ∗t (ζ) = +∞ in other cases. In such case, it can be verified that a subgradient ζ must
be the solution of the problem

sup
ζ∈Z∗

⟨ζ, Z⟩ (5.6)

s.t. ζ ∈
∩

t∈ϑ(Z) ∂ρt(0).

If, on the other hand, for some t, ρt(Z) is not positive homogeneous, then the implemen-
tation of Algorithm 1 relies on the knowledge of ρ∗t (ζ), which may be not easy to obtain its
specific expression.

Lemma 5.2 implies that if U(Z) contains only one element, then it must be the sub-
gradient of ρ(Z). This reminds us to explore that, in which cases, the converse statement
holds, i.e., U(Z) ⊆ ∂ρ(Z). If this relationship holds, then ∂ρ(Z) = U(Z), and we only have
to compute U(Z) to obtain the subdifferential of ρ(Z).

Proposition 5.3. Suppose the next three conditions are satisfied: (i) ρ0 is continuous
jointly in Z and t on Z × T ; (ii) for any given Z0 ∈ Z, there exists a scalar β, a closed
interval [ta, tb] ⊆ T (−∞ < ta < tb < +∞), and a neighbour of Z0, such that for any Z ∈ Z
within this neighbor, the level set levβρ0(Z, ·) = {t ∈ T : ρ0(Z, t) ≤ β} is nonempty and is
contained in [ta, tb]; (iii) given t0 ∈ ϑ(Z) and a direction h, for any sequence {tk} converging
to t0, it holds that lim infk→∞ ρ′tk(Z, h) ≥ ρ′t0(Z, h), then we have

∂ρ(Z) = U(Z).

Proof. Given Z0 ∈ Z and a direction h, for any stepsize α ∈ [0, 1], denote Zα = Z0+αh, and
tα be any element of ϑ(Zα). In particular, if α = 0, then let t0 be any element of ϑ(Z0). By
condition (ii), for sufficiently small α, the level set levβρ0(Zα, ·) ⊆ [a, b]. Then choose any
sequence {αk} → 0, and correspondingly denote tk := tαk

. Without loss of generality, we
can suppose that tk := tαk

converges to a point t∗ ∈ T . On the other hand, by Proposition
4.4 in [7], conditions (i)-(iii) imply the continuity of the optimal solution of ρ0(Z, ·) on T
with respect to t. Consequently, by tk ∈ ϑ(Zαk

), it readily holds that t∗ must be an element
of ϑ(Z0).

Denote Zk = Z0 + αkh. By the definition of ρ, it holds that

ρ(Z0 + αkh)− ρ(Z0) = ρ0(Zk, tk)− ρ0(Z0, t
∗)

≥ ρ0(Zk, tk)− ρ0(Z0, tk)

≥ ρ′tk(Z0, akh) = αkρ
′
tk
(Z0, h).
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Hence, the directional derivative of ρ satisfies

ρ′(Z0, h) = lim
k→∞

ρ(Z0 + αkh)− ρ(Z0)

ak
≥ lim inf

k→∞
ρ′tk(Z0, h) ≥ ρ′t0(Z0, h).

Consequently, for any d ∈ U(Z0), we have ⟨d, h⟩ ≤ ρ′t0(Z0, h) ≤ ρ′(Z0, h). Thus, d ∈ ∂ρ(Z0).
Hence, U(Z0) ⊆ ∂ρ(Z0).

Corollary 5.4. Suppose that conditions (i) and (ii) in Proposition 5.3 holds, further suppose
that (iii’): for given Z and any t0 ∈ ϑ(Z), it holds that lim inft→t0,t∈T ∂ρt(Z) ⊇ ∂ρt0(Z),
i.e., the point-to-set mapping t → ∂ρt(Z) is lower semi-continuous at t0, then ∂ρ(Z) =∩

t∈ϑ(Z) ∂ρt(Z).

Proof. Choose any d ∈ U(Z), for any t0 ∈ ϑ(Z), we have d ∈ ∂ρt0(Z). Since
lim inft→t0,t∈T ∂ρt(Z) ⊇ ∂ρt0(Z), let {tk} ⊆ T be any sequence converges to t0, there

exists a sequence d̃k ∈ ∂ρtk(Z) such that d̃k → d, which implies that limk→∞⟨d̃k, h⟩ = ⟨d, h⟩
for any direction h.

