
2025 DOI: https:// doi.org/10.61208/pjo-2025-020



414 S. TAN, H. LUO, X. LIAO, F. BAI AND J. LI

from the necessity for a higher filter order to effectively capture and process the intricate
oscillatory components in the frequency-domain driving signal. However, a higher order
implies higher filter manufacturing costs and increased time delay. Consequently, when
designing filters for sound field control, it becomes imperative to reduce the oscillation level
at lower frequencies, thereby mitigating the need for an unnecessarily high-order filter.

Sound field control methods fall into two categories: Sound Field Synthesis [21] and
Beamforming. The former exemplified by Pressure Matching (PM), focuses on accurately
synthesizing a specified sound field. In contrast, Beamforming, represented by Acoustic Con-
trast Control (ACC), directs a beam towards a specific direction, enhancing perceptual con-
trast. Comparative studies reveal that ACC provides maximum acoustic contrast across fre-
quencies but exhibits poor accuracy in sound field synthesis and inadequate lower-frequency
gain [8, 18]. Conversely, PM demonstrates superior accuracy in sound field synthesis and
satisfactory contrast but demands consistently high control effort [8]. To address this, the
ACC-PM method has been introduced, offering flexibility in adjusting hyper-parameters for
a balanced trade-off between the accuracy of bright zone synthesis and the acoustic contrast
[5]. This method provides a more adaptable approach to acoustic field control.

In earlier research, various approaches aimed at constraining the driving signal to mini-
mize oscillation levels have been explored. One such method is the ACC-multi-point equal-
ization method [2, 3], which adjusts the driving signals computed by the ACC in both
amplitude and phase to lower oscillation levels. This method not only effectively shortens
the filter order but also improves contrast at non-control frequency points compared to us-
ing ACC alone. Another study introduces a L2-norm based finite difference penalty term to
Amplitude Matching (AM), a sound field synthesis method [1], effectively reducing the os-
cillation level of the driving signal, particularly the phase oscillation level. The AM method
only reproduces the target amplitude, while the phase distribution remains arbitrary.

The application of L2-norm penalty term as a regularization technique is crucial for
providing stability to various methods. In the intricate domain of sound field control, reg-
ularization is essential for reducing numerical errors and improving the condition number
during matrix inversion [6]. This not only enhances continuity in modal control but also
provides a clear physical definition for the involved processes [11]. Beyond the scope of the
L2-norm penalty term, the L1-norm penalty term is equally influential and is well-known for
its ability to induce sparsity. This property has made it widely applicable in various signal
processing tasks. Its versatility extends to promoting signal sparsity, facilitating feature
selection, executing denoising procedures, and enabling sparse representation, among other
tasks [17, 19]. This broad range of uses highlights the significance and adaptability of the
L1-norm penalty term in signal processing.

In this paper, the utilization of the finite difference penalty in the ACC-PM method
(ACC-PM-L2) is implemented to synthesize the desired amplitude and phase while simul-
taneously reducing the oscillation level of the driving signal. Moreover, a finite difference
penalty term based on the L1-norm (Diff.-L1 penalty) is introduced in ACC-PM (ACC-PM-
L1) to improve the flatness of the driving signal by enhancing the sparsity of the difference
penalty, thereby reducing the order of the filters. The incorporation of the L1-norm penalty
is considered a form of feature extraction on the broadband driving signals. This process
not only preserves their primary characteristics but also compresses the informational con-
tent embedded in the signals [4]. Due to the nature of the ACC-PM-L1 cost function, the
Alternating Direction Method of Multipliers (ADMM) is selected for rapidly solving the
optimization problem [12].

The two methods proposed in this paper consistently exhibit superior characteristics
in sound field control and filter order reduction. Users have the flexibility to fine-tune
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parameters based on their specific sound field control requirements. Compared to other
conventional sound field control methods, the filter order generated by our proposed methods
is reduced by at least half.

