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coefficient d > 0 and the velocity of the advection v. The aim of the sparse initial source
identification problem is to determine the initial source u0(x) based on the observation of
the terminal state uT (x). u0(x) must be composed through a linear combination of Dirac
measurements:

u0 =

l∑
i=0

α∗
i δxi

, (1.2)

where δxi
(xi) = 1 and δxi

(x) = 0 for any x ̸= xi. Sparse initial source identification problem
has various practical applications, such as pinpointing point-wise pollution sources [1,14,21]
and localizing the release of airborne contaminants [9, 12]. The structure of u0 and the
coupled of the intensities and locations make it hard to be numerically solved. Specifically,
the low regularity of u0 implies that the resulting solution u of (1.1) resides in the space
Lr(0, T ;W 1,p

0 (Ω)) with p, r ∈ [1, 2), where 2
r + n

p > n + 1. This characteristic complicates
the discretization of the linear diffusion-advection equation and the convergence of proposed
numerical methods [8]. Additionally, as noted in [17], the problem is exponentially ill-posed
due to diffusive and smoothing effects. Even a slight noise in the observation of uT (x) can
lead to a significant error in the obtained solution. Hence, direct solution of the identification
problem is daunting. It is customary to reformulate sparse initial source identification as an
optimal control problem involving partial differential equations (PDEs). In this formulation,
the initial term is treated as the control variable, and the cost function gauges the disparity
between the observation uT and the corresponding terminal state [3, 8, 11,22,24].

In [8, 11, 22], a regularization term β∥u0∥M(Ω) is introduced into the objective function
to encourage the sparsity of u0. The problem is then reformulated as:

min
u0∈M(Ω)

1

2
∥u(·, T )− uT ∥2L2(Ω) + β∥u0∥M(Ω), (1.3)

where u(·, t) is the solution of partial differential equation (1.1) corresponding to u0(x) ,
M(Ω) denotes the space of Borel measures in Ω and β is a regularization parameter. It’s
crucial to highlight that the reformulated problem transforms into a convex optimization
problem, showcasing a more advantageous structure compared to the original identification
problem. The existence and uniqueness of the solution are established in [8], and under
specific assumptions, the resulting solution is additionally shown to conform to the form
outlined in (1.2) [22]. However, the presence of the measure valued function brings many
difficulties to numerical computation because the measure entails appropriate numerical dis-
cretization scheme and prevent the application of some well-developed optimization meth-
ods. For example, the semi-smooth Newton (SSN) method can not be applied because the
corresponding optimality conditions can not be formulated as semi-smooth equations [16].

To promote the sparsity structure and improve the computation efficiency, M norm is
replaced by L1 norm [24]. The problem thus becomes

min
u0∈L1(Ω)

1

2
∥u(·, T )− uT ∥2L2(Ω) + β∥u0∥L1(Ω), (1.4)

which is solved by gradient descend method. Given that the optimal solution of problem (1.4)
may not satisfy the initial source identification, the approach initially focuses on identifying
the location before tackling the least-square fitting problem. Nonetheless, the well-posedness
of (1.4) may not be ensured since the function space L1(Ω) lacks reflexivity, as deliberated
in [16, 33]. To address this concern, an extra L2 regularization term is introduced, thereby
relocating the problem to L2 space, namely,

min
u0∈L2(Ω)

1

2
∥u(·, T )− uT ∥2L2(Ω) + β∥u0∥L1(Ω) +

τ

2
∥u0∥2L2(Ω). (1.5)
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It is shown in [7] that under some regularity assumptions the solution of Problem (1.5)
converges to that of Problem (1.3) as τ → 0.

The classical gradient descent method designed in [24] can be extended to tackle Problem
(1.5). Subsequently, to enhance efficiency, the primal-dual hybrid gradient descent (PDHG)
method is proposed for addressing Problem (1.5) [4]. Numerical findings demonstrate that
the proposed algorithm significantly outperforms the gradient descent (GD) method in terms
of computational speed. However, the convergence rate of PDHG in a non-ergodic sense is
slow, typically of the order O(1/K), where K represents the iteration count. Furthermore,
achieving a solution with enhanced sparsity in practical scenarios or a solution closely ap-
proximating the one from Problem (1.3) theoretically necessitates a very small regularization
parameter τ [7]. Consequently, the regularized Problem (1.5) becomes highly ill-conditioned.

To overcome these challenges, a new two-stage numerical method is designed in this paper
for solving the initial source identification problem. In the first stage, we prioritize solving
Problem (1.5), as it exhibits better well-posedness in the L2 space and less ill-conditioning
compared to Problem (1.4). We start by separating the smooth and non-smooth L1 term
within the objective functional, transforming Problem (1.5), governed by the partial differen-
tial equation (1.1), into an equality-constrained optimal control problem. This transformed
problem is then tackled using the inexact augmented Lagrangian (ALM) method. Each
iteration involves the application of the semi-smooth Newton method (SSN) to solve each
non-smooth but unconstrained sub-problem, with an efficient preconditioned conjugate gra-
dient (PCG) method integrated to expedite the process. Additionally, we establish the
convergence of the inexact ALM and achieve a super-linear non-ergodic convergence rate.
However, although the solution obtained in the first step demonstrates sparsity, it doesn’t
conform to the structure outlined in (1.2). Therefore, a structural enhancement is essential
in the second stage. Specifically, we identify the optimal positions by finding the maxima
of the absolute value of the obtained solution, and then obtain the optimal intensities by
minimizing the distance between the terminal source and the observation uT (x). This step
can be attributed to solving a small-scale least-square fitting problem.

The rest of this paper is organized as follows. In Section 2, we provide preliminary
insights into the reformulated Problem (1.5), covering aspects such as the existence and
uniqueness of the solution, along with the optimality conditions. Section 3 introduces an
inexact augmented Lagrangian method (ALM) devised to tackle the transformed problem,
incorporating an efficient SSN-PCG method tailored to solve the sub-problems within each
iteration of the inexact ALM method. We delve into strategies for enhancing the spar-
sity structure of the obtained solution in Section 4, leading to the proposal of a two-stage
numerical method for addressing the initial source identification problem. Section 5 is ded-
icated to establishing the convergence and estimating the super-linear convergence rate in
the non-ergodic sense for the inexact ALM method. In Section 6, we present and solve
three numerical examples, encompassing scenarios involving homogeneous and heteroge-
neous mediums, coupled models, and noisy observations. Finally, in Section 7, we provide
concluding remarks.

2 Preliminaries

Let us reformulate Problem (1.5) as the following optimal control problem (P):

min
u0∈L2(Ω)

J(u0) :=
1

2

∫∫
Ω

| u(x, T )− uT (x) | dx+
τ

2

∫∫
Ω

| u0(x) |2 dx+ β

∫∫
Ω

| u0(x) | dx.

(P)
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For simplicity, we omit the space argument x and denote the inner product and norm of
the function space L2(Ω) as ⟨·, ·⟩ and ∥ · ∥ in subsequent discussions. It is easy to see
that Problem (P) is actually a convex but non-smooth optimal control problem. Then, we
have the following existence theorem of the solution and derive the first-order optimality
conditions.

Theorem 2.1. There exists a unique initial state u∗
0 ∈ L2(Ω) as the optimal solution of

Problem (P), and u∗
0 satisfies the following optimality conditions:

0 ∈ τu∗
0 + p∗(·, 0) + β∂∥u∗

0∥1, (2.1)

where

∂∥u∗
0∥1 :=


1, if u∗

0 > 0,

{g | −1 ≤ g ≤ 1}, if u∗
0 = 0,

− 1, if u∗
0 < 0,

denotes the sub-differential of the functional ∥u∗
0∥1, p∗(·, 0) is the corresponding adjoint

variable p∗ at t = 0 and p∗ is the solution of the following PDEs,
∂tu− d∆u+ v · ∇u = 0, in Ω× (0, T ),

u = 0, on Γ× (0, T ),

u(x, 0) = u0(x), in Ω,

(2.2)


∂tp+ d∆p+ v · ∇p = 0, in Ω× (0, T ),

p = 0, on Γ× (0, T ),

p(x, T ) = u(x, T )− uT (x), in Ω.