Taking into a subsequence if necessary, we suppose that the sequence ρ′tk(Z, h) converges
to a limit value, then

lim inf
k→∞

ρ′tk(Z, h) = lim inf
k→∞

sup
dk∈∂ρtk

(Z)

⟨dk, h⟩ ≥ lim inf
k→∞

⟨d̃k, h⟩ = ⟨d, h⟩.

Hence condition (iii) in In Proposition 5.3 holds, this implies ∂ρ(Z) = U(Z).

Remark: Recall that, to derive (5.5), we have assumed that ρ(·) is lower semi-continuous.
In fact, the conditions (i)-(iii) in Proposition 5.3 guarantee the continuity of ρ(·). This is
due to Proposition 4.4 in [7], which is about the continuity of the optimal value function
with respect to the parameters.
Example 5. In this example, we consider the next measure, called EVaR1−α (Entropic
Value-at-Risk), which was first studied in [1],

ρ1−α(Z) := inf
t>0

t ln

(
1

α
E
[
eZ/t

])
, α ∈ (0, 1]. (5.7)

In this example, we consider Z to be L M+(Ω,F , P ), which means that for any Z ∈ Z, the
moment generating function E

[
esZ
]
< +∞ for all s ≥ 0.

As is shown in [1], EVaR1−α is a coherent measure. This measure can be derived by
using (5.4) to homogenize the measure ρ(Z) = lnE(eZ) − lnα, which we have discussed in
Example 2.

For EVaR1−α, we have ρ0(Z, t) = t ln
(
1
αE
[
eZ/t

])
, and T = (0,+∞) in (5.2). Notice

that limt↓0 t ln
(
E
[
eZ/t

])
= ess-sup(Z). Consequently, if ess-sup(Z) < +∞, then T can be

extended to T̄ = [0,+∞).
Furthermore, the case when α = 1 is trivial. Indeed, by setting s = 1/t, we have

lim
t→∞

ρ0(Z, t) = lim
s→0+

1

s
lnE[esZ ] = lim

s→0+

E[ZesZ ]
E[esZ ]

= E(Z).

The last equality follows from the Lebesgue dominated convergence theorem (which implies
lims→0+ E[ZesZ ] = E[Z] and lims→0+ E[esZ ] = 1). Furthermore, since ρ0(Z, ·) is convex, it
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must be monotonic non-increasing with respect to t. Hence, in the case that α = 1, we have
ρ(Z) = E(Z), which implies ∇ρ(Z) = 1.

In what follows, we suppose α ∈ (0, 1). For simplicity we only consider the case when the
distribution of Z is continuous, i.e., the cumulative probability function F (z) := P (Z ≤ z)
is continuous.

For fixed Z0 ∈ Z, denote t∗ be the optimal solution for minimizing ρ0(Z0, ·) on T . Let
z1 :=ess-sup(Z0) and choose any z2 such that P (Z0 ≤ z2) := p > 1 − α. Obviously, if
z1 = +∞, then t∗ > 0. If, on the other hand, we suppose that z1 < +∞, then

ρ0(Z0, t) ≤ φ(t) := t
[
ln
(
pez2/t + (1− p)ez1/t

)
− lnα

]
.

It can be verified that limt→0+ φ(t) = z1, and for sufficiently small t > 0, we have φ′(t) < 0.
This means there exists some t > 0 such that φ(t) <ess-sup(Z0), which implies that t∗ > 0.
Consequently, either ess-sup(Z0) = +∞ or not, we have t∗ > 0.

Now we turn to show that condition (i), (ii) and (iii’) in Corollary 5.4 hold. Firstly,
condition (i) follows from the expression of ρ1−α immediately.

Denote f(t) := t ln( 1
αE[e

Z0/t]), t > 0. By using Theorem 7.44 in [25], it can be verified
that f(t) is differentiable, and

f ′(t) = lnE[eZ0/t]− lnα− 1

t
· E[Ze

Z0/t]

E[eZ0/t]
.

