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and randomized algorithms. The deterministic algorithm generates a series of iterative
points converging to the global optimal solution based on the mathematical properties of
the objective function [6, 8, 12, 21, 22], whereas randomized algorithms with random factors
adopt a trial and error mechanism based on the objective function value to find a satisfac-
tory solution in the feasible region [1, 14, 23, 24]. However, when dealing with non-convex
function, the current optimization algorithms are still prone to local minima as well as slow
convergence, and so on. Designing global optimization algorithm that can efficiently solve
global optimization problems has been a hotspot recently.

The filled function algorithm has been proven to be a deterministic algorithm with ef-
fectiveness and practicability for solving global optimization problems [2, 3, 20, 29, 31]. The
conception of the filled function algorithm was initially proposed by Ge for solving un-
constrained global optimization problems, and its solving process is completed through a
two-stage minimizing cycle [4]. In stage 1, a local minimizer x∗

1 of the objective function
f(x) is discovered by applying any local minimization algorithm starting from a given initial
point. In stage 2, a filled function P (x, x∗

1) of f(x) at x
∗
1 is constructed before a local mini-

mizer x′
1 of P (x, x∗

1) with f(x′
1) < f(x∗

1) is identified by any local minimization algorithm.
If the point x′

1 is obtained, then the stage 1 is re-executed with x′
1 as an initial point to

discover a better local minimizer x∗
2 of f(x) satisfying f(x∗

2) < f(x∗
1). The above process

repeats until minimizing the filled function fails to find a better point. Then the current
local minimizer of f(x) is considered as the global minimizer. Obviously, one key of the
filled function algorithm is to design suitable filled functions which can enable a move from
one local minimizer to another better one. This has been studied by many scholars for a
long time.

To this day, a large number of efficient and valuable filled functions have been constructed
and applied to solve various optimization problems [4,5,7,9–11,13,15–17,19,25–28,30,32,33],
such as max-cut problems, pathological analysis, and permanent magnet linear synchronous
motor. However, the existing filled functions have some shortcomings, e.g., more than
one parameter to adjust with sensitivity as well as ill-property. For example, the filled
functions constructed in [2,4,5,21,30] contain parameters and exponential terms, leading to
the algorithm failure when the parameter is improper; the filled functions proposed in [11,20]
involve two parameters, increasing the difficulty of algorithm implementation; the filled
functions with one parameter given in [13, 25] are discontinuous to which the traditional
gradient-based optimization methods cannot be applied.

In view of this, a new parameter-free filled function is presented as well as a novel filled
function method in this paper, and the main contributions are as follows:

• The filled function is parameterless, which simplifies the filled function method process;

• The filled function and the objective function have the same local minimizer in Ω2 =
{x ∈ Ω|f(x) < f(x∗

k)}, i.e., the obtained local minimizer of the filled function is a better
local minimizer of the objective function;

• The function value of the filled function in Ω2 = {x ∈ Ω|f(x) < f(x∗
k)} is always less

than that in Ω1 = {x ∈ Ω\{x∗
k}|f(x) ≥ f(x∗

k)};

• A novel filled function method is constructed, which eliminates the need to further
minimize the objective function once a local minimizer of the filled function is obtained
and reduces the steps in the traditional filled function method;

• Theoretical analysis and numerical experiments are carried out to demonstrate the
effectiveness and feasibility of the new algorithm.
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The rest of this paper is constructed as follows. Section 2 introduces the fundamental
knowledge and assumptions used in this paper. A new filled function without parameters
is given and its theoretical analyses are conducted in Section 3 before the corresponding
algorithm is designed for unconstrained global optimization problems in Section 4. Section 5
executes some numerical experiments to illustrate the performance of the new filled function
algorithm, and some conclusions are given in Section 6.

2 Preliminaries

Throughout this paper, some conditions of Problem (1.1) are given to ensure the implemen-
tation of the presented method.

Assumption 2.1. f(x) is continuously differentiable on Rn.

Assumption 2.2. Let Ωl be the set containing all local minimizers of f(x), whose element
may be infinite, but f∗

l = {f(x)|x ∈ Ωl} is finite.

Assumption 2.3. lim
∥x∥→+∞

f(x) = +∞

Assumption 2.3 indicates that there exists a bounded closed set Ω ⊂ Rn such that
Ωl ⊂ Ω. Then Problem (1.1) is equivalent to the following box-constrained optimization
problem:

min f(x)
s.t.x ∈ Ω,

(2.1)

where Ω = {x ∈ Rn|lbi ≤ xi ≤ ubi, i = 1, . . . , n} is a box constraint. As a consequence, the
following lemmas hold.