(2.3)

Proof. The proof of existence theorem is similar with that for Theorem 1.43 in [16] and
the derivation of the first-order optimality conditions is based on the perturbation analysis
in [15], and thus is omitted here.

It is worth noting that the optimality conditions (2.1) reflect the sparsity structure
properties of the solution u∗

0, which can be obtained similarly as done in [4, 7, 18].

3 Numerical solution procedure of first stage

3.1 Inexact augmented Lagrangian method

Define the operator L induced by (1.1) as

L(u0(x)) := u(x, T | u0(x)), (3.1)

and the functionals f : L2(Ω) → R and g : L2(Ω) → R:

f(u0) :=
1

2

∫∫
Ω

| L(u0)− uT |2 dx+
τ

2

∫∫
Ω

| u0 |2 dx, g(u0) := β

∫∫
Ω

| u0 | dx. (3.2)

By introducing an auxiliary variable z ∈ L2(Ω), Problem (P) can be further rewritten as
Problem (P̃ ):

min
(u0,z)⊤∈L2(Ω)×L2(Ω)

f(u0) + g(z)

s.t. u0 = z.
(P̃ )
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Noted that Problem (P̃ ) has a separable structure. Then, the augmented Lagrangian func-
tional corresponding to Problem (P̃ ) can be defined by

Lσ(u0, z;λ) := f(u0) + g(z) + ⟨λ, u0 − z⟩+ σ

2
∥u0 − z∥2, (3.3)

where σ is a given penalty parameter. On this basis, we can design an inexact augmented
Lagrangian method to solve Problem (P̃ ) as follows.

Algorithm 1 An inexact ALM for Problem (P̃ )

Step 1: Let σ0 be a given parameter, {ϵk} be a summable sequence of non-negative numbers, and initialize
the multiplier λ0 ∈ L2(Ω).

Step 2: Compute (uk+1
0 , zk+1)⊤ such that

ek+1 ∈ ∂Lσk (u
k+1, zk+1;λk) and ∥ek+1∥ ≤ ϵk. (3.4)

Step 3: Compute
λk+1 = λk + σk(u

k+1
0 − zk+1), (3.5)

and update the parameter σk+1 ↑ σ∞ ≤ +∞. Set k = k + 1 and return to Step 2.

To show the Step 2 of Algorithm 1 is implementable, we have the following theorem.

Theorem 3.1. There exists a unique (ūk+1
0 , z̄k+1)⊤ ∈ L2(Ω)×L2(Ω) as the optimal solution

of the following problem,

min
(u0,z)⊤∈L2(Ω)×L2(Ω)

Lσk
(u0, z;λ

k). (3.6)

Proof. The proof of Theorem 3.1 is similar with that of Theorem 1.43 in [16], thus is omitted
here.

Remark 3.2. Theorem 3.1 makes Algorithm 1 well-defined. And if we choose ϵk = 0,
Algorithm 1 is exactly an ALM method.

We shall discuss how to solve the sub-problem (3.6) in the next two sub-sections.

3.2 Semi-smooth Newton method

Since Theorem 3.1 guarantees the existence and uniqueness of the solution (ūk+1
0 , z̄k+1) of

sub-problem (3.6), we have

Df(ūk+1
0 ) + λk + σk(ū

k+1
0 − z̄k+1) = 0, (3.7)

0 ∈ ∂g(z̄k+1)− λk − σk(ū
k+1
0 − z̄k+1). (3.8)

From (3.8), we obtain that

z̄k+1 = Prox g
σk

(ūk+1
0 +

λk

σk
), (3.9)

where Prox g
σk

:= (I + ∂g
σk

)−1 is called the proximal operator corresponding to g
σk

. By

substituting (3.9) into (3.7), there holds

Df(ūk+1
0 ) + σk

(
ūk+1
0 +

λk

σk
− Prox g

σk
(ūk+1

0 +
λk

σk
)

)
= 0. (3.10)
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Therefore, sub-problem (3.6) can be solved by first solving (3.10) to get ūk+1
0 and then

obtain z̄k+1 by (3.9).
Based on the perturbation analysis in [15], we derive the first-order differential of the

functional f(·) at u0 given by

Df(u0) = p(·, 0) + τu0, (3.11)

where p(·, 0) is the adjoint variable p at t = 0 and p is obtained from the following two
PDEs, 

∂tu− d∆u+ v · ∇u = 0, in Ω× (0, T ),

u = 0, on Γ× (0, T ),

u(x, 0) = u0(x), in Ω,

(3.12)


∂tp+ d∆p+ v · ∇p = 0, in Ω× (0, T ),

p = 0, on Γ× (0, T ),

p(x, T ) = u(x, T )− uT (x), in Ω.

(3.13)

On the other hand, according to the definition of g(·) (3.2), there holds

Prox g
σk

(ūk+1
0 +

λk

σk
) = min

(
ūk+1
0 +

λk + β

σk
, 0

)
+max

(
ūk+1
0 +

λk − β

σk
, 0

)
. (3.14)

Thus, (3.10) is equivalent to

pk+1(·, 0)+τ ūk+1
0 +(σkū

k+1
0 +λk)−min

(
σkū

k+1
0 + λk + β, 0

)
−max

(
σkū

k+1
0 + λk − β, 0

)
= 0,

where pk+1(·, 0) is obtained by solving (3.12)-(3.13) with u0 = ūk+1
0 .

In order to represent the equation (3.10) in a compact form, define an operator L̃mapping
from the solution at the terminal time to that at the initial time,

L̃(p(x, T )) := p(x, 0 | p(x, T )),

then the solution of (3.13) at t = 0 can be represented as L̃(u(x, T )− uT (x)). Furthermore,

due to the linearity of L̃ and the definition of L (3.1), we obtain

pk+1(x, 0) = L̃(ūk+1(x, T )− uT (x)) = L̃(L(ūk+1
0 ))− L̃(uT ).

Therefore, (3.10) is equivalent to

(L̃L+τ I)ūk+1
0 +σkū

k+1
0 −min

(
σkū

k+1
0 + λk + β, 0

)
−max

(
σkū

k+1
0 + λk − β, 0

)
= L̃(uT )−λk.

(3.15)
Then we solve the (3.15) by numerical discretization.

We employ the backward-Euler finite difference method with time step ∆t for the time
discretization (N = T/∆t), and the piece-wise linear finite element method with mesh size h
for the space discretization. Specifically, let {ϕi}ni=1 represent the basis of the finite element
space, M ∈ Rn×n be the mass matrix, K ∈ Rn×n be the matrix corresponding to the
discretization of the diffusion term −d∆ and A ∈ Rn×n be the matrix corresponding to the
discretization of the advection term v · ∇, precisely,

M = (mij)n×n, mij =

∫
Ω

ϕiϕjdx, K = (kij)n×n, kij =

∫
Ω

d∇ϕi · ∇ϕjdx,

A = (aij)n×n, aij =

∫
Ω

ϕi(v · ∇ϕj)dx.

