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important to identify the oil content of reservoirs. Dimensionality reduction is widely used
to solve this problem.

In the past few decades, dimensionality reduction has attracted widespread attention and
many valuable research results have been published [25, 30, 33]. According to whether the
class information of the original samples has been utilized, dimensionality reduction methods
can be divided into three categories: supervised, unsupervised, and semi supervised dimen-
sionality reduction methods [23]. The well-known dimensionality reduction methods include
linear discriminant analysis (LDA) [1] and non-negative matrix factorization (NMF)[13], in
which LDA is a supervised method and NMF is an unsupervised learning method. Overall,
supervised methods typically achieve better performance than unsupervised methods due
to the use of label information from training samples [23]. Therefore, in the identification
of reservoir oil content, references [19, 8, 18] and others use label information, based on dif-
ferent models and evaluation criteria, to select low dimensional features with clear physical
meanings. However, the heterogeneity of reservoirs leads to the multiplicity and uncertainty
of petroleum geological problems, making it difficult to obtain a large amount of labeled
data [11]. Furthermore, the cost of obtaining geological data is often high, so the data ob-
tained is mostly “small samples” or unlabeled data. Therefore, it is meaningful to study the
low dimensional feature representation of well logging data under unsupervised conditions.
However, to our knowledge, there is very little research in this area. Due to the non-negative
and low rank characteristics of well logging data, NMF can easily obtain non-negative low
dimensional features of the data that align with practical applications.

A novel GNMF model is proposed for extracting accurate low dimensional features of
well logging data. The innovation of this paper is mainly reflected in the following points:

1. A novel model has been proposed to improve traditional NMF and enhance the quality
of feature representation. In the newly designed model, NMF integrates low rank matrix
recovery to eliminate the potential impact of logging noise data and provide structural
information that is latent in the data.

2. The rank of basis matrix is accurately estimated in the low rank matrix recovery model
(LRMR) and an accurate optimization algorithm. In addition, we design experiments to
verify the reasonableness and effectiveness of the estimated rank value.

3. The local features of the basis matrix are further optimized. Based on accurately
restored low-rank information, the partition is performed by spectral clustering algorithm
represents the local characteristics of the reservoir. In addition, accompanied by the basis
matrix optimized in structure and local features, we also propose an improved GNMF.

4. The effectiveness of this method has been verified through experiments on real data
from Jianghan Oilfield, and its performance is superior to comparative methods.

The rest of this paper is organized as follows. In Section 2, we briefly review the related
works. NMF and its variants are introduced in Section 3. We describe the optimal estimation
of the base matrix in detail in Section 4 and give an improved GNMF model with optimal
estimation. Experimental results and analysis on three real well logging data and their
combinations are demonstrated in Section 5. Finally, we briefly conclude this paper in
Section 6.

2 Related Works

Well logging data is influenced by various factors such as formation porosity, well fluid
composition, lithology, etc, during the collection process, manifested as the superposition
of real data and noise data [22]. In fact, potential noise in the data will definitely affect
the performance of subsequent processing, such as clustering and classification. Wright



GNMF WITH OPTIMAL BASIS ESTIMATION AND ITS APPLICATION 535

et al. [36] proposed robust principal component analysis (RPCA) and demonstrated that
low rank matrix A can be effectively and accurately recovered from damaged observations
X = A + E, where E is an unknown error matrix with sparsity. The low-rank part usu-
ally contains the main information and structure in the data, which is necessary for tasks
such as dimensionality reduction and pattern recognition. Therefore, in order to accurately
recover the low rank part of the data, many scholars have conducted extensive research.
Lin et al. [21] proposed the inexact augmented Lagrange multipliers (IALM) algorithm and
efficiently recovered low-rank matrix of the data. In order to improve the flexibility of the
lowest kernel norm, Gu et al. [7] proposed the weighted kernel norm minimization model
(WNNM) by establishing weights based on the relationship between singular value sizes.
Oh et al. [26] proposed partial sum of singular values (PSSV) minimization based on prior
rank information. He et al. [9] proposed an improved model with rank constraints based on
prior rank information. How to choose an appropriate algorithm based on actual scenarios
to accurately recover the low rank part is a key issue in low rank matrix recovery. That is
to say, the performance and information contained in the low-rank part depending on the
optimization algorithm suitable for the scenario.