Lemma 2.1. There exists a constant K such that 0 ≤ max
x1,x2∈Ω

∥x1 − x2∥2 ≤ K < +∞.

Lemma 2.2. There exists a constant M such that |f(x)| < M .

Let x∗
k ∈ Ωl be a local minimizer of f(x), and then the feasible domain Ω in Problem (2.1)

is divided into three subspaces: Ω1={x ∈ Ω\{x∗
k}|f(x) ≥ f(x∗

k)}, Ω2={x ∈ Ω|f(x) < f(x∗
k)}

and {x∗
k}. The modified definition of the filled function for Problem (1.1) in the paper [30]

is presented.

Definition 2.3. P (x, x∗
k) is called a filled function of f(x) at x∗

k, if it has the following
properties:

• x∗
k is a strictly local maximizer of P (x, x∗

k);

• ∇P (x, x∗
k) ̸= 0, ∀x ∈ Ω1;

• P (x, x∗
k) has a local minimizer in Ω2 if x∗

k is not a global minimizer of f(x).

3 A Parameter-Free Filled Function and Its Properties

In this section, a new filled function without parameters is given as follows:

P (x, x∗
k) = sinh(

1

∥x− x∗
k∥

2
+ 1

)θ(f(x)− f(x∗
k)) + min (0, f(x)− f(x∗

k))
3, (3.1)



522 G. SUN, Y. SHANG, X. WANG AND R. ZHANG

θ(t) =

{
1, t ≥ 0
0, t < 0

,

where ∥·∥ is the Euclidean vector norm.
The following theorems prove that P (x, x∗

k) is a filled function, which satisfies the con-
ditions in Definition 2.3.

Theorem 3.1. Let x∗
k be a local minimizer of f(x), then x∗

k is a strictly local maximizer of
P (x, x∗

k).

Proof. Since x∗
k is a local minimizer of f(x), there exists a neighbourhood N(x∗

k, δ) of x∗
k

with δ > 0 such that f(x) ≥ f(x∗
k), ∀x ∈ N(x∗

k, δ). Thus, for ∀x ̸= x∗
k ∈ N(x∗

k, δ),

P (x, x∗
k) = sinh(

1

∥x− x∗
k∥

2
+ 1

) < sinh(1) = P (x∗
k, x

∗
k).

Thus, x∗
k is a strictly local maximizer of P (x, x∗

k).

Theorem 3.2. Let x∗
k be a local minimizer of f(x), then ∇P (x, x∗

k) ̸= 0 for ∀x ∈ Ω1.

Proof. Due to ∀x ∈ Ω1 implying f(x) ≥ f(x∗
k) and x ̸= x∗

k, we have

P (x, x∗
k) = sinh(

1

∥x− x∗
k∥

2
+ 1

),

∇P (x, x∗
k) = cosh(

1

∥x− x∗
k∥

2
+ 1

)
−2(x− x∗

k)

(1 + ∥x− x∗
k∥

2
)
2 ̸= 0.

Meanwhile, for ∀x ∈ Ω1, we can also have

(x− x∗
k)

TP (x, x∗
k) = cosh(

1

∥x− x∗
k∥

2
+ 1

)
−2∥x− x∗

k∥
2

(1 + ∥x− x∗
k∥

2
)
2 < 0.

That is, for ∀x ∈ Ω1, (x− x∗
k) is a descent direction of P (x, x∗

k) at x.

Theorem 3.3. Let x∗
k be a local minimizer of f(x).For x1, x2 ∈ Ω1 with ∥x2 − x∗

k∥ >
∥x1 − x∗

k∥, then
P (x2, x

∗
k) < P (x1, x

∗
k).

Proof. Based on x1, x2 ∈ Ω1, f(x1) ≥ f(x∗
k) and f(x2) ≥ f(x∗

k), then

P (x2, x
∗
k)− P (x1, x

∗
k) = sinh(

1

∥x2 − x∗
k∥

2
+ 1

)− sinh(
1

∥x1 − x∗
k∥

2
+ 1

).

Because of ∥x2 − x∗
k∥ > ∥x1 − x∗

k∥ implying 1

∥x2−x∗
k∥2

+1
< 1

∥x1−x∗
k∥2

+1
, we have

sinh(
1

∥x2 − x∗
k∥

2
+ 1

) < sinh(
1

∥x1 − x∗
k∥

2
+ 1

).