The remaining sections of this paper are organized as follows: Section 2 provides prelim-
inaries. In Section 3, two models have been established, utilizing low-order filters to control
sound field using the ACC-PM method combined with two difference penalties. An effi-
cient algorithm to solve these models is presented using the ADMM method. In Section 4,
experiments conducted in a free field scenario are presented.

2 Preliminaries

This section provides a brief introduction to the sound field control system and reviews some
existing well-known methods.

Figure 1: Illustration of a personal sound control system.

Below in Figure 1, we illustrate a conventional loudspeaker array-based sound field con-
trol system, which consists of L loudspeakers and two sound zones, denoted as B and D.
In each sound zone, there are several virtual microphones that serve as control points.The
goal is to determine the optimal driving signals for the loudspeaker array using sound field
partitioning control methods, thereby synthesizing the desired sound field within the sound
zones Ω ∈ {B,D}.

Integrating Figure 1, we introduce the fundamental acoustic principles of sound field
partitioning control. For each angular frequency f , the input driving signal vector of the
loudspeaker array is q(f) = [q1(f), q2(f), ..., qL(f)]T ∈ CL. It is worth noting that angular
frequencies are omitted in Figure 1 for the sake of simplicity. Assume there are NΩ control
points in the zone Ω. Let Gn,l

Ω (f) be the acoustic transfer function between the n-th control
microphone in Ω and the l-th loudspeaker. Then the sound pressure at the n-th control
point is expressed as

pnΩ(f) =

L∑
l=1

Gn,l
Ω ql, n = 1, 2, · · · , NΩ. (2.1)

This allows a more compact matrix-vector form

pΩ(f) = GΩ(f)q(f), Ω ∈ {B,D}, (2.2)
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where pΩ(f) = [p1Ω(f), p
2
Ω(f), · · · , p

NΩ

Ω (f)]T ∈ CNΩ represents the sound pressure vector in
the zone Ω , and the transfer function matrix is given by

GΩ(f) =

 G1,1
Ω (f) · · · G1,L

Ω (f)
...

. . .
...

GNΩ,1
Ω (f) · · · GNΩ,L

Ω (f)

 .

Based on the acoustic principles described above, we will now provide a brief introduction
to the three commonly used sound field partitioning control methods.

2.1 Acousic contrast control (ACC)

Acoustic Contrast Control (ACC) [7, 8] is a beamforming-based method of sound field control
that aims to generate acoustic bright and dark zones. The optimization problem of ACC is
defined as maximizing the acoustic contrast between the bright and dark zones as follows:

max
q(f)∈CL

J(q(f)) :=
ND

NB
× ∥pB(f)∥2

∥pD(f)∥2
=

ND

NB
× ∥GB(f)q(f)∥2

∥GD(f)q(f)∥2
, (2.3)

where pB(f) and pD(f) are the reproducing pressures of the bright and dark zones respec-
tively, while GB(f) and GD(f) are the transfer function matrices of the bright and dark
zones respectively. The maximization Equation (2.3) equates to the generalized eigenvalue
problem

GB(f)
HGB(f)q(f) = λ[GH

D (f)GD(f) + µI]q(f),

where λ ∈ R is the largest eigenvalue, µ is the regularization parameter, and the optimal
solution q⋆(f) to Equation (2.3) is an eigenvector of λ.

2.2 Amplitude matching (AM)

Amplitude matching (AM) [1] only concerns reproducing amplitude of the sound field, and
the phase is arbitrary. The optimization problem of amplitude matching is as follows:

min
q(f)∈CL

∥|p(f)| − |pT(f)|∥2 = ∥|G(f)q(f)| − |pT(f)|∥2 , (2.4)

where p(f) is the reproducing pressure and pT(f) is the target pressure.