Since t∗ > 0 is the optimal solution, by f ′(t∗) = 0 we have that:

t∗ lnE[eZ0/t
∗
]− t∗ lnα =

E[Z0e
Z0/t

∗
]

E[eZ0/t∗ ]
. (5.8)

For this t∗, as is discussed in Example 2, the subdifferential of ρt∗(Z) can be computed as
follows,

∂ρt∗(Z) =
eZ/t∗

E[eZ/t∗ ]
. (5.9)

Hence, condition (iii’) in Corollary 5.4 holds.
Denote z∗ = ρ0(Z0, t

∗), i.e., z∗ is the optimal value. As is analyzed previously, z∗ <ess-
sup(Z0). Since ρ0 is continuous, there exist neighbours N(Z0, δ1) = {Z ∈ Z : ∥Z − Z0∥p ≤
δ1} and N(t∗, δ2) = {t ∈ T : |t− t∗| ≤ δ2}, and scalars 0 < p1 < α < p2, z3 > z∗ > z4, such
that for all (Z, t) ∈ N(Z0, δ1) ×N(t∗, δ2), it holds that p1 ≤ P (Z ≥ z3) < α, P (Z ≥ z4) ≥
p2 > α, and ρ0(Z, t) ≤ 2

3z
∗ + 1

3z3. Consequently, we have

t ln

(
1

α
E
[
eZ/t

])
≥ t ln

[p1
α
ez3/t

]
= z3 + t ln(p1/α), (5.10)

and

t ln

(
1

α
E
[
eZ/t

])
≥ z4 + t ln(p2/α). (5.11)

Now we choose β = 1
3z

∗ + 2
3z3. For any Z ∈ N(Z0, δ1), the level set levβρ0(Z, ·) is

nonempty. Furthermore, notice that z4 < β < z3, and p1 < α < p2, hence, ρ0(Z, t) ≤ β.
Together with (5.10) and (5.11), this implies that

ta :=
z∗ − z3

3 ln(p1/α)
≤ t ≤ tb :=

β − z4
ln(p2/α)

.
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i.e., levβρ0(Z, ·) ⊆ [ta, tb] ⊆ T . Hence, condition (ii) in Corollary 5.4 holds.
Consequently, by Corollary 5.4, we have ∂ρ(Z) =

∩
t∈ϑ(Z) ∂ρt(Z). Furthermore, similar

with the proof of Lemma 3.1 in [1], it can be verified that ρ̄0(Z0, ·) is strictly convex. Hence,
t∗ is the unique solution. Together with (5.9), we have

∂ρ1−α(Z) =
eZ/t∗

E[eZ/t∗ ]
.

Example 6. As is mentioned previously, (5.1) or its equivalent form (5.3), is an important
approach to generate various risk measures from some basic regret measures. An important
instance is the optimized certainty equivalence (OCE), proposed by Ben-Tal et al. [5]. The
OCE can be defined by setting ν in (5.3) as follows (see [26])

ν(Z) := γ1E [Z+]− γ2 [Z−] with 0 ≤ γ2 < 1 < γ1. (5.12)

The OCE further incorporates the CVaRα (conditional value at risk with the risk level
α ∈ (0, 1)) as a special case. The CVaRα(Z) ( defined by CVaRα(Z) = inft∈R[t+

1
αE(Z−t)+],

see e.g. [19]), can be derived from the OCE by setting α = 1/γ1 and choosing γ2 = 0 in
(5.12).

Now we use Algorithm 1 to discuss the subdifferential of the general form (5.3), together
with the results on the OCE and CVaRα as examples.

Step 1: For fixed Z ∈ Z, denote hZ(t) := ν(z − t), which is viewed as a function with
respect to t. Then ϑ(Z) = {t ∈ T |0 ∈ 1 + ∂hZ(t)}. In many applications, the measure ν
has the form ν(Z) = E [g(Z)]. Thus, hZ(t) = E [g(z − t)]. It follows from Theorem 7.47 in
[25] that, if the function g : R → R is convex, lower semicontinuous, and ν(Z) is finite for
all Z ∈ Z, then

∂hZ(t) = −
∫
Ω

∂g(Z(ω)− t)dP (ω).