Thus,
P (x2, x

∗
k)− P (x1, x

∗
k) < 0.

Hence, P (x2, x
∗
k) < P (x1, x

∗
k).
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Theorem 3.4. Let x∗
k be a local minimizer of f(x) and Ω2 is not empty, then for ∀x1 ∈ Ω1

and ∀x2 ∈ Ω2, it holds that
P (x2, x

∗
k) < P (x1, x

∗
k).

Proof. Since ∀x1 ∈ Ω1 and ∀x2 ∈ Ω2, then

f(x2) < f(x∗
k) ≤ f(x1),

then,

P (x2, x
∗
k)− P (x1, x

∗
k) = (f(x2)− f(x∗

k))
3 − sinh(

1

∥x1 − x∗
k∥

2
+ 1

) < 0.

Hence, P (x2, x
∗
k) < P (x1, x

∗
k).

Theorems 3.1-3.4 illustrate that the following points: (1) x∗
k is a strictly global maximizer

of P (x, x∗
k) in Ω; (2) P (x, x∗

k) has no saddle point in Ω1, and its function value decreases
as the point x ∈ Ω1 moves away from x∗

k; (3) If Ω2 is not empty, the point obtained by
minimizing P (x, x∗

k) must strike into Ω2, which is due to the fact that the function value
of P (x, x∗

k) in Ω2 is always smaller than that in Ω1, thus achieving the goal of escaping the
current local minimizer of f(x). The following theorem will prove that P (x, x∗

k) and f(x)
have the same local minimizer in Ω2, which also means that the global minimizer is the
same.

Theorem 3.5. Let x∗
k be a local rather than global minimizer of f(x), then the local mini-

mizers of f(x) in Ω2 are also the local minimizers of P (x, x∗
k).

Proof. Obviously, Ω2 is not empty. Thus, f(x) has a better local minimizer xl in Ω2. Then
there exists a neighbourhood N(xl, δ) of xl with δ > 0, such that for ∀x ̸= xl ∈ N(xl, δ)∩Ω2,
the following inequalities hold:

f(xl) < f(x) < f(x∗
k),

f(xl)− f(x∗
k) < f(x)− f(x∗

k) < 0.

Hence, we have

P (xl, x
∗
k) = (f(xl)− f(x∗

k))
3 < (f(x)− f(x∗

k))
3 = P (x, x∗

k).

Thus, xl is also a local minimizer of P (x, x∗
k).

Theorem 3.5 implies that if Ω2 is non-empty, P (x, x∗
k) must have a local minimizer in

Ω2. Thus, we give the following theorem 3.6.

Theorem 3.6. If Ω2 is non-empty, then the local minimizers of P (x, x∗
k) in Ω2 are the local

minimizers of f(x).

Proof. Suppose x̃l ∈ Ω2 is a local minimizer of P (x, x∗
k). For x̃l ∈ Ω2 with f(x̃l) < f(x∗

k),
there exists a neighbourhood N(x̃l, δ) of x̃l with δ > 0, such that for ∀x ̸= x̃l ∈ N(x̃l, δ)∩Ω2,
we can obtain

P (x̃l, x
∗
k) < P (x, x∗

k),

f(x̃l) < f(x∗
k),

f(x) < f(x∗
k).

Then
P (x̃l, x

∗
k) = (f(x̃l)− f(x∗

k))
3 < P (x, x∗

k) = (f(x)− f(x∗
k))

3.

Thus f(x̃l) < f(x), which means that x̃l is a local minimizer of f(x). Therefore, P (x, x∗
k)

and f(x) have the same local minimizers in the region Ω2.
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Theorems 3.5 and 3.6 illustrate that if Ω2 is non-empty, then P (x, x∗
k) and f(x) have the

same local as well as global minimizers in Ω2.

4 Novel Filled Function Algorithm Without Parameters for Un-
constrained Global Optimization

By the theoretical discussion in the previous section, a global optimization algorithm is
described as follows:

Step 0: Set k as the iterative number and k = 1; let e1, e2, . . . , e2n be the positive and
negative coordinate directions; randomly select one point x0

k ∈ Ω.

Step 1: Minimize the objective function f(x) from x0
k to obtain a local minimizer x∗

k.

Step 2: Construct the filled function

P (x, x∗
k) = sinh( 1

∥x−x∗
k∥2

+1
)θ(f(x)− f(x∗

k)) + min (0, f(x)− f(x∗
k))

3,

θ(t) =

{
1, t ≥ 0
0, t < 0

.