The core of existing methods is to find a low rank matrix that approximates the original
data matrix, in order to estimate the low rank structure of the original data. Although
determining the rank of a matrix is a challenging task, it often serves as a predetermined
input for some methods, affecting the performance of the algorithm [20]. As a low-rank
approximation technique, NMF is exactly that way, where the rank of the basis matrix
needs to be pre-set, attempting to express each object as a linear combination of several
basis vectors. In order to enhance the representation ability of the basis matrix, Wild et al.
[35] proposed a K-means method for initializing the basis matrix, which replaces random
initialization with class center vectors to improve decomposition performance. Zhang et
al. [40] introduced the Ng-Jordan-Weiss (NJW) spectral clustering algorithm into NMF,
reducing the potential impact of shape distribution and high dimensionality in the data
space. Li et al. [16] considered the potential impact of noise in the raw data and incorporated
NMF into the RPCA framework, proposing a non-negative low rank matrix factorization.

Although NMF can effectively achieve low dimensional representation of observed data
and furtherly obtain good clustering performance through low-rank factorization, there are
still some limitations. Firstly, the NMF model is mainly used to learn the low rank rep-
resentation of observed samples in the basis space of the original data vector space, and
it is still essentially a representation-based method. The base for representation requires a
suitable basis space for local structural features [15]. Due to the potential impact of noise,
it is difficult to directly compute the intrinsic dimensionality that reflect the structure of
the original observed data. After all, external disturbance universally exists in industrial
systems, which will degrade the system performance and even destroy the stability of the
system once the anti-disturbance question is not seriously treated [32]. Well logging data is
just like this, the potential noise may change the data structure and disrupt the low-rank
property of the data, thereby degrade the performance of matrix factorization algorithms
[20]. If applied directly to the original data and subjectively set the rank of the basis ma-
trix, it can affect the quality of the features, which in turn influences the performance of
clustering or classification tasks. Secondly, the local feature information of the data plays
an important role in NMF, which is ignored due to its random setting. Basis vector corre-
sponds to a certain local feature, it can be textures in images or topics in text. However,
from the perspective of a linear space, basis vectors are linearly independent, meaning they
cannot represent each other. In practical applications, these features are closely related to
the low-rank structural information of the observed samples. In this proposed method, for
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feature extraction of well logging data, the rank and local features of the NMF basis matrix
are optimized and estimated, respectively. Firstly, the rank of the basis matrix is estimated
in the low rank part of the well logging data, significantly reducing the potential impact of
noise. The presence of noise changes the true low rank structure of the vector space of well
logging observation data. The intrinsic structure of well logging data should be estimated
in the low-rank part after separating noise. Meanwhile, the obtained low rank value is help-
ful to extract the appropriate number of local feature. The effects of parameter variations
cannot be ignored in many practical physical systems [31]. Secondly, the basis vectors are
represented by the cluster centers of the low-rank part of the well logging data, which can
enhance the accuracy of the reconstructed data. Basis vectors represent local features of
the reservoir through class centers under clean data partitioning, it is more objective and
interpretable. Integrating the representation of local features and the rank of the matrix, a
basis matrix is constructed to appropriately reflect the structure that is latent in the well
logging data. Finally, the constructed basis matrix is employed by GNMF and the robust
and efficient low dimensional features can be obtained for reservoir oil identification. The
experimental results of real well logging data show that our proposed improvement method
is effective and superior to the four related algorithms.

3 NMF and Its Several Variants

Because the main work is carried out on the basis matrix of NMF, it is necessary to review
NMF and its several variants. NMF algorithm [13] is an effective method for matrix low-rank
approximation, which obtains the latent features of the data by performing non-negative
factorization on a non-negative matrix. This approach learns a basis matrix that allows the
original data to be faithfully reconstructed under the non-negative linear combination of its
local features [16]. For a given X = [x1, · · · , xn] ∈ Rm×n, each column of X is a sample
vector. NMF tries to find two non-negative matrices U = [uik] ∈ Rm×r and V = [vik] ∈ Rn×r

to approximated the original matrix. That is X ≈ UV T , where U is the basis matrix, and
V is the coefficient matrix. From a mathematical perspective, each observed sample vector
xi can be represented as a linear combination of the columns of U , weighted by each column
of V . Thus, V can be regarded as a projection of the corresponding observed sample vector
in X according to the basis matrix U , and it is a compressed approximation of the original
matrix. In fact, the basis vectors represent fundamental features in the data space, while
the coefficient vector controls the way how to combine these basis vectors.