2.3 Pressure matching (PM)

Pressure Matching (PM) [21] is a sound field synthesis method aimed at reproducing the
desired acoustic field. The optimization problem of PM can be defined as minimizing the
error in bright zone and the energy in dark zone as follows:

min
q(f)∈CL

∥pB(f)− p
BT

(f)∥2 + δ ∥pD(f)∥2 + γ ∥q(f)∥2 , (2.5)

where p
BT

(f) = [p1
BT

(f), p2
BT

(f), · · · , pNB
BT

(f)]T ∈ CNB is the target pressure that needs to
be reproduced in the bright zone, while δ > 0 denotes the weight parameter and γ is the
regularization parameter. The first term represents the sum of reproduction errors of the
sound field in the bright zone at each control frequency point. The second term represents
the total sound energy in the dark zone at each control frequency point, while the third term
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is a regularization term designed to prevent the energy of the signal q(f) from becoming
excessively large. Different weighting parameters represent different preferences for sound
field zoning control. When δ = 1, it amounts to the method of pressure matching (PM).
In cases where the weight parameter δ can be arbitrarily specified, this method is known
as ACC-PM [5]. Users can fine-tune the parameters according to their specific sound field
control requirements to better balance the sound field partitioning control effects.

3 Finite difference penalty for low-order time-domain filter design

The utilization of low-order time-domain filters in sound field control offers an opportu-
nity to reduce industrial manufacturing expenses while concurrently enhancing the stability
of control system and reducing the system latency. Expanding upon the original ACC-
PM method Equation (2.5), we introduce two novel methods incorporating finite difference
penalty terms. The first method involves the L1-norm of the differences which promotes
sparsity in the solution and reduces the signal complexity, while the second method involves
the L2-norm of the differences to achieve smoother solutions. Both methods, based on the
ACC-PM method, aim to flatten the frequency domain weight signal of the loudspeaker
array.

3.1 ACC-PM with L2-norm based difference penalty

Note that the problem Equation (2.5) involves a fixed angular frequency. For the sake of
presentation, assume there are J frequency points, denoted as f1, · · · , fJ . Introduce the
overall driving signal and sound pressure as follows

q = [q(f1)
T , · · · ,q(fJ)T ]T ∈ CJL,

p
BT

= [p
BT

(f1)
T , · · · ,p

BT
(fJ)

T ]T ∈ CJL.

Then we update Equation (2.5) to a broadband form across the frequency domain:

min
q∈CJL

∥GBq− p
BT

∥2 + δ ∥GDq∥2 , (3.1)

where GΩ = diag{GΩ(f1), · · · ,GΩ(fJ)} is a block diagonal matrix. It is straightforward to
obtain the optimal closed-form solution:

q⋆ = (GH
BGB + δGH

DGD)
−1GH

B p
BT

. (3.2)

Recall that q(fj) = [q1(fj), q
2(fj), ..., q

L(fj)]
T ∈ CL denotes the input driving signal

vector of the loudspeaker array. To decrease the filter order over the time-domain, an indirect
way is to improve the smoothness of the input signal of the loudspeaker. Specifically, the
objective is to minimize the following quantities

J−1∑
j=1

∥∥qi(fj+1)− qi(fj)
∥∥2 , i = 1, · · · , L. (3.3)

Plugging this penalty term into Equation (3.1) leads to

min
q∈CJL

∥GBq− pBT∥
2
+ δ1 ∥GDq∥2 + δ2 ∥Fq∥2 , (ACC-PM-L2)
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where δ1, δ2 > 0 are weight parameters and F = D⊗IL where D ∈ R(J−1)×J is a difference
matrix that satisfies

Dij =


− 1, if i = j,

1, if i = j − 1,

0, else.

Analogously to Equation (3.1), the solution to problem Equation (ACC-PM-L2) is given by

q⋆ = (GH
BGB + δ1G

H
DGD + δ2F

HF )−1GH
B p

BT
. (3.4)

3.2 ACC-PM with L1-norm based difference penalty

Inspired by the l1-norm for ensuring sparsity [19], we are also interested in the nonsmooth
penalty

J−1∑
j=1

∥∥qi(fj+1)− qi(fj)
∥∥
1
, i = 1, · · · , L, (3.5)

where for any complex number or vector z, ∥z∥1 := ∥Re(z)∥1 + ∥Im(z)∥1. Consider the
following model

min
q∈CJL

∥GBq− p
BT

∥2 + δ1 ∥GDq∥2 + δ2 ∥Fq∥1 . (ACC-PM-L1)

Note that the l1-norm seeks some signal vector q∗ such that Fq∗ is sparse while the use of
l2-norm aims for Fq∗ to be small. Both two penalties strive to make the signal vector of
each loudspeaker as flat as possible.