(3.16)
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Let us define ū := {ūi}Ni=0 where ūi ∈ Rn is the finite element approximation of the state
variable ū at time t = iτ . The notation λk is defined in a similar sense for the function λk.
The notation uT denotes the finite element approximation of the function uT (x). Besides,
the operator L is approximated by Ld in the way of Algorithm 2,

Algorithm 2 Discretize the operator L as Ld

Input: ū0 and N
Output: ūN

1: for i = 1, 2, . . . , N do
2: ūi = ( M

∆t
+K +A)−1( M

∆t
ūi−1)

3: return ūN

and approximate the operator L̃ by L̃d in the following way,

Algorithm 3 Discretize the operator L̃ as L̃d

Input: p̄N and N
Output: p̄0

1: for i = N − 1, N − 2, . . . , 0 do
2: p̄i = ( M

∆t
+K −A)−1( M

∆t
p̄i+1)

3: return p̄0

Therefore, the operator L̃L+ τ I is discretized as L̃dLd + τ In, which is actually a linear
operator mapping from Rn to Rn.

For the term min
(
σkū0 + λk + β, 0

)
of (3.15), the corresponding finite element approxi-

mation amounts to solve

min
v≤0

(v − ωh)
⊤M(v − ωh), v ∈ Rn, (3.17)

where ωh ∈ Rn is the finite element approximation of the function σkū0 +λk + β. Since the
matrix M is not diagonal and high dimension of M leads to quite expensive computational
cost when an iterative algorithm is applied, we replace M by its lumped mass matrix [31]
given by

M = diag(mii), mii =

n∑
j=1

∫
Ω

ϕiϕjdx.

We still denote the lumped matrix as M for convenience. More details about the dis-
cussions on the error analysis of the mass lumping technique applied to optimal control
problems can be referred to [31, 36]. In this way, the finite element approximation of the
term min

(
σkū0 + λk + β, 0

)
is

min
(
σkū0 + λk + β1, 0

)
,

and the finite element approximation of the term max
(
σkū

k+1
0 + λk − β, 0

)
can be derived

in the same way.

In summary, the discretized (3.15) can be written as

(L̃dLd+τ I)ū0+σkū0−min
(
σkū0 + λk + β1, 0

)
−max

(
σkū0 + λk − β1, 0

)
= L̃d(uT )−λk.

(3.18)
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Because the velocity v is assumed to be constant, we have A⊤ = −A. Furthermore, there
holds

L̃dLd =

(
(
M

∆t
+K −A)−1 M

∆t

)N

·
(
(
M

∆t
+K +A)−1 M

∆t

)N

=

(
(
M

∆t
+K +A)−⊤ M

∆t

)N

·
(
(
M

∆t
+K +A)−1 M

∆t

)N

.

Notice that the matrix L̃dLd is not symmetric, in order to obtain an equivalent equation
with better structure, we multiple M in the both sides of (3.18), and finally obtain

((Ld)⊤ ·M · Ld + τM)ū0 + σkM ū0 −M min
(
σkū0 + λk + β1, 0

)
−M max

(
σkū0 + λk − β1, 0

)
= M L̃d(uT )−Mλk,

(3.19)
where the left hand side term is from

M L̃dLd = M((
M

τ
+K +A)−⊤M

τ
)N · ((M

τ
+K +A)−1M

τ
)N

= (
M

τ
(
M

τ
+K +A)−⊤)N ·M · ((M

τ
+K +A)−1M

τ
)N

= (Ld)⊤ ·M · Ld. (3.20)

For simplicity, let us define

G(ū0) :=((Ld)⊤ ·M · Ld + τM)ū0 + σkM ū0 −M min
(
σkū0 + λk + β1, 0

)
−M max

(
σkū0 + λk − β1, 0

)
,

and finally, (3.19) can be represented as

G(ū0) = M L̃d(uT )−Mλk. (3.21)

We try to use the semi-smooth Newton (SSN) method to solve(3.21), which can expect to
obtain a super-linear or even quadratic convergence rate.

Let ūj
0 denote results obtained by the j-th iteration of SSN. Then, define the active sets

corresponding to ūj
0 by Aj

1 := {i | (σkū
j
0 + λk + β1, 0)i < 0} and Aj

2 := {i | (σkū
j
0 + λk −

β1, 0)i > 0}. Besides, let Πj
1 be a diagonal binary matrix with nonzero entries in Aj

1 and

Πj
2 be defined similarly corresponding to Aj

2.

On this basis, the generalized Jacobian of G(·) (3.21) at ūj
0 is given by

G′(ūj
0) = (Ld)⊤MLd + (τM + σkM(I−Πj

1 −Πj
2)). (3.22)

Then, Newton system of the (j + 1)-th iteration is

G(ūj
0) +G′(ūj

0)(ū
j+1
0 − ūj

0) = M L̃d(uT )−Mλk. (3.23)

It is simple to verify that G′(ūj
0) is positive definite, hence the Newton system (3.23) admits

a unique solution. Furthermore, since the matrix G′(ūj
0) is positive definite, the conjugate

gradient (CG) method can be applied to solving Newton system (3.23).
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3.3 Preconditioned conjugate gradient method

Both the matrices (Ld)⊤MLd and Ld are extremely ill-conditioned, which leads to a deteri-
oration of the convergence rate of CG method. To overcome these difficulties and accelerate
each Newton iteration, it is necessary to add a novel and efficient pre-conditioner to the CG
method.

Notice that the matrix (Ld)⊤MLd + τM is positive definite, it admits the following
eigenvalue decomposition

(Ld)⊤MLd + τM =

n∑
i=1

λiviv
⊤
i , (3.24)

with λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and vi be the eigenvector corresponding to λi. Let us choose
the first l + 1 largest eigenvalues and approximate the matrix (Ld)⊤MLd + τM as follows:

(Ld)⊤MLd + τM ≈ V :=

l∑
i=1

λiviv
⊤
i + λl+1

n∑
i=l+1

viv
⊤
i , (3.25)

and then G′(ūj
0) defined in (3.22) can be approximated by G,

G := V + σkM(I−Πj
1 −Πj

2). (3.26)

Thus, we choose G as the pre-conditioner for G′(ūj
0).

Define
W := λl+1I + σkM(I−Πj

1 −Πj
2), V := [v1,v2, . . . , vl],

C := diag(λ1 − λl+1, λ2 − λl+1, . . . , λl − λl+1).

Then, there holds

G−1 = W−1 −W−1V (C−1 + V ⊤W−1V )−1V ⊤W−1. (3.27)

Notice that W is a diagonal matrix which means W−1 can be obtained easily and the matrix
(C−1 +V ⊤W−1V )−1 is an small-scale, namely, l by l matrix. Hence, for any vector x ∈ Rn

the computational cost of G−1x is cheap.
Then, the spectral property of G−1G′(ūj

0) is analyzed as follows:

Theorem 3.3. Let ξ be an eigenvalue of the matrix G−1G′(ūj
0), λ1 ≥ λ2 ≥ . . . ≥ λn be the

n eigenvalues of (Ld)⊤MLd + τM . Then, we have λn

λl+1
≤ ξ ≤ 1.

Proof. The upper bound ξ ≤ 1 holds because there holds

G −G′(ūj
0) =

n∑
i=l+1

(λl+1 − λi)viv
⊤
i ⪰ 0.

Let ξ be an eigenvalue of G−1G′(ūj
0) and y be an eigenvector corresponding to the

eigenvalue ξ, then we have

ξ =
y⊤G′(ūj

0)y

y⊤Gy
≥ y⊤((Ld)⊤MLd + τM)y

y⊤Vy
≥ λmin(((Ld)⊤MLd + τM)V−1),

where λmin(·) denotes the minimal eigenvalue of a matrix. The first inequality holds from
(3.22), (3.26) and the fact that the matrix τM + σkM(I−Πj

1 −Πj
2) is positive definite. By

(3.24) and (3.25), the lower bound is obtained directly.
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Remark 3.4. For the implementation of the proposed PCG method, we need to obtain the
l + 1 largest eigenvalues and the corresponding eigenvectors. This procedure can be done
efficiently by Lanczos method [32,34].

Finally, the sub-problem (3.6) can be solved by the following SSN-PCG algorithm.