To solve the low-rank approximation, the following minimize the objective function is
performed.

min
U,V

f(U, V ) = min
U,V

∥∥X − UV T
∥∥2
F

s.t.U > 0, V > 0
(3.1)

where, ∥·∥F denotes the matrix Frobenius norm. Lee and Seung presented the following
updating rules[13]:

ut+1
ik ← ut

ik
(XV )ik

(UV TV )ik
(3.2)

vt+1
kj ← vtkj

(XTU)kj

(V UTU)kj

(3.3)

In NMF, the representation of the observed data is obtained under a low-rank basis ma-
trix and non-negative constraint, so the low dimensional features can be well represented.
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This kind of representation can give a good interpretation of the data in the related applica-
tions due to their values are non-negative naturally, such as signal processing [14], pattern
recognition [37], clustering [10, 4]. Several NMF variants methods are given as follows.

Graph regularized non-negative matrix factorization (GNMF) [2]. GNMF considers
the geometric structure in the data by constructing an affinity graph, and its model is
given as follows.

min
U,V

f(U, V ) = min
U,V

∥∥X − UV T
∥∥2
F
+ λ1Tr(V

TLzV )

s.t.U > 0, V > 0
(3.4)

where λ1 is the tradeoff parameter of the Laplacian regularization. Lz = D − S is the
graph Laplacian matrix. S is a symmetric weight matrix and D is a diagonal matrix
whose entries are column sums of S.

NMF with spectral clustering initialization enhancer (NJW-NMF) [40]. The model
introduces the spectral clustering center to initialize the basis vector for NMF. In
NJW-NMF, both the rank and the basis vector of matrix are optimized simultaneously
by clustering the original data.

4 The Estimation of Basis Matrix

4.1 Motivation

Though NMF can obtain non-negative representation of the observed samples, the recon-
struction relies on the setting of basis matrix. A good approximation can only be achieved
if the basis matrix appropriately reflects the underlying structural features of the data [12].
Accurately expressing mathematical model is conducive to correctly representing the dy-
namic behavior of the system [28]. In NMF, the rank of basis matrix is pre-set subjectively,
which cannot reflect the true intrinsic dimension. However, the rank of basis matrix will
affect the performance of the matrix factorization [6] and determine the number of feature
to be extracted. So how to choose the rank is very important. Unfortunately, determining
the rank is a challenging task. In addition, most existing works directly apply NMF on
high-dimensional data for computing the effective representation of raw dataset, and the
potential noise contained in the raw data is ignored.

In real world applications, well logging data always contains noise, which disrupts the
low-rank structure of the data. Inspired by the low-rank matrix recovery (LRMR) with
ℓ1 norm, the well logging data can be divided into low-rank part and sparse part. The
motivation behind low-rank is from the observation that a part of principal components of
a matrix usually contain most of the information [17]. The essential information of the well
logging data is hidden in low-rank part. Low-rank part plays a key role in the estimation of
rank and it is also the basis for estimation. That is to say, the accuracy of the estimation
for the rank heavily relies on the low-rank part obtained from the optimization algorithms.
We aim to use accurate optimization algorithm to precisely recover the low-rank part of well
logging data and construct basis matrix. It is well-known that the low-rank part in LRMR
can well recovery under the conditions which is the calculated low rank value is not too
high and the noise is sufficiently sparse [27]. Therefore, an adaptive recovery optimization
algorithm WNNM is adopted in the proposed algorithm. The rank and local feature of basis
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matrix are estimated and represented in an appropriate manner based on the low-rank part,
respectively. We also consider the construction for the local features based on low-rank part.
So, the rank estimation and local feature representation are explored together to optimize
basis matrix in NMF for furtherly achieving accurate feature extraction.

4.2 The estimation of rank in basis matrix

Well logging data is influenced by various factors such as formation porosity, well fluid
composition, and lithology during the collection process, manifested as the superposition of
real data and noise data [22]. Due to the presence of potential noise disrupting the low-rank
structure of well logging data, the low-rank data contains the common properties of the
reservoir. Thus, the observed data X can be approximated by X = A+E, where A denotes
the low-rank part of the data, and E denotes the sparse noise. The low-rank part contains
the essential information of the original well logging data.