Set j = 1.

Step 3: If j ≤ 2n, go to step 4; otherwise take x∗
k as a global minimizer of the global

optimization Problem (1.1) and terminate the algorithm.

Step 4: If j ≤ n, δ = rand ∗ (ubj − (x∗
k)j); otherwise δ = rand ∗ ((x∗

k)j−n − lbj−n). Go
to step 5.

Step 5: Set x = x∗
k + δej . If x ∈ Ω, go to Step 6; otherwise, let j = j + 1, go to step 3.

Step 6: Minimize P (x, x∗
k) from x to achieve a local minimizer x̃∗

k and continue to step
7.

Step 7: If f(x̃∗
k) < f(x∗

k), set x∗
k+1 = x̃∗

k, k = k + 1 and go to step 2; otherwise, set
j = j + 1 and go to step 3.

The motivation and description of the algorithm are given as follows:

• In step 0, n is the dimension of f(x), ej , j = 1, 2, . . . , n indicate the positive coordinate
directions and ej = −ej−n, j = n + 1, . . . , 2n represent the negative coordinate direc-
tions. More search directions can be selected to increase the success of the algorithm,
which requires more computational cost.

• In step 1, a local minimizer x∗
k of f(x) is obtained by utilizing one local search method,

then a filled function P (x, x∗
k) of f(x) at x

∗
k is constructed in Step 2.

• In step 5, the step size δ > 0 can be chosen arbitrarily by step 3 and 4 to generate one
new initial point x = x∗

k + δej , because the value of P (x, x∗
k) decreases when x ∈ Ω1

stays away from x∗
k and the values of P (x, x∗

k) in the region Ω2 are always smaller

than those in the region Ω1. Therefore, one local minimizer x̃∗
k obtained by minimizing

P (x, x∗
k) from any initial point different from x∗

k falls on Ω2.

• In step 6, a new local minimizer x̃∗
k is obtained by utilizing the hybrid Hooke and Jeeves

method [18] to minimize P (x, x∗
k) from the initial point x. Then, if f(x̃∗

k) < f(x∗
k), x̃

∗
k

is also a local minimizer of f(x), and then a new filled function is constructed at x̃∗
k,

otherwise it indicates that we cannot find a new local minimizer and need to re-select
a new search direction to minimize P (x, x∗

k).
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From the above description, our algorithm does not require solving the objective function
again after solving the filled function, which theoretically reduces the number of iterations
by half compared to traditional filled function algorithms.

5 Numerical Experiments

In order to verify the performance of the newly constructed algorithm in this paper, it is ap-
plied to some global optimization problems presented in [19]. Meanwhile, the computational
results are compared with those of the algorithm in [19], which are displayed in Tables 1-6.
The symbols are adopted in these tables as follows:

k: The iterative number of local minimizer obtained by minimizing f(x);
x∗
k : The kth local minimizer of f(x);

f(x∗
k) : The function value of f(x) at x∗

k;
ck : The total number of local minimizers of f(x) and P (x, x∗

k) discovered in the k-th
iteration;

cf : The number of function evaluations of f(x) when the algorithm terminates;
cP : The number of function evaluations of P (x, x∗

k) when the algorithm terminates;
x∗ : The global minimizer of f(x);
f(x∗) : The optimal value of f(x) at x∗;
No. : The number of the Example;
t(s): The CPU running time when the algorithm terminates.
Note: The local minimizers of our filled function are also the local minimizers of the

objective function, while the filled function in the paper [19] does not possess this property.
This implies that ck = k in this paper, whereas ck = 2k − 1 in the paper [19].

Example 5.1. 2-dimensional function with multiple local minimizers

min f(x) = [1− 2x2 + 0.2 sin(4πx2)− x1]
2 + [x2 − 0.5 sin(2πx1)]

2

s.t. 0 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 0.

This problem has the global minimizer x∗ = (1, 0) with f(x∗) = 0.

Our algorithm successfully finds an approximate global minimizer x∗ = (1.8974, -0.3005)
with f(x∗) = 3.9293e-15 through three iterations, which is significantly better than the
results in the paper [19] with regard to solution accuracy and iterative number. The local
minimizers obtained are shown in Table 1.