Algorithm 4 SSN-PCG method

Step 0: Given l, using Lanczos method to obtain the first l + 1 largest eigenvalues and corresponding
eigenvectors, ū0

0, tolerance tol > 0. Set j = 0.
Step 1: Construct the Newton system (3.23) and solve it by PCG method with the pre-conditioner chosen
by G (3.26), where G−1 is given by (3.27).

Step 2: Compute ∥G(ūj+1
0 )−ML̃d(uT ) +Mλk∥, where ūj+1

0 is the solution of (3.23) at the (j + 1)-th
iterate. If

∥G(ūj+1
0 )−ML̃d(uT ) +Mλk∥ ≤ tol,

we take ūj+1
0 as the solution and terminate the iteration; otherwise set j = j + 1 and return to Step 2.

In summary, the whole process of solving Problem (P̃ ) can be explained below,

Algorithm 5 ALM-SSN-PCG method

Step 1: Let σ0 be a given parameter, {ϵk} be a summable sequence of non-negative numbers, and initialize
λ0 ∈ Rn. Set k = 0.
Step 2: Solve problem (3.21) with tol := ϵk by Algorithm 4 to obtain ūk+1

0 and

z̄k+1 = min

(
ūk+1
0 +

λk + β1

σk
, 0

)
+max

(
ūk+1
0 +

λk − β1

σk
, 0

)
.

Step 3: Compute
λk+1 = λk + σk(ū

k+1
0 − zk+1), (3.28)

and update the parameter σk ≤ σk+1 ↑ σ∞ ≤ +∞. Set k = k + 1 and return to Step 2.

4 Numerical solution procedure of second stage

Let u∗
0 denote the results obtained by the ALM-SSN-PCG method. It may not satisfy the

desired sparsity property (1.2). Thus, we introduce a post-processing procedure in the second
stage to enhance the sparsity structure of the obtained solution and find the intensities of
the initial sources.

We first compute all local maxima {xi}mi=1 of | u∗
0 | whose values is close to optimal

locations [4, 24]. m ∈ N represents the number of local maxima of | u∗
0 |. The initial source

û∗
0 is thus expressed as

û∗
0 :=

m∑
i=1

αiδxi
,

and the final state L(û∗
0) is given by

L(û∗
0) =

m∑
i=1

L(δxi
)αi.

Then, we aim to find the optimal intensities {αi}mi=1 such that the obtained final state L(û∗
0)

is close enough to the observation uT , namely,

min
{αi}m

i=1

∥
m∑
i=1

L(δxi
)αi − uT ∥2. (4.1)
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Applying the space and time discretization as discussed in Sub-section 3.2, problem (4.1) is
discretized as a least-square fitting problem,

min
α

∥Lα− uT ∥2, (4.2)

where α := {αi}li=1, L ∈ Rn×l with j-th column be the finite element approximation of
L(δxj

) and uT be the finite element approximation of the function uT . It is worth noting
that (4.2) is equivalent to solve

L⊤Lα = L⊤uT , (4.3)

We summarize the whole process of solving the identification problem as follows.

Algorithm 6 Two-stage numerical method

Stage 1: Construct the optimal control problem (P) and obtain the corresponding solution u∗
0 by Algorithm

5.
Stage 2:

Step 2.1: Compute all local maxima {xi}mi=1 of | u∗
0 |;

Step 2.2: Compute the matrix L whose j-th column is the finite element approximation of L(δxj )
and the finite element approximation uT of the function uT . Then the intensities {αi}mi=1 are obtained by
solving the following equation:

L⊤Lα = L⊤uT .

Output: Numerical solution û∗
0 is given by

û∗
0 =

m∑
i=1

αiδxi .

5 Convergence Analysis

In this section, we will analyze the convergence property and estimate the super-linear
convergence rate in the non-ergodic sense for using inexact ALM method to solve Problem
(P̃ ). It is worth noting that Problem (P̃ ) is formulated in an infinite dimensional space and
an inexactness criterion (3.4) is incorporated into inexact ALM method, hence the existing
theoretical results developed in the finite dimensional space [13,26,30] are not applicable.

5.1 Global Convergence

Firstly, from (3.4) there holds

ek+1 ∈ ∂Lσk
(uk+1

0 , zk+1;λk) =

(
Df(uk+1

0 ) + λk + σk(u
k+1
0 − zk+1)

∂g(zk+1)− λk − σk(u
k+1
0 − zk+1)

)
, (5.1)

where Df(uk+1
0 ) denotes the first-order differential of the functional f(·) at uk+1

0 . Let
us define ek+1 = (ek+1

u0
, ek+1

z )⊤ and combine with (3.5), the equations (3.4)-(3.5) can be
rewritten as follows:

Df(uk+1
0 ) + λk+1 = ek+1

u0
, (5.2)

g(z)− g(zk+1) ≥ ⟨λk+1 + ek+1
z , z − zk+1⟩, (5.3)

λk+1 = λk + σk(u
k+1
0 − zk+1). (5.4)
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To proceed the further analysis, we introduce the following notations

ω =

 u0

z
λ

 , F (ω) =

 Df(u0) + λ
−λ

−u0 + z

 . (5.5)

The optimal solution of Problem (P̃ ) denoted as ω∗ satisfies

g(z)− g(z∗) + ⟨F (ω∗), ω − ω∗⟩ ≥ 0, ∀ω ∈ L2(Ω)× L2(Ω)× L2(Ω). (5.6)

The following lemma characterizes the difference between the iteration point ωk+1 and
the solution ω∗ according to the optimality condition (5.6).

Lemma 5.1. Let ωk+1 = (uk+1
0 , zk+1, λk+1)⊤ be the (k+1)-th iteration points. Then, there

holds

g(z)− g(zk+1) + ⟨F (ωk+1), ω − ωk+1⟩ ≥

〈 ek+1
u0

ek+1
z

λk−λk+1

σk

 , ω − ωk+1

〉
,

∀ω ∈ L2(Ω)× L2(Ω)× L2(Ω). (5.7)

Proof. The conclusion holds from (5.2), (5.3) and (5.4) directly.

The following lemma plays an important role on our convergence analysis.

Lemma 5.2. Let the sequence {ωk} be generated by Algorithm 1 and the solution be ω∗ :=
(u∗

0, z
∗, λ∗)⊤, respectively. There holds that

τ

2
∥uk+1

0 − u∗
0∥2 +

∥λk − λk+1∥2

4σk
+

∥λk+1 − λ∗∥2

2σk+1
≤ ∥λk − λ∗∥2

2σk
+

∥ek∥2

τ
+

∥ek+1
z ∥2

σk
. (5.8)

Proof. Setting the arbitrary ω in (5.7) as the solution ω∗, there holds

⟨ek+1
u0

, uk+1
0 − u∗

0⟩+ ⟨ek+1
z , zk+1 − z∗⟩+ ⟨λk − λk+1, λk+1 − λ∗⟩

σk

≥ g(zk+1)− g(z∗) + ⟨F (ωk+1), ωk+1 − ω∗⟩. (5.9)

For the right hand side term, we have

g(zk+1)− g(z∗) + ⟨F (ωk+1), ωk+1 − ω∗⟩
= g(zk+1)− g(z∗) + ⟨F (ω∗), ωk+1 − ω∗⟩+ ⟨F (ωk+1)− F (ω∗), ωk+1 − ω∗⟩
≥ ⟨Df(uk+1

0 )−Df(u∗
0), u

k+1
0 − u∗

0⟩. (5.10)

The last equality is from the variational inequality (5.6) and the definition of F (·) (5.5).
Because the definition of the functional f(·) (3.2), which implies the strictly convexity, we
have

⟨Df(uk+1
0 )−Df(u∗

0), u
k+1
0 − u∗

0⟩ ≥ τ∥uk+1
0 − u∗

0∥2. (5.11)

For the term ⟨λk − λk+1, λk+1 − λ∗⟩, there holds

⟨λk − λk+1, λk+1 − λ∗⟩ = ∥λk − λ∗∥2 − ∥λk+1 − λ∗∥2 − ∥λk − λk+1∥2

2
. (5.12)
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Combining (5.9), (5.10), (5.11) and (5.12), we obtain that

⟨ek+1
u0

, uk+1
0 − u∗

0⟩+ ⟨ek+1
z , zk+1 − z∗⟩+ ∥λk − λ∗∥2

2σk

≥ ∥λk+1 − λ∗∥2

2σk
+

∥λk − λk+1∥2

2σk
+ τ∥uk+1

0 − u∗
0∥2. (5.13)

Next, we shall approximate the first two terms of (5.13).