The objective function of this model Equation (ACC-PM-L1) is nonsmooth and lacks
a closed-form solution, thus requiring numerical algorithms for solution. Given that it is
a separable convex optimization problem in the complex domain of real-valued functions,
it is suitable for ADMM. Moreover, each subproblem generated by ADMM has an analyt-
ical solution, significantly enhancing computational efficiency. Additionally, research has
demonstrated the convergence of ADMM for solving such problems, noting its sublinear
convergence rate O(1/k) [14, 16].

Introduce a new variable z = Fq and the augmented Lagrangian accordingly

Lρ(q, z;µ) = ∥GBq− pBT∥2 + δ1∥GDq∥2 + δ2 ∥z∥1
+Re(µH(Fq− z)) +

ρ

2
∥Fq− z∥2,

where µ ∈ C(J−1)L denotes the Lagrange multiplier and ρ > 0 is the penalty parameter. The
standard ADMM [12] applies alternating minimization approach to Lρ and is formulated as
follows 

qk+1 = argmin
q∈CJL

Lρ(q, z
k;µk),

zk+1 = argmin
z∈C(J−1)L

Lρ(q
k+1, z;µk),

µk+1 = µk + τρ(Fqk+1 − zk+1),

(3.6)

where τ ∈ (0, 2) is the step size and the initial guess is (q0, z0,µ0). After some calculations,
the updating formulae of qk+1 and zk+1 areqk+1 = (GH

BGB + δ1G
H
DGD + δ2F

HF )−1

(
GH

B pBT +
ρ

2
FHzk − 1

2
FHµk

)
,

zk+1 = proxt∥·∥1
(F qk+1 + µk/ρ), t = δ2/ρ,

(3.7)
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where proxt∥·∥1
denotes the complex-valued soft shrinkage operator

proxt∥·∥1
(z) = proxt∥·∥1

(Re(z)) + iproxt∥·∥1
(Im(z)), z ∈ C.

The overall ADMM iteration is summarized in Algorithm 1. For completeness, we provide
some essential derivation details of Equation (3.7) in Appendix A.2.

Algorithm 1 ADMM for solving Equation (ACC-PM-L1)

Input: ρ > 0, 0 < τ < 2
1: Initialize q0 ∈ CJL, z0,µ0 ∈ C(J−1)L

2: A = (GH
B GB + δ1GH

DGD + δ2FHF )
3: for k = 0, 1, . . . do
4: qk+1 = A−1(GH

B + ρ
2
FHzk − 1

2
FHµk)

5: zk+1 = proxt∥·∥1 (Fqk+1 + µk/ρ), t = δ2/ρ

6: µk+1 = µk + τρ(Fqk+1 − zk+1)
7: err = ∥qk+1 − qk∥+ ∥zk+1 − zk∥+ ∥µk+1 − µk∥
8: if err < ϵ then
9: break
10: end if
11: end for
Output: Optimal solutions: q∗ = qk+1, z∗ = zk+1, µ∗ = µk+1

4 Numerical experiments

We have conducted experiments to evaluate our proposed methods. Firstly, we have vali-
dated the effectiveness of Equations (ACC-PM-L2) and (ACC-PM-L1) using simulated data.
Subsequently, we have tested the methods using real measured data, further confirming the
efficacy of the methods in practical applications.

4.1 Metrics for performance measurement

Let us introduce three key metrics for measuring the quality of the signal q. One is the
percentage of normalized mean-square error between reproduced and target sound field in
the bright zone

Er(f) :=
∥pB(f)− p

BT
(f)∥2

∥p
BT

(f)∥2
,

which involves the ratio of the mean sum of the square error in the bright sound zone between
reproducing pressure pB(f) and target pressure p

BT
(f) to target pressure p

BT
(f).