In LRMR, the rank of the low-rank part approximates the true rank of the original
matrix. As we know, NMF is a matrix factorization algorithm that each sample vector
can be represented as a linear combination of the column of the basis matrix. According
to [16], we know that if the rank of X is given, then there are two matrices U and V , let
X = UV T . That is to say, both the basis matrix U and observed data matrix X have the
same rank value r. Therefore, we can use the rank of low rank matrix obtained from LRMR
to approximate the rank of basis matrix in NMF in the case of exact recovery. This kind of
exact recovery requires satisfying relatively strict conditions, such as low rank value is not
too high, the noise is sufficiently sparse and the optimization algorithm used for recovery
has a certain degree of adaptability.

According to the property of matrix rank in linear algebra, the rank value does not
exceed 6 for each well logging dataset. If we consider the mathematical meaning of rank,
which indicates the number of linearly independent columns or rows in a matrix, the rank
value does not exceed 4. However, it is important to note that even with a low rank, there is
still uncertainty in determining the value of the rank. That is the reason that we employ the
WNNM algorithm to exactly recovery low-rank part and estimate the rank precisely, which
it reveals the underlying structure and essential information within the data. It is helpful
in analyzing the underlying structure and patterns of the data. The model of LRMR can
be summarized as follows:

min
A,E
∥A∥∗ + λ2∥E∥1

s.t.X = A+ E
(4.1)

where ∥A∥∗ denotes the nuclear norm of low rank matrix A, calculated as ∥A∥∗ =
n∑
i

δi, δi

is the i-th singular value of matrix A, n is the number of sample in data, E is the noise
matrix, ∥E∥1 is the ℓ1 norm of matrix E, defined as the sum of absolutes of all entries, and
λ2 is a penalty parameter for balancing the rank function and the ℓ1 norm of matrix E. It
is the goal of LRMR that estimating the low-dimensional subspace via finding a low rank
matrix A, and the rank of A can be an optimal estimation for the target dimension of the
subspace.

Several optimization algorithms have been used to solve LRMR model, such as itera-
tive thresholding, accelerated proximal gradient, augmented Lagrange multiple (ALM) al-
gorithms, inexact augmented Lagrange multiple (IALM) [21], and weighted nuclear norm
minimization (WNNM) [7]. In WNNM, due to assigning different weights to different singu-
lar values, it is possible to better control the low-rank approximation of the matrix. Thus,
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we employ the WNNM algorithm to recovery the low-rank part for the well logging data. It
is used to estimate the intrinsic dimensionality for well logging data and its implementation
steps can be described as follows:

Step 0: Set well logging data matrix X ∈ Rm×n, weight vector ϖ, initial parameters
µ0 > 0, ρ > 1, θ > 0, X0 = X,L0 = 0 and the iterative number k = 0;.

Step 1: Set the termination conditions for the algorithm: ∥X −Ak+1 − Ek+1∥F /∥X∥F >
θ

Step 2: Update sparse matrix: Ek+1 = argmin
E
∥E∥1 +

µk

2

∥∥X + µ−1
k Lk −Ak − E

∥∥2
F
;

Step 3: Update low-rank matrix: Ak+1 = argmin
A
∥A∥∗+

µk

2

∥∥X + µ−1
k Lk − Ek+1 −A

∥∥2
F
;

Step 4: Update Lagrange multiple matrix:Lk+1 = Lk + µk [X −Ak+1 − Ek+1] ;
Step 5: Update parameter:µk+1 = ρµk;
Step 6: If the termination condition is met, then calculate the R = rank(Ak) and

output (Ak, Ek, R); otherwise,let k ← k + 1 and go to step2.
The estimated results need to be verified. As we know, the kernel norm is approximation

of the rank function in model (4.1). The performance of optimization algorithm is another
factor that affects the quality of the recovery part. Therefore, it is necessary to verify
the estimated results. We test the rationality of the estimated results, according to its
subsequent impact. As we know, good approximation depends on the appropriate structure
of the basis matrix, and good features can be regarded as one of manifestation of this
approximation. Under the same conditions, we can quantify the quality of these features,
such as clustering them in the same classifier. In fact, we employ the K-means classifier to
quantitatively evaluate the feature quality of different low rank value to demonstrate the
validity of the estimated value. If the estimated rank and the prior category information are
denoted as R and k, respectively, considering computational errors, we set up a candidate
set S = {R− 1, R,R+ 1, k}.