⟨ek+1
u0

, uk+1
0 − u∗

0⟩+ ⟨ek+1
z , zk+1 − z∗⟩

= ⟨ek+1
u0

+ ek+1
z , uk+1

0 − u∗
0⟩ − ⟨ek+1

z , uk+1
0 − zk+1⟩

= ⟨ek+1
u0

+ ek+1
z , uk+1

0 − u∗
0⟩ −

〈
ek+1
z ,

λk+1 − λk

σk

〉
≤ τ

2
∥uk+1

0 − u∗
0∥2 +

∥λk − λk+1∥2

4σk
+

∥ek+1
u0

+ ek+1
z ∥2

2τ
+

∥ek+1
z ∥2

σk

≤ τ

2
∥uk+1

0 − u∗
0∥2 +

∥λk − λk+1∥2

4σk
+

∥ek∥2

τ
+

∥ek+1
z ∥2

σk
. (5.14)

Combining (5.13) with (5.14), we obtain

∥ek∥2

τ
+

∥ek+1
z ∥2

σk
+

∥λk − λ∗∥2

2σk
≥ ∥λk+1 − λ∗∥2

2σk
+

∥λk − λk+1∥2

4σk
+

τ

2
∥uk+1

0 − u∗
0∥2. (5.15)

Because of (5.15) and the increasing parameter sequence {σk}, the conclusion holds.

Then, we can prove the global convergence of the inexact ALM method.

Theorem 5.3. Let the sequence {ωk} be generated by Algorithm 1 and the solution be
ω∗ := (u∗

0, z
∗, λ∗)⊤, respectively. Then, {ωk} converges to ω∗ strongly in L2 space.

Proof. Let us sum (5.8) over k = 0, 1, . . . ,∞, there holds

∞∑
k=0

(
τ

2
∥uk+1

0 − u∗
0∥2 +

∥λk − λk+1∥2

4σk

)

≤ ∥λ0 − λ∗∥2

2σ0
+

∞∑
k=0

(
∥ek∥2

τ
+

∥ek+1
z ∥2

σk

)

≤ ∥λ0 − λ∗∥2

2σ0
+

(
1

τ
+

1

σ0

) ∞∑
k=0

ϵ2k. (5.16)

Because {ϵk} is a summable sequence, we have
∑∞

k=0 ϵ
2
k < ∞, this means the term

∞∑
k=0

(
τ

2
∥uk+1

0 − u∗
0∥2 +

∥λk − λk+1∥2

4σk

)
is convergent, hence we can further obtain that

∥uk+1
0 − u∗

0∥ → 0, and
∥λk − λk+1∥2

σk
→ 0, as k → ∞, (5.17)
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which means {uk
0} converges to u∗

0 strongly in L2 space.
Because there holds

∥λk − λk+1∥2

σk
= σk∥uk+1

0 − zk+1∥,

combining with the increasing non-negative parameter sequence {σk}, we have ∥uk+1
0 −

zk+1∥ → 0 as k → ∞. Besides, we have

∥zk+1 − z∗∥ ≤ ∥zk+1 − uk+1
0 ∥+ ∥uk+1

0 − u∗∥,

which implies that {zk} converges to z∗ strongly in L2 space.
Furthermore, from (5.2) and combining with ∥ek+1

u0
∥ → 0 and uk+1

0 → u∗
0 as k → ∞, the

sequence {λk} strongly converges to −DJ(u∗
0) in L2 space. From the variational inequality

(5.6), we have λ∗ = −DJ(u∗
0), and thus {λk} converges to λ∗ strongly in L2 space. The

proof is then complete.

5.2 Convergence Rate

In this sub-section, we estimate the convergence rate of the inexact ALM method in the
non-ergodic sense [25].

To proceed further estimation, let us define the functional G(·) by

G(eu0 , ez, u, z) := ∥eu0∥2 + ∥ez∥2 + ∥u− z∥2. (5.18)

It follows from (5.6) and (5.7) that the current iterate ωk = (uk
0 , z

k, λk)⊤ is the optimal
solution if and only if G(eku0

, ekz , u
k, zk) = 0.

Theorem 5.4. Suppose that the sequence {ωk} generated by Algorithm 1 converges to the
solution ω∗ := (u∗

0, z
∗, λ∗)⊤. Then, for any k ∈ N, we have

(a). For the case that the penalty parameter σk ↑ σ∞ = ∞, there holds

G(ek+1
u0

, ek+1
z , uk+1, zk+1) ≤ ϵ2k+1 + o

(
1

σk

)
. (5.19)

(b). For the case that the penalty parameter σk ↑ σ∞ < ∞, there holds

min
0≤i≤k

G(ei+1
u0

, ei+1
z , ui+1, zi+1) = o

(
1

k

)
. (5.20)

Proof. (a). It follows from (5.8) that

1

4
σk∥uk+1 − zk+1∥2 =

∥λk − λk+1∥2

4σk

≤
(
∥λk − λ∗∥2

2σk
− ∥λk+1 − λ∗∥2

2σk+1

)
+

(
∥ek∥2

τ
+

∥ek+1
z ∥2

σk

)
≤
(
∥λk − λ∗∥2

2σk
− ∥λk+1 − λ∗∥2

2σk+1

)
+

(
1

τ
+

1

σk

)
ϵ2k. (5.21)

Because {λk} converges to λ∗ strongly in L2 space and {ϵk} is a summable and non-negative
sequence, there holds(

∥λk − λ∗∥2

2σk
− ∥λk+1 − λ∗∥2

2σk+1

)
+

(
1

τ
+

1

σk

)
ϵ2k → 0.
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Combining with (5.21), we conclude that ∥uk+1 − zk+1∥2 = o(1/σk). Combining with the
definition of {ek} and ∥ek∥ ≤ ϵk, the conclusion holds.

(b). From (5.21), we obtain

∞∑
k=0

(σk∥uk+1 − zk+1∥2 + ∥ek∥2) ≤ 2∥λ0 − λ∗∥2

σ0
+

(
4

τ
+

4

σ0
+ 1

) ∞∑
k=0

ϵ2k. (5.22)

Due to the summable and non-negative sequence {ϵk}, the right hand side term converges
to some constant a, which is defined as

a :=
2∥λ0 − λ∗∥2

σ0
+

(
4

τ
+

4

σ0
+ 1

) ∞∑
k=0

ϵ2k.

From (5.22), there holds

∞∑
k=0

min
0≤i≤k

{σi∥ui+1 − zi+1∥2 + ∥ei∥2} ≤
∞∑
k=0

(σk∥uk+1 − zk+1∥2 + ∥ek∥2) ≤ a.

Notice that the sequence {min0≤i≤k{σi∥ui+1−zi+1∥2+∥ei∥2}} is monotonically decreasing,
which further implies that

min
0≤i≤k

{σi∥ui+1 − zi+1∥2 + ∥ei∥2} = o

(
1

k

)
as k → ∞.