The second is the acoustic contrast

AC(f) := 10 log10
ND

NB
× ∥pB(f)∥2

∥pD(f)∥2
,

which is the ratio of the average sound energy density in the bright zone to that in the dark
zone. It evaluates the effectiveness of the distinction between the bright and dark zones.

The other one is the center energy percentage in the pre-truncated filter, which involves
the inverse FFT of q. More precisely, let △f be the interval between control frequency points
and fs the sampling frequency. The inverse FFT of q is denoted by w = (w(0), ..., w(I)) ∈
RI , with I = fs/△f . For given K ∈ N, the center energy percentage is define by

Ec(K) :=
1

∥w∥2

I
2+

K
2∑

i= I
2−

K
2

w(i)
2
,
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which stands for the proportion of total energy before truncation to the energy within the
central order.

With the metric Ec(K), we can determine the order and coefficients of the filter. Due
to the possibility of low-amplitude coefficients at both ends before truncation, a common
practice is to truncate only the central part containing larger numerical values. This reduces
computational and storage costs while preserving the main characteristics of the filter. Typ-
ically, we truncate the central part to retain 99% of the total energy, determining the filter
order K as follows:

K = min{K : C(K) ≥ 0.99,K ∈ N}.

It is noteworthy that once the optimal solution q∗ for the speaker array weight signals is
determined, the corresponding filter order K and filter coefficients are also determined. The
filter coefficients are given by [F (I/2−K/2), . . . , F (I/2 +K/2)].

4.2 Experiment results

We have conducted numerical experiments through 3D free field simulations. A real car
with dimensions of approximately

length× width× height = 3m× 1.8m× 1.3m

is approximately denoted by a rectangular prism, as depicted in Figure 2. The orange and
red blocks in Figure 2 represent the ear areas of the front-row and rear-row passengers inside
the car. The positioning of the speaker array on the car roof is illustrated in Figure 3.

Figure 2: Simplified car model. Figure 3: Loudspeakers position.

In our framework, we designate the front row as the bright zone ΩB and the rear row
as the dark zone ΩD. For the target sound pressure, we set it to 1.0 in ΩB and 0.0 in
ΩD. The generated signal is a band-limited pulse signal ranging from 200 Hz to 1200 Hz.
The interval between control frequency points △f is set to 1, and the sampling frequency
is 48 kHz, consistent with the number of frequency bins. The transfer function matrix is
simulated and generated based on acoustic principles, as detailed in reference [15].

To validate the performance of the sound field control methods proposed in this paper,
Equations (ACC-PM-L1) and (ACC-PM-L2), we compare them with four existing methods:
ACC, PM, ACC-PM, and AM with smooth difference penalty (AM-L2). The model for
AM-L2 is as follows:

min
q(f)∈CL

F (q(f)) := ∥|G(f)q(f)| − |pT(f)|∥2 + ρ ∥Fq∥2 , (4.1)

The regularization parameter µ in Equation (2.3) for ACC and γ in Equation (2.5) for PM
are both set as 1.0 × 10−5. The penalty parameter in Equation (4.1) for AM-L2 is set to
10. The parameter δ1 and δ2 are set to 8.3 and 24 in both Equation (ACC-PM-L1) and
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Equation (ACC-PM-L2). Meanwhile, in the control group ACC-PM, parameter δ is set as
8.3. Once this parameters are determined, the optimal driving signals for the loudspeaker-
array in the frequency domain can be obtained by using the sound field control methods.
Transforming these signals into the time domain yields the corresponding filters. Figure 5
provides a schematic diagram of the untruncated filters.

Figure 4: The trend of Ec with respect to the
central order.

(a) ACC-PM-L2

(b) ACC-PM-L1

Figure 5: The 4th loudspeaker filters generated
by methods.