As an instance, for OCE, g(Z) = γ1Z+ − γ2Z−. It can be verified that, the solution
set ϑ(Z) is a closed interval, denoted [t∗, t

∗], which consists of the value t such that P (Z <
t) ≤ 1 − α ≤ P (Z ≤ t) where α = (1 − γ2)/(γ1 − γ2). In other words, it contains the
(1− α)-quantile of the cdf FZ(z) := P (Z ≤ z) (including the end points).

Step 2: Since U(Z) :=
∩

t∈ϑ(Z) ∂ρt(Z), and ρt(Z) = t+ ν(Z − t). For fixed t ∈ R,

∂ρt(Z) = −∂ν(Y ), with Y = Z − t.

If ν(Z) = E [g(Z)], then U(Z) consists of ζ ∈ Z∗ such that

ζ(ω) ∈ −
∩

t∈ϑ(Z)

∂g(Y (ω)) a.e. ω ∈ Ω, with Y = Z − t.

For OCE, for simplicity, suppose that t∗ < t∗, then it can be verified that U(Z) consists
of ζ ∈ Z∗ such that

ζ(ω) =


γ1 if Z(ω) ≥ t∗,

γ2 if Z(ω) ≤ t∗,

[γ2, γ1] if Z(ω) ∈ (t∗, t
∗).

(5.13)

Step 3: First compute the conjugate of ρt(Z),

ρ∗t (ζ) = sup
Z∈Z

{⟨Z, ζ⟩ − t− ν(Z − t)}

= sup
Y ∈Z

{⟨Y + t, ζ⟩ − t− ν(Y )}

= ν∗(ζ) + t(E[ζ]− 1).
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Since ζ satisfies both sides of (5.5) and the whole equality holds, then E(ζ) = 1, otherwise
the rightside of (5.5) will be equal to −∞. Conversely, for any ζ ∈ U(Z) such that E(ζ) = 1,
in (5.5) we have

⟨ζ, Z⟩ − ρ∗t (ζ) = ⟨ζ, Z⟩ − ν∗(ζ).

This implies that the equality in (5.5) holds. Consequently,

∂ρ5(Z) = {ζ ∈ Z∗ : E(ζ) = 1, ζ ∈ U(Z)} . (5.14)

If ν(Z) = E [g(Z)], then (5.14) takes the from

∂ρ5(Z) =

ζ ∈ Z∗ : E(ζ) = 1, ζ(ω) ∈ −
∩

t∈ϑ(Z)

∂g(Y (ω)), Y = Z − t

 .

For the OCE, suppose that t∗ < t∗, then its subdifferential is:

∂OCE(Z) =

ζ ∈ Z∗ : E(ζ) = 1,

ζ(ω) = γ1 if Z(ω) ≥ t∗,

ζ(ω) = γ2 if Z(ω) ≤ t∗,

ζ(ω) ∈ [γ2, γ1] if Z(ω) ∈ (t∗, t
∗).

(5.15)

Finally, by setting α = 1/γ1 and γ2 = 0 in (5.15), we directly obtain the subdifferential
of CVaRα as follows

∂CV aRα(Z) =

ζ ∈ Z∗ : E(ζ) = 1,

ζ(ω) = 1/α if Z(ω) ≥ t∗,

ζ(ω) = 0 if Z(ω) ≤ t∗,

ζ(ω) ∈ [0, 1/α] if Z(ω) ∈ (t∗, t
∗).

6 On the Subgradient Approach

As an application of the previous results, in this section, we discuss the way to develop a
subdifferetial approach for the risk minimization problem (1.1) based on the knowledge of
the subdifferetial of ρ(·).

First, the random function F (x, ω) now can be viewed as a mapping (also denoted by
F ) from Rn to Z, i.e., it maps x ∈ Rn to a random variable [F (x)](·) ∈ Z. If elements of
the subdifferential ∂ρ(·) can be obtained, then we can further consider the subgradient of
the composition function ρ(F (x)), which is the objective function of the problem (1.1). We
cite the following conclusion, which is an extension of Theorem 6.11 in [25].