Due to the increasing sequence {σk}, we have

min
0≤i≤k

{σi∥ui+1 − zi+1∥2 + ∥ei∥2} ≥ min(σ0, 1) min
0≤i≤k

{∥ui+1 − zi+1∥2 + ∥ei∥2},

and thus there holds

min
0≤i≤k

{∥ui+1 − zi+1∥2 + ∥ei∥2} = o

(
1

k

)
as k → ∞.

Then, we complete the proof.

Remark 5.5. It is worth noting that the convergence rate of the inexact ALM method
depends on the choice of the penalty parameter sequence {σk} and the inexactness parameter
{ϵk}. More specifically, a too small sequence {σk} can results in an o(1/k) worst-case
convergence rate which is not ideal in practice. Furthermore, from the statement (a) of
Theorem 5.4, the worst-case convergence rate can be even super-linear if we choose the
sequence {σk = θk} and {ϵk = o(1/θk)} with θ > 1.

6 Numerical experiment

To show the efficiency and accuracy of proposed two-stage numerical method, we apply the
proposed method to solve three different types of initial source identification problems in this
section. Firstly, we set the time step ∆t = 0.02 and the mesh size ∆x = 0.02 to discretize
the problem. The regularization parameters are chosen as τ = 10−5 and β = ∆x4, as done
in [4, 24]. Then, we use the designed two-stage method to solve the problem.



508 H. WANG, H. YAN, D. WU AND YANQIN BAI

In the first stage, the stopping criterion for ALM-SSN-PCG method (Algorithm 5) is
given by

∥uk
0 − zk∥ ≤ 10−6.

The penalty parameter sequence is chosen as σk = 5k and the initial guess λ0 = 0. For the

SSN-PCG method, we set tol = ϵk = min( 10
−3−k

k , 10−6). Additionally, setting l = 100 for
constructing the pre-conditioner of the Newton system, more clearly, we choose the first 100
largest eigenvalues and the corresponding eigenvectors of (Ld)⊤MLd + τM . The Lanczos
method proceeded in the pre-conditioner construction is done by the default MATLAB
solver ’eigs’ and the Newton system is solved by the default MATLAB solver ’pcg’ with the
tolerance 10−6.

For comparison, ALM-SSN-CG method which is the proposed Algorithm 6 without using
preconditioning technique to solve Newton system, primal dual hybrid gradient (PDHG)
method [4] and gradient descend (GD) method [24] are also applied to solve examples.
Furthermore, to show the robustness of proposed method, uT (x) is constructed by adding a
function δ ∈ L2(Ω) and satisfying ∥δ∥L2(Ω) = 0.1∥L(u∗

0)∥L2(Ω) with a given function u∗
0.

All numerical experiments are done in MATLAB 2019b and conducted on a computer
with Inter(R) Core(TM) i7-7660U CPU at 2.50GHz and 32GB RAM.

6.1 Example 1: initial source identification problem defined in homogeneous
medium

Consider the linear diffusion-advection equation (1.1) modeled in a homogeneous medium,
where the diffusivity coefficient d = 0.05, the advection vector v = (2,−2)⊤, the space
domain Ω = (0, 2)× (0, 1) and the terminal time T = 0.1.

The L2 regularization parameter τ is set to be τ = 10−i with i = 5, 4, 3, 2 and apply
four different methods to solving such problem. All the results are listed in Table 1. ‘Iter’
represents the iteration number. In both PDHG and GD method, we provide the total
iteration number, and in other methods, the total iteration number of ALM/SSN/PCG
(ALM/SSN/CG) method is listed in order. ‘CPU’ denotes running time of each algorithm.
Besides, We also indicate in the table whether the algorithm converges. From Table 1, we
notice that our proposed algorithm is much more efficient than PDHG method and GD
method especially when τ is extremely small. Furthermore, our proposed algorithm con-
verges fast for all cases, while the convergence performance of PDHG method is very slow
for τ = 10−3, 10−4, 10−5 and GD method does not converge for all cases even when the
maximal iteration number is achieved. This validates the convergence rate of our proposed
algorithm is superior to that of PDHG method and GD method. Besides, we also compare
the proposed method with ALM-SSN-CG method to illustrate the effectiveness of the de-
signed pre-conditioner. The number of internal iteration of the proposed method is always
much less than that of ALM-SSN-CG method, which demonstrates that our designed pre-
conditioner can improve the spectral property of each Newton system and thus accelerate
the convergence rate of CG method efficiently. It is worth noting that the SSN method can
achieve local super-linear convergence rate only when each Newton system is solved to a high
accuracy. The pre-conditioner can not only improve the convergence rate of CG method but
also help CG method obtain a more accurate solution.
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Table 1: Numerical results obtained by four methods with different τ for Example 1.
τ Method Iter Convergence CPU(sec)

10−5

ALM-SSN-PCG 2/4/106 Yes 2.32
ALM-SSN-CG 2/11/924 Yes 12.31

PDHG 5000 No 60.88
GD 5000 No 61.42

10−4

ALM-SSN-PCG 2/4/50 Yes 1.16
ALM-SSN-CG 2/6/498 Yes 5.59

PDHG 3446 Yes 43.06
GD 5000 No 62.12

10−3

ALM-SSN-PCG 2/4/19 Yes 0.55
ALM-SSN-CG 2/4/280 Yes 3.14

PDHG 499 Yes 6.23
GD 5000 No 61.34

10−2

ALM-SSN-PCG 2/4/11 Yes 0.37
ALM-SSN-CG 2/4/122 Yes 1.49

PDHG 69 Yes 0.88
GD 5000 No 63.17

Then, we test our proposed algorithm for different mesh sizes and list the numerical
results in Table 2. ‘#ALM’, ‘#SSN’ and ‘#PCG (#CG)’ respectively denote the total iter-
ation number of the corresponding methods. From Table 2, we notice that the convergence
performance of the ALM method does not be affected by the mesh size of the discretization.
Although the discretized ALM sub-problem (3.6) is of larger scale and more ill-conditioning
when the mesh size is finer, the total iteration numbers of both SSN method and PCG
method do not increase greatly, which means the designed algorithm and pre-conditioner is
efficient and robust to mesh sizes. Thus, the convergence behavior of the new approach can
be mesh independent in practice. Furthermore, we notice that our method behaves more
efficient than ALM-SSN-CG method in term of ‘CPU’.

Table 2: Comparison of our method with ALM-SSN-CG method with different mesh sizes for Example 1.
(∆t,∆x) Method #ALM #SSN #PCG(#CG) CPU(sec)

( 1
20

, 1
40

)
ALM-SSN-PCG 3 6 417 3.77
ALM-SSN-CG 3 30 2698 6.73

( 1
40

, 1
80

)
ALM-SSN-PCG 2 4 118 7.31
ALM-SSN-CG 2 8 655 25.51

( 1
60

, 1
120

)
ALM-SSN-PCG 1 2 24 6.97
ALM-SSN-CG 1 3 199 41.33

( 1
80

, 1
160

)
ALM-SSN-PCG 1 2 21 17.52
ALM-SSN-CG 1 3 194 127.35

Finally, employing the new method, we successfully restore the initial state and illustrate
the resulting solution û∗

0 alongside the corresponding final state in Figure 1. Notably, the
initial source is accurately recovered. Moreover, we evaluate the impact of noisy observation
uT by comparing numerical solutions obtained via two approaches: solving Problem (P)
with L2 regularization parameter τ = 10−5 and solving it with τ = 0, as proposed in [24].
The comparative results are presented in Figure 2. It is evident that the solution derived
from Problem (P) with τ = 10−5 effectively reconstructs both the locations and intensities of
the initial source. Conversely, the solution from Problem (P) with τ = 0 fails to accurately
recover either the locations or the intensities. This discrepancy arises from the significantly
higher ill-conditioning of Problem (P) with τ = 0 compared to that with τ > 0, rendering
the solution more sensitive to the input data.
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Figure 1: Source identification using new method for Example 1 with exact observation uT .