Observing Figure 5, it becomes evident that the ACC-PM-L1 method exhibits the most
pronounced truncation effect, with a notable concentration of energy in the filter points.
Figure 4 illustrates the trend of Ec with respect to the central order. The optimal filter
order K is defined as the central order such that Ec(K) is 99%.

As indicated in Table 1, the ACC-PM-L1 method has the lowest average filter order
1952, followed by the ACC-PM-L2 method, which is 2226.

Table 1: The optimal filters order

The optimal order The average optimal

of the 4th filter order of all filters

ACC-PM-L1 2272 1952

ACC-PM-L2 2560 2226

AM-L2 3612 2763

ACC-PM 3056 2919

ACC 38650 36576

PM 3516 3313

From Figure 6, it can be observed that compared to ACC-PM, the two methods proposed
in this paper yield smoother amplitude and phase curves with respect to frequency due to
the inclusion of penalty terms. The other methods exhibit characteristics in the frequency
domain according to their distinct properties, reflected in their corresponding amplitude
and phase curves. Furthermore, the introduction of the L1 penalty, as opposed to the L2
penalty, has exhibited sparsity, preserving valuable information while proving more effective
in reducing the oscillation level of the signal.
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Figure 6: The 4th loudspeaker driving signal amplitude and phase.

Table 2: The average Er and AC for all the frequency bins

ACC-PM-L1 ACC-PM-L2 AM-L2 ACC-PM ACC PM

Ēr 0.06 0.035 1.12 0.29 0.81 0.02

ĀC 23.87 27.16 27.13 27.39 50.11 21.80

The average Er and AC are defined for all the frequency bins as

Ēr =
1

J

J∑
i=1

Er(fi), ĀC =
1

J

J∑
i=1

AC(fi). (4.2)

Figure 7 presents a comparison of the proposed methods with ACC and PM in terms
of the metrics AC and Er, demonstrating the effectiveness of the two methods in achieving
sound field partitioning control. Figure 8 compares the proposed methods, ACC-PM and
AM-L2. Compared to ACC-PM, the penalty terms significantly reduce the reproduction
error in the bright zone sound field. Compared to AM-L2, the proposed methods show
superior accuracy in sound field reconstruction.

By referring to Table 2, the following conclusions can be drawn more clearly. It is
discernible that the ACC-PM-L1 method and the ACC-PM-L2 method achieve a balance
between AC and Er in sound field control, ultimately resulting in highly effective sound field
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control. At the same time, when compared to ACC-PM, these two methods have successfully
reduced the filter order and the reproducing error in the bright zone sound field Er, all while
maintaining acoustic contrast AC.

Figure 7: Comparison of Er and AC with respect to frequency between the proposed methods and ACC,
PM in numerical simulation.

Figure 8: Comparison of Er and AC with respect to frequency between the proposed methods and AM-L2,
ACC-PM in numerical simulation.

4.3 Experiments using real data

In non-free field environments, phenomena like reflection, diffraction, and resonance in the
spatial environment affect the transfer function, resulting in it containing more information.
Consequently, it is impossible to fully validate the effectiveness of the sound field control
model under simulated conditions.

To investigate the performance of the proposed methods in practical environment, we
have conducted experiments using the impulse response dataset measured in the anechoic
chamber experiment. The sound field is divided into left and right zones, and the layout of
the laboratory is shown in Figure 9.

In our framework, the left row is designated as the bright zone ΩB , and the right row
is designated as the dark zone ΩD. For the desired sound pressure, we set it to 1.0 in ΩB

and 0.0 in ΩD, and the generated signal is a band-limited pulse signal ranging from 200
Hz to 1200 Hz. The interval between control frequency points △f is set to 1, and the
sampling frequency fs is 48kHz. The regularization parameter µ in Equation (2.3) for ACC
and γ in Equation (2.5) for PM are both set as 1.0 × 10−5. The penalty parameter in
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Equation (4.1) for AM-L2 is set to 0.014. The parameter δ1 and δ2 are set to 13.9 and 0.21
in both Equation (ACC-PM-L1) and Equation (ACC-PM-L2). Meanwhile, in the control
group ACC-PM, parameter δ is set as 13.9.