Theorem 6.1. ([28]) Let F : Rn → Z be a convex mapping. Suppose that ρ(·) is a convex
risk function, finite valued and is continuous at Z0 := F (x0). If ρ(·) is monotone, or the
mapping F (·) is affine, i.e., [F (x)](ω) = A(ω)Tx+ b(ω), with ω ∈ Ω, A(ω) ∈ Rn, b(ω) ∈ R,
then the composite function ϕ(x) = ρ(F (x)) is convex at x0 and

∂ϕ(x0) = cl

 ∪
ζ∈∂ρ(Z0)

∫
Ω

∂xF (x0, ω)ζ(ω)dP (ω)

 . (6.1)

The above theorem shows that an element of ∂ϕ(x0) can be computed by (6.1) through
the following procedure.
Procedure for subgradient of ϕ:
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Step 1: For given x0, choose any ζ ∈ ∂ρ(Z0) where Z0 = F (x0);
Step 2: Compute d =

∫
Ω
∂xF (x0, ω)ζ(ω)dP (ω). Then d ∈ ∂ϕ(x0).

It can be found that Step 1 is the core of the above procedure, and is related to the
expression and properties of the risk function ρ. Hence it is the main issue of this paper and
has been carefully discussed in Section 3-5.

Step 2 is associated with the inner mapping F and the probability measure P (ω), and is
separated from the risk function ρ. If the support of Ω is finite, denoted by {ω1, · · · , ωK},
which means the random variables defined on (Ω,F , P ) all have discrete distributions, then
Step 2 can be carried out by computing

d =

K∑
k=1

∂xF (x0, ωk)ζ(ωk)P (ωk).

In the case when the distribution is not discrete, Step 2 can be approximated through
a sample average approximation (SAA) method. Without loss of generality, suppose that
ζ(ωi) ̸= ζ(ωj) for any ωi ̸= ωj in Ω. We can generate independent identically distributed
random samples ζ1, · · · , ζN from the distribution of ζ, with N be the sample size, and choose

d ∈ 1

N

N∑
j=1

ζj∂xF (x0, ζ
j)

as an estimation of the subgradient of ϕ at x0.

Whenever the elements of ∂ϕ(·) is computable, the risk minimization problem (1.1) with
the form

min
x∈DX

ϕ(x) (6.2)

is solvable for many subgradient type algorithms. A typical example is the subgradient
projection algorithm, which generates the iteration as follows:

xk+1 = ProjDX
(xk − αkd

k) (6.3)

where dk is an subgradient of ϕ at xk, αk is a positive stepsize, and ProjDX
is the projection

operation onto the set DX . The convergence analysis of such method is standard.

Finally, recall that, by theorem 6.1, the usage of the subgradient-type algorithms requires
ρ to satisfy at most conditions R1 and R2, which is weaker than the coherence required by
most dual-representation methods. In particular, if F (x, ω) is affine with respect to x, then
ρ is only required to have convexity. Another case is, if ρ is a convex, differentiable risk
function, F is differentiable mapping (with respect to x), the composition ϕ is a convex
function, then ϕ is differentiable and

∇ϕ(x0) =
∫
Ω

∇xF (x0, ω)ζ(ω)dP (ω) (6.4)

which can also be viewed as a special case of (6.1).

Another important subgradient-type method is the Benders decomposition algorithm,
which are widely used in stochastic programs. In such algorithm, the knowledge of the
subgradient is also crucial for computing the cutting planes of the objective functions. We
omit the detailed discussion here. See e.g., [23, 14] for details of such method.
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7 Conclusion

Risk minimization problems are widely used in financial and economic decisions. We consider
the risk minimization problem with a convex risk function. Being different from the dual
representation approach, a subdifferential approach is analyzed for three classes of convex
risk functions. The discussion is embeded into the the risk quadrangle theory and covers a
large number of practically used risk functions. The results in this paper are basic building
blocks for designing subgradient-type algorithms for risk minimization problems and they
are helpful in better understanding on the properties of convex risk functions as well.
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