Table 1 Results for Example 5.1 with initial point (3, -3)

k
Our algorithm Algorithm in [19]
x∗
k f(x∗

k) x∗
k f(x∗

k)
1 (2.8276,-3.0899) 22.2231 (6.5818e-09,-0.5946) 3.3300
2 (6.7354, 2.3563) 3.7415 (5.7313,-1.8658) 2.1279
3 (1.8974,-0.3005) 3.9293e-15 (1.4513,-4.4244e-08) 0.2264
4 (5.5244,-0.1037) 3.3221e-02
5 (1.0000,-3.0748e-05) 1.3495e-08

Example 5.2. Six-hump back camel function with six local minimizers

min f(x) = 4x2
1 − 2.1x4

1 +
1
3x

6
1 − x1x2 − 4x2

2 + 4x4
2

s.t. − 3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3.
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This problem has two global minimizers x∗ = (-0.0898, -0.7127) and x∗ = (0.0898, 0.7127)
with f(x∗) =-1.0316.

Our algorithm successfully finds the global minimizer x∗ = (-0.0898, -0.7127) through
two iterations, which is better than the results in the paper [19] with regard to iterative
number. The local minimizers obtained are shown in Table 2.

Table 2 Results for Example 5.2 with initial point (3,−3)

k
Our algorithm Algorithm in [19]
x∗
k f(x∗

k) x∗
k f(x∗

k)
1 (1.6071,-0.5687) 2.1043 (1.6071,-0.5687) 2.1043
2 (-0.0898,-0.7127) -1.0316 (1.7036,0.7961) -0.2155
3 (0.0898,0.7127) -1.0316

Example 5.3. Treccani function with two local minimizers

min f(x) = x4
1 + 4x3

1 + 4x2
1 + x2

2

s.t. − 3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3.

This problem has two global minimizers x∗ = (0, 0) and x∗ = (-2,0) with f(x∗) = 0.

Our algorithm successfully finds an approximate global minimizer x∗ = (-2, -7.5024e-
09) with (x∗) = 5.6286e-17 through two iterations, which is better than the results in the
paper [19] with regard to solution accuracy and iterative number. The local minimizers
obtained are shown in Table 3.

Table 3 Results for Example 5.3 with initial point (2, 2)

k
Our algorithm Algorithm in [19]
x∗
k f(x∗

k) x∗
k f(x∗

k)
1 (-3.8942e-08,2.4265e-08) 6.6548e-15 (-7.4087e-08,2.3668e-08) 2.2516e-14
2 (-2, -7.5024e-09) 5.6286e-17

Example 5.4. Three-hump back camel function with three local minimizers

min f(x) = 2x2
1 − 1.05x4

1 +
1
6x

6
1 − x1x2 + x2

2

s.t. − 3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3.

This problem with three local minimizers has the global minimizer x∗ = (0, 0) and f(x∗) = 0.

Our algorithm successfully finds an approximate global minimizer x∗ = (4.3837e-09,-
6.2778e-09) with f(x∗) = 1.0536e-16 through two iterations. Although the solution accuracy
is weaker than the algorithm in the paper [19], it still maintains an efficiency advantage.
The local minimizers obtained are shown in Table 4.

Table 4 Results for Example 5.4 with initial point (1.5, 1.5)

k
Our algorithm Algorithm in [19]
x∗
k f(x∗

k) x∗
k f(x∗

k)
1 (-1.7476, -0.8738) 0.2986 (-1.7475, -0.8738) 0.2986
2 (4.3837e-09,-6.2778e-09) 1.0536e-16 (6.5624e-08,1.638e-08) 7.8061e-15
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Example 5.5. Shubert function with 760 local minimizers

min f(x) = {
5∑

i=1

i cos[(i+ 1)x1] + i} · {
5∑

i=1

i cos[(i+ 1)x2] + i}

s.t. − 10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10.

This problem has 18 global minimizers with f(x∗) = 0.

Our algorithm successfully finds the global minimizer x∗ = (-1.4251, -0.8003) with f(x∗)
= -186.7309 through three iterations, which is better than the results in the paper [19] with
regard to iterative number. The local minimizers obtained are shown in Table 5.

Table 5 Results for Example 5.5 with initial point (1, 1)

k
Our algorithm Algorithm in [19]
x∗
k f(x∗

k) x∗
k f(x∗

k)
1 (3.0000, 3.0000) 0.0509 (2.2992, 1.8057) -7.9834
2 (2.7859, -3.0000) -9.5371 (-2.5109, -3.0000) -12.9624
3 (-1.4251, -0.8003) -186.7309 (-1.4251,-3.0000) -46.5027
4 (-1.4251, -0.8003) -186.7309

Example 5.6. n-dimensional Sine-square II function with 10n local minimizers

min f(x) = π
n{10sin

2πx1 +
n−1∑
i=1

[(xi − 1)
2
(1 + 10sin2πxi+1)] + (xn − 1)

2}

s.t.− 10 ≤ xi ≤ 10, i = 1, 2, . . . , n.