Figure 9: Loudspeakers position on the car roof.

Table 3: The optimal filters average order

ACC-PM-L1 ACC-PM-L2 AM-L2 ACC-PM ACC PM

Order 6577 3296 2821 45412 45705 45021

As shown in Table 3, in non-free field scenarios, the AM-L2 method achieves the lowest
filter order. However, as indicated by the subsequent results shown in Table 4, its sound field
reproduction performance is not satisfactory. This also reflects the limitations of the AM
method [13], which is more suitable for high-frequency situations where strict requirements
on the phase of the sound field are not imposed. The ACC-PM-L2 method has the lower
filter order, which is 3294, followed by the ACC-PM-L1 method, with an order of 6577.
Compared to the other methods, it achieves a reduction of at least 30000 in filter order.

Figure 10: The 2th loudspeaker time-domain filters generated by using real data.

Figure 10 shows the FIR filters prior to truncation when using real data. In comparison
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to the other three methods, the ACC-PM-L1 method and the ACC-PM-L2 method also
display the most favorable truncation effect. Table 3 shows the optimal filters’ average
order of the loudspeaker-array for all methods, and the selection of optimal order for each
filter is consistent with the simulation experiment.

From Figure 11, it is apparent that the oscillation level of the driving signal in real data
is higher, contrary to findings from simulated data. This is due to the transfer function
matrices of real data, which incorporate more environmental information. Therefore, it is
necessary to use higher-order filters to accurately characterize the driving signal for effective
sound field control.

Table 4: The average Er and AC for all the frequency bins

ACC-PM-L1 ACC-PM-L2 AM-L2 ACC-PM ACC PM

ĀC 19.95 19.20 21.88 21.87 25.19 14.46

Ēr 0.22 0.25 0.99 0.17 0.50 0.13

Figure 11: The 2th loudspeaker driving signal amplitude and phase by using real data.

Figure 12 illustrates the comparison between the methods proposed in this paper and
ACC and PM methods in terms of metrics Er and AC when using real data. Consistent with
simulation results, the ACC-PM-L1 and ACC-PM-L2 methods achieve a balance between
Er and AC in sound field control, thereby effectively controlling the sound field. Figure 13
compares the methods proposed in this paper, ACC-PM, and AM-L2 methods. Compared to
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Figure 12: Comparison of Er and AC with respect to frequency between the proposed methods and ACC,
PM when using real data.

AM-L2, our proposed methods demonstrate superior accuracy in sound field reconstruction.
Combined with Table 3 and Table 4, we conclude that the ACC-PM-L1 and ACC-PM-
L2 methods achieve partitioned control of the sound field while significantly reducing filter
order.

Figure 13: Comparison of Er and AC with respect to frequency between the proposed methods and AM-L2,
ACC-PM when using real data.

Comparison between simulated experiments and experiments using real data reveals dif-
ferent advantages of the ACC-PM-L1 and ACC-PM-L2 methods. In simulated experiments,
the ACC-PM-L1 method shows better reduction in filter order, whereas in experiments using
real data, the ACC-PM-L2 method exhibits better reduction in filter order. This variation
arises due to differences in the properties of transfer function matrices between the two types
of experiments.

5 Conclusion

This paper introduces two innovative methods, ACC-PM-L1 and ACC-PM-L2, for designing
low-order filters in sound field control applications. The ACC-PM-L2 method utilizes a
L2-norm based finite difference penalty (Diff.-L2 penalty) to achieve desired amplitude and
phase synthesis while minimizing signal oscillations, thereby maintaining signal fidelity which
is crucial for precise sound field control. The ACC-PM-L1 method incorporates a finite
difference penalty based on the L1-norm (Diff.-L1 penalty) to enhance signal flatness by
promoting sparsity in adjacent signal components. This effectively reduces filter complexity
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while preserving essential signal characteristics and serves as a feature extraction method
for broadband signals without significant fidelity loss. Numerical experiments demonstrate
that both ACC-PM-L1 and ACC-PM-L2 methods effectively reduce filter orders compared
to four benchmark methods in sound field control, while maintaining high performance
levels. Considering the distinct properties of transfer function matrices, each of ACC-PM-
L1 and ACC-PM-L2 offers unique advantages. Future research will investigate how these
varying properties influence methods for partition control of sound fields, enhancing our
understanding and applications of these methods in practical scenarios.
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A Appendix