Figure 2: Source identification using new method for Example 1 with noisy observation uT .

6.2 Example 2: initial source identification problem defined in heterogeneous
medium

The linear diffusion-advection equation (1.1) is modeled in a heterogeneous medium. The
space domain Ω = (0, 2) × (0, 1) and the terminal time T = 0.1. The diffusivity coefficient
d = 0.08 on (0, 1)×(0, 1) and d = 0.05 on (1, 2)×(0, 1), and the advection vector v = (1, 2)⊤.

We first set τ = 10−i with i = 5, 4, 3, 2 and apply four methods to solving the reformu-
lated optimal control problem (P). The detailed numerical results are reported in Table 3.
It can be observed that the ALM sub-problem generated by the new method tends to be
much more ill-conditioning when the regularization parameter τ becomes smaller. However,
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the total iteration number of PCG method does not increase greatly for the extremely small
τ , which means the pre-conditioner is robust to the regularization parameter τ . Due to the
local super-linear convergence rate of the SSN method and the efficiency of the designed
PCG method, the total computational cost of the proposed method is cheap.

Table 3: Numerical results obtained by four methods with different τ for Example 2.
τ Method Iter Convergence CPU(sec)

10−5

ALM-SSN-PCG 2/4/85 Yes 1.77
ALM-SSN-CG 2/10/879 Yes 9.87

PDHG 5000 No 60.28
GD 5000 No 60.57

10−4

ALM-SSN-PCG 2/4/36 Yes 0.85
ALM-SSN-CG 2/6/494 Yes 5.83

PDHG 3431 Yes 42.41
GD 5000 No 61.31

10−3

ALM-SSN-PCG 2/4/15 Yes 0.52
ALM-SSN-CG 2/4/269 Yes 3.09

PDHG 497 Yes 6.19
GD 5000 No 60.72

10−2

ALM-SSN-PCG 2/4/9 Yes 0.34
ALM-SSN-CG 2/4/119 Yes 1.49

PDHG 68 Yes 0.87
GD 5000 No 62.19

Next, we compare new method with ALM-SSN-CG method for different mesh sizes.
From Table 4, we observe that the convergence of ALM behaves mesh-independent. It
should be noted that the iteration number of PCG method in the new algorithm is much
less than that in ALM-SSN-CG method for all considered mesh sizes, which means the
designed pre-conditioner is effective and robust to the mesh sizes. Furthermore, We notice
that the iteration counts for both the SSN and PCG methods increase slightly as the mesh
size becomes finer. However, this increase is marginal, and both remain relatively low.
Consequently, the computational cost remains modest.

Table 4: Numerical comparison of our method with ’ALM-SSN-CG’ with different mesh sizes for Example
2.

(∆t,∆x) Method #ALM #SSN #PCG CPU(sec)

( 1
20

, 1
40

)
ALM-SSN-PCG 3 6 405 3.44
ALM-SSN-CG 3 30 2129 6.17

( 1
40

, 1
80

)
ALM-SSN-PCG 2 4 103 6.56
ALM-SSN-CG 2 8 680 25.92

( 1
60

, 1
120

)
ALM-SSN-PCG 1 2 19 5.45
ALM-SSN-CG 1 3 202 40.27

( 1
80

, 1
160

)
ALM-SSN-PCG 1 2 15 13.29
ALM-SSN-CG 1 3 199 120.90

Then, we recover the initial state and depict the obtained solution û∗
0 and the corre-

sponding final state by Figure 3. The initial source is also recovered accurately for this
case. Besides, we consider the noisy observation uT and compare the numerical solutions
obtained from solving Problem (P) with a L2 regularization parameter of τ = 10−5 against
those obtained with τ = 0. The numerical results are depicted in Figure 4. It’s evident
that the results obtained from Problem (P) with τ = 10−5 significantly outperform those
obtained with τ = 0.
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Figure 3: Source identification using new method for Example 2 with exact observation uT .

Figure 4: Source identification using new method for Example 2 with noisy observation uT .
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6.3 Example 3: initial source identification problem defined in coupled sense

The linear diffusion-advection equation (1.1) is modeled in a coupled sense. The space
domain Ω = (0, 2) × (0, 1) and the terminal time T = 0.1. The diffusivity coefficient
d = 0.05 on Ω, and the advection vector v = (0, 0)⊤ on (0, 1) × (0, 1) and v = (0,−3)⊤ on
(1, 2)× (0, 1).

Similarly, four types of algorithms are used to solve the reformulated optimal control
problem (P) and numerical results are listed in Table 5. From Table 5, it is clear that
the convergence behavior of the ALM method is mesh-independent and the total iteration
numbers of PCG/SSN method are small which validate that the designed pre-conditioner is
also effective for this coupled model. Furthermore, the total computational cost of the new
algorithm is cheap.

Table 5: Numerical results obtained by four methods with different τ for Example 3.
τ Method Iter Convergence CPU(sec)

10−5

ALM-SSN-PCG 2/3/96 Yes 2.04
ALM-SSN-CG 2/6/480 Yes 6.14

PDHG 5000 No 61.93
GD 5000 No 61.28

10−4

ALM-SSN-PCG 2/4/62 Yes 1.44
ALM-SSN-CG 2/5/390 Yes 4.62

PDHG 3442 Yes 42.78
GD 5000 No 60.41

10−3

ALM-SSN-PCG 2/4/25 Yes 0.67
ALM-SSN-CG 2/4/295 Yes 3.36

PDHG 502 Yes 7.41
GD 5000 No 61.12

10−2

ALM-SSN-PCG 2/4/13 Yes 0.47
ALM-SSN-CG 2/4/134 Yes 1.67

PDHG 69 Yes 0.88
GD 5000 No 61.91

Then, we compare Algorithm 5 with ALM-SSN-CG method with different mesh sizes
and report the numerical results in Table 6. We observe that the convergence of ALM is
mesh-independent. Besides, the number of iteration for the SSN method and PCG method
does not increase greatly as the mesh size being finer, which further means the designed
pre-conditioner is effective and robust to various mesh sizes even for coupled model.

Table 6: Numerical comparison of our method with ALM-SSN-CG method with different mesh sizes for
Example 3.

(∆t,∆x) Method #ALM #SSN #PCG CPU(sec)

( 1
20

, 1
40

)
ALM-SSN-PCG 3 6 499 4.37
ALM-SSN-CG 3 30 2445 7.35

( 1
40

, 1
80

)
ALM-SSN-PCG 2 4 169 9.91
ALM-SSN-CG 2 10 874 35.24

( 1
60

, 1
120

)
ALM-SSN-PCG 1 2 35 9.12
ALM-SSN-CG 1 4 299 58.21

( 1
80

, 1
160

)
ALM-SSN-PCG 1 2 27 22.04
ALM-SSN-CG 1 3 194 132.43

Finally, we recover the initial state and depict the obtained solution û∗
0 and the corre-

sponding final state by Figure 5. It can be observed that the initial source is also recov-
ered accurately for this coupled model. Besides, we consider the noisy observation uT and
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compare the numerical solutions obtained by solving Problem (P) with L2 regularization
parameter τ = 10−5 with those obtained by solving Problem (P) with τ = 0. The numerical
results are depicted in Figure 6. We observe that the numerical results obtained by Problem
(P) with τ = 10−5 is still much better than those obtained by Problem (P) with τ = 0.

Figure 5: Source identification using Algorithm 6 for Example 3 with exact observation uT .

Figure 6: Source identification using Algorithm 6 for Example 3 with noisy observation uT .