This problem has the global minimizer x∗ = (1, . . . , 1) with f(x∗) = 0.

Example 5.7. n-dimensional Ackley function with multiple local minimizers

min f(x) = −20epx(−0.2

√
1
n

n∑
i=1

x2
i )− exp( 1n

n∑
i=1

cos(2πxi)) + 20 + e

s.t.− 32.768 ≤ xi ≤ 32.768, i = 1, 2, . . . , n.

This problem has the global minimizer x∗ = (0, . . . , 0) with f(x∗) = 0.

Example 5.8. n-dimensional Rastrigin function with multiple local minimizers

min f(x) = 10n+
n∑

i=1

(x2
i − 10 cos(2πxi))

s.t.− 5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.

This problem has the global minimizer x∗ = (0, . . . , 0) with f(x∗) = 0.

Examples 5.6-5.8 are solved for n = 10, 30, 50. The calculation results are shown in Table
6.

Since the local minimizers of the filled function in this paper are those of the objective
function, the new filled function method can avoid solving the objective function again,
which is the significant difference from the filled function algorithm in the paper [19], and
also is the main contribution of this paper. Hence, the two filled function algorithms are
further compared in terms of the function evaluation times about the objective function and
the filled function, the running time as well as the total local minimizers of the filled function
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and the objective function obtained when the algorithm terminates. The comparative results
are displayed in Table 6.

The experimental results listed in Tables 1-6 demonstrate that the constructed filled
function algorithm in this paper can effectively address the two-dimensional Examples 5.1-
5.5, as well as the filled function proposed in the paper [19]. For the multi-dimensional
Examples 5.6-5.8, our algorithm can find the optimal or approximate optimal solution,
while the algorithm in the paper [19] plunges into the local solution. Furthermore, when the
dimensionality of the problems increases, our algorithm shows better ability to jump out of
local minimizers than the algorithm in the paper [19]. Overall, our algorithm is significantly
superior to the optimization ability of the filled function in the paper [19].

Table 6 Comparison results of Examples 5.1-5.8

No. n
Our algorithm Algorithm in [19]

ck cf cP f(x∗
k) t(s) ck cf cP f(x∗

k) t(s)
5.1 2 3 55 1876 4.0045e-16 1.0865 9 237 3125 2.1282e-09 3.7202
5.2 2 2 32 1002 -1.0316 1.5611 5 106 1563 -1.0316 5.6460
5.3 2 2 24 2358 7.7902e-17 0.7542 1 32 3200 3.5996e-15 2.6705
5.4 2 2 33 772 3.1097e-16 1.3363 3 87 1674 1.0130e-13 1.7751
5.5 2 3 46 2186 -186.7309 0.6860 7 206 3125 -186.7309 4.6182

5.6
10 2 509 2554 4.4940e-15 5.5445 7 800 5625 1.7128e-13 15.0631
30 3 1903 4431 2.3824e-15 20.9858 9 3845 9445 1.8859e-11 52.5521
50 6 5390 14852 2.2082e-13 50.2716 9 8158 29656 7.9324e-02 160.1634

5.7
10 2 850 2540 6.4049e-11 1.9219 3 481 2604 2.0133 3.7657
30 2 903 4431 1.2454e-10 7.7215 9 1641 5935 3.9346 9.2858
50 2 894 12078 9.9605e-11 11.0283 11 1994 47914 10.8371 15.9792

5.8
10 3 707 2253 0 2.9465 15 2572 7612 0 5.4788
30 4 1807 5640 0 15.9778 13 7083 16825 19.8991 20.0371
50 7 4738 16668 0 27.3822 13 6762 56630 16.9142 50.1178

6 Conclusions

A new filled function without parameters and ill-conditioned term is constructed for un-
constrained global optimization problems in this paper. Theoretical analyses show that the
filled function conquers some disadvantages of existing filled functions. In the region where
the feasible points are better than the current local minimizer, the filled function has the
same local minimizers as the objective function, and its function value is smaller than those
in the region where the feasible points is worse than the current local minimizer. Then a new
filled function algorithm is given, which simplifies the iterative process of traditional filled
function algorithm and is compared with existing ones in finding global minimizer of some
global optimization problems. The numerical results reveal the superiority of the presented
filled function for solving unconstrained global optimization problems.
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