A.1 Wirtinger’s Derivatives

The signal preprocessing problem in sound field control system is actually the optimization
of real functions in complex domain. The application of Wirtinger’s Derivatives is necessary
to find the optimal solution to this optimization problem.

Definition A.1 ([14]). Let f : C → R be a real-valued function over the complex domain.
The Wirtinger’s derivative of f at z = u+ iv is defined as follows

∂f

∂z
:=

1

2

(
∂f

∂u
− i

∂f

∂v

)
, (A.1)

where ∂f
∂u and ∂f

∂v are the usual partial derivatives of f with respect to u and v. Moreover,
the conjugate Wirtinger’s derivative of f at z = u+ iv is defined as follows

∂f

∂z̄
:=

1

2

(
∂f

∂u
+ i

∂f

∂v

)
.
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Based on the above definition, we present the following example, which will be used in
the subsequent analysis. Consider the quadratic function

f(z) = ∥Az− b∥2, z ∈ C, (A.2)

where b ∈ Cp and A ∈ Cp×n. It holds that

∂f

∂z
= AT (Az− b),

∂f

∂z̄
= AH(Az− b).

If z∗ is an extreme point of f , then it holds that ∂f
∂z̄ (z

∗) = 0.Therefore, the minimizer z∗ of
the quadratic function Equation (A.2) satisfies

AH(Az∗ − b) = 0.

A.2 Derivation of Equation (3.7)

The update rule for q is obtained by solving

qk+1 = argmin
q∈CJL

Lρ(q, z
k;µk)

= argmin
q∈CJL

{
∥ GBq− p

BT
∥2 + δ1∥ GDq∥2

+Re((µk)H(Fq− zk)) +
ρ

2
∥Fq− zk∥2

}
= argmin

q∈CJL

{
∥GBq− p

BT
∥2 + δ1∥GDq∥2 +

ρ

2

∥∥∥∥Fq− zk +
µk

ρ

∥∥∥∥2
}
.

(A.3)

The optimal solution to the optimization problem Equation (A.3) can be obtained based on
the definition and example provided in Appendix A.1. The update rule for qk+1 is:

qk+1 = (GH
BGB + δ1G

H
DGD + δ2F

HF )−1

(
GH

B pBT +
ρ

2
FHzk − 1

2
FHµk

)
. (A.4)

Similarly, the update rule for z is obtained by solving

zk+1 = argmin
z∈C(J−1)L

Lρ(q
k+1, z;µk)

= argmin
z∈C(J−1)L

{
δ2∥z∥1 +Re ((µk)H(Fqk+1 − z)) +

ρ

2
∥Fqk+1 − z∥2

}
= argmin

z∈C(J−1)L

{
∥z∥1 +

ρ

2δ2

∥∥∥∥Fqk+1 − z+
µk

ρ

∥∥∥∥2
}

= argmin
z∈C(J−1)L

{
∥Re(z)∥1 +

ρ

2δ2

∥∥∥∥Re(z)− Re

(
Fqk+1 +

µk

ρ

)∥∥∥∥2

+ i∥ Im(z)∥1 +
ρ

2δ2

∥∥∥∥Im(z)− Im

(
Fqk+1 +

µk

ρ

)∥∥∥∥2
}

= proxt∥·∥1

(
Re

(
Fqk+1 +

µk

ρ

))
+ iproxt∥·∥1

(
Im

(
Fqk+1 +

µk

ρ

))
,

where t = δ2/ρ.
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