7 Conclusion

In this paper, we considered the sparsity initial source identification of linear diffusion-
advection equations. The initial source to be identified is a linear combination of Dirac
measures indicating the locations, with the weights indicating the intensities. To tackle this
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identification problem numerically, a two-stage algorithm is proposed. Firstly, we formulate
an optimal control problem where the objective functional includes terms representing the
discrepancy between the state at the terminal time and a predefined target function, along
with L1 and L2 regularization terms. To efficiently solve this problem, we introduce an
inexact augmented Lagrangian method (ALM), demonstrating its convergence properties
and estimating its super-linear convergence rate. Additionally, we employ a semi-smooth
Newton method (SSN) to handle each ALM sub-problem and design a preconditioned conju-
gate gradient method (PCG) for solving the resulting Newton system in each SSN iteration.
This leads to the development of an ALM-SSN-PCG approach for solving the reformulated
optimal control problem. In the second stage, we devise a procedure for identifying the
locations of the sources, coupled with solving a least squares fitting problem to refine the
solution obtained in the first stage. Through extensive experimentation, including scenarios
involving homogeneous and heterogeneous media, coupled models, and noisy observations,
we demonstrate the efficiency and accuracy of our proposed two-stage methodology.

References

[1] A. E. Badia, T. H. Duong and A. Hamdi, Identification of a point source in a lin-
ear advection–dispersion–reaction equation: application to a pollution source problem,
Inverse Probl. 21 (2005): 1121.

[2] E. Borgens, C. Kanzow and D. Steck, Local and global analysis of multiplier methods
for constrained optimization in Banach spaces, SIAM J. Control Optim. 57 (2019)
3694–3722.

[3] K. Bredies and H. Pikkarainen, Inverse problems in spaces of measures, ESAIM:
Control Optim. Calc. Var. 19 (2013) 190–218.

[4] U. Biccari, Y. Song, X. Yuan and E. Zuazua, A two-stage numerical approach for the
sparse initial source identification of a diffusion-advection equation, Inverse Probl. 39
(2023): 095003.

[5] E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in
measure spaces with sparse solutions, SIAM J. Control Optim. 50 (2012) 1735–1752.

[6] E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces
with sparse solutions, SIAM J. Control Optim. 51 (2013) 28–63.

[7] C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in
nonreflexive Banach spaces, ESAIM Control Optim. Calc. Var. 17 (2011) 243–266.

[8] E. Casas and K. Kunisch, Using sparse control methods to identify sources in linear
diffusion-convection equations, Inverse Probl. 35 (2019): 11402.

[9] P. Ciais, P. Rayner, F. Chevallier, P. Bousquet, M. Logan M, P. Peylin and M. Ramonet,
Atmospheric inversions for estimating CO2 fluxes: methods and perspectives, Clim.
Change. 103 (2010) 69–92.

[10] C. Clason and A. Schiela, Optimal control of elliptic equations with positive measures,
ESAIM Control Optim. Calc. Var. 23 (2017) 217–240.

[11] E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE
and its finite element approximations, Math. Control. Relat. Fields. 5 (2016) 377–399.



516 H. WANG, H. YAN, D. WU AND YANQIN BAI

[12] I. G. Enting, Inverse Problems in Atmospheric Constituent Transport, Cambridge Uni-
versity Press, Cambridge, 2002.

[13] J. Eckstein and P.J.S Silva, A practical relative error criterion for augmented La-
grangians, Math. Program. 141 (2013) 319–348.

[14] G. Gurarslan and H. Karahan, Solving inverse problems of groundwater pollution-
source identification using a differential evolution algorithm, Hydrogeology Journal. 23
(2015) 1109–1119.

[15] R. Glowinski, J.L. Lions and J. He, Exact and Approximate Controllability for Dis-
tributed Parameter Systems: A Numerical Approach, Encyclopedia of Mathematics
and its Applications,vol. 117, Cambridge University Press, Cambridge, 2008.

[16] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints,
Mathematical Modelling: Theory and Applications, vol. 23, Springer, New York, 2009.

[17] V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical
Sciences, Spring, New York, third ed., 2017.

[18] L. Justen and R. Ramlau, A general framework for soft-shrinkage with applications to
blind deconvolution and wavelet denoising, Appl. Comput. Harmon. Anal. 26 (2009)
43–63.

[19] K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic
optimal control problems, SIAM J. Control Optim. 52 (2014) 3078–3108.

[20] C. Kanzow, D. Steck and D. Wachsmuth, An augmented Lagrangian method for opti-
mization problems in Banach spaces, SIAM J. Control Optim. 56 (2018) 272–291.

[21] G.S. Li, Y.J. Tan, J. Cheng and X.Q Wang, Determining magnitude of groundwater
pollution sources by data compatibility analysis, Inverse Probl. Sci. Eng. 14 (2006)
287–300.

[22] D. Leykekhman, B. Vexler and D. Walter, Numerical analysis of sparse initial data
identification for parabolic problems, ESAIM Math. Model. Numer. Anal. 54 (2020)
1139-1180.

[23] A. Mamonov and Y.H. Tsai, Point source identification in nonlinear advection-diffusion-
reaction systems, Inverse Probl. 29 (2013): 035009.

[24] A. Monge and E. Zuazua, Sparse source identification of linear diffusion-advection
equations by adjoint methods, Syst. Control Lett. 145 (2020): 104801.

[25] Y. Nesterov, Lectures on Convex Optimization, Springer Optimization and Its Appli-
cations, vol. 137, Springer, Cham, 2018.

[26] M.J.D. Powell, Algorithms for nonlinear constraints that use Lagrangian functions,
Math. Programming 14 (1978) 224–248.

[27] M. Porcelli, V. Simoncini and M. Stoll, Preconditioning PDE-constrained optimization
with L1-sparsity and control constraints, Comput. Math. Appl. 74 (2017) 1059–1075.

[28] M. Porcelli, V. Simoncini, M. Tani, Preconditioning of active-set Newton methods for
PDE-constrained optimal control problems, SIAM J. Sci. Comput. 37 (2015) S472–
S502.



A TWO-STAGE METHOD FOR SPARSE SOURCE IDENTIFICATION PROBLEMS 517

[29] J.W. Pearson and A.J. Wathen, A new approximation of the Schur complement in
preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl. 19
(2012) 816–829.

[30] R.T. Rockafellar, Monotone operators and augmented Lagrangian methods in nonlinear
programming, in: Nonlinear Programming, 3 (Proc. Sympos., Special Interest Group
Math. Programming, Univ. Wisconsin, Madison, Wis., 1977), 1978, pp. 1–25.

[31] A. Rösch and G. Wachsmuth, Mass lumping for the optimal control of elliptic partial
differential equations, SIAM J. Numer. Anal. 55 (2017) 1412–1436.

[32] Y. Sadd, On the rates of convergence of the Lanczos and the block-Lanczos methods,
SIAM J. Numer. Anal. 17 (1980) 687–706.

[33] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for
the placement of control devices, Comput. Optim. Appl. 44 (2009) 159–181.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, second edition, 2003.

[35] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, volume 25 of
Springer Series in Computational Mathematics, Springer,Verlag, Berlin, second edition,
2006.

[36] H. Wang, C. Yu, and D. Wu, A duality-based approach for solving linear parabolic
control constrained optimal control problems, Optim. Contr. Appl. Met. DOI:
10.1002/oca.3094, 2023.

Manuscript received 30 March 2024
revised 28 August 2024

accepted for publication 11 September 2024



518 H. WANG, H. YAN, D. WU AND YANQIN BAI

Hailing Wang
Department of Mathematics, Shanghai University
Shanghai 200444, China
E-mail address: wanghailingshu@163.com

Hansong Yan
Shanghai University, Shanghai 200444, China
E-mail address: hansongyan@163.com

Di Wu
School of Mathematics, Physics and Statistics
Shanghai University of Engineering Science
Shanghai 201620, China
E-mail address: rosemary di@163.com

Yanqin Bai
Department of Mathematics
Shanghai University, Shanghai 200444, China
E-mail address: yqbai@shu.edu.cn