4.3 The estimation of local features

Rank is an important factor in constructing the basis matrix, as it indicates the number
of basis vectors. Another factor, namely local features, is also an important component
in constructing the basis matrix. For example, these features can be textures in image
recognition or topics in text recognition. To quantitatively describe the local feature of the
reservoir, we need to represent the typical features of various reservoirs in vector form. The
different vectors composed of these elements correspond to different types of reservoirs, such
as oil layer, inferior oil layer, water layer, dry layer. According to [5], local feature and the
“class center” in clustering problem is equivalent. And NJW is more effective than principal
component analysis (PCA), fuzzy c-means (FCM) and K-means in initializing local feature,
in extracting feature of mechanical faults [40]. Therefore, we employ NJW algorithm to
obtain the average feature performing on the low-rank part.

4.4 GNMF with optimal basis matrix

The construction and estimation of the basis matrix provide NMF with the appropriate
structure and features. It is beneficial to extract appropriate low-dimensional features, due to
its accurate and appropriate linear structural information. However, the intrinsic geometric
information of the data is ignored. To utilize the geometric structural information of the
data space, a kNN-based graph is constructed to encode the relationship of the samples.
The constructed basis matrix can be employed in the GNMF framework. Thus, the more
comprehensively the intrinsic structural information of the data is utilized, the better the
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quality of the extracted features. Figure 1 shows the process of feature extraction based on
GNMF with optimal basis matrix.
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Figure 1: The process of feature extraction based on GNMF with optimal basis matrix

The proposed model integrates the advantages and ideas of the above two variants of
NMF. It is implemented within the GNMF framework, and its basis vectors are represented
by NJW class center. However, there are two differences with the two variants of NMF.
Compared with GNMF, the proposed model can extract accurate low-dimensional features
and have good clustering performance because the initial basis matrix is optimized in the
rank and basis vectors. Compared with NJW-NMF, the proposed model provides a more
optimized initial basis matrix. Its rank is estimated in the low-rank part separated from
original well logging data. And its basis vectors are represented by NJW’s class center
partitioning applied to low-rank data.

5 Experimental Result

As a class of popular data representation method, NMF can be used in a variety of fields.
We want to utilize it in the oil-bearing recognition to obtain the key low-dimensional feature.
Our goal is to construct a basis matrix with an accurate structure for GNMF model to obtain
appropriate approximation. The structure and feature representation of the basis matrix
come from the low-rank part recovered from original well logging data. The effectiveness
of the proposed method is verified on the real data oilsk81, oilsk83, oilsk85 wells and their
combinations of Jianghan oil fields in China. Particularly, once the proposed algorithm
learns the low-dimensional representation V of the raw dataset X in the proposed method,
we employ K-means algorithm on V to produce the cluster label, followed by the permutation
mapping function [24]. The experimental setting and results are presented in the following
sections.

5.1 Data description

Experiments are performed on three well logging data oilsk81, oilsk83, oilsk85 and their
combinations from Jianghan oil fields in China (see Table 7-9 in Appendix). Table 1 shows
the statistic description of the real data. There are six well logging features and four class
information in recognizing oil-bearing formation. The well logging features are acoustic
travel time (AC), compensated neutron logging (CNL), resistivity (RT), porosity (POR),
oil saturation (SO), and permeability (PERM), respectively. Class information includes
dry layer, water layer, oil layer, and inferior oil layer, respectively. The quality of data is
good without any missing values. The experiment is implemented in the Matlab R2018b
environment.
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Table 1: Statistic description on the well logging datasets

Dataset Features Samples Classes

oilsk 81 6 31 4
oilsk 83 6 50 4
oilsk 85 6 34 4
oilsk 81-83 6 81 4
oilsk 81-85 6 65 4
oilsk 83-85 6 84 4
oilsk 81-83-85 6 115 4

5.2 Evaluation Metrics

The purpose of dimensionality reduction is to eliminate noise and remain meaningful fea-
tures, making the dataset easier to manage and understand, and improving the accuracy
of predictive models accordingly. And quantitative evaluation metrices for assessing clus-
tering performance include external and internal indices. They are very useful for evaluat-
ing the quality of clustering. Accuracy (ACC) and normalized mutual information (NMI)
[16, 38, 34, 39] are two commonly used metrics in external evaluation. Good recognition
results benefit from the quality of feature extraction and the good design of the classifier.
Both ACC and NMI are in the range of [0,1], and the larger value of ACC or NMI, the
better the clustering performance. Additionally, it means that well logging data can be
better segmented by K-means in new feature space, and the quality of extracted features is
higher. For a dataset X with n samples, ACC is calculated as Eq. (5.1)

ACC =

n∑
i

δ(yi,map(ri))

n
(5.1)

where, yi and ri denote the cluster label obtained by clustering algorithm and the true
label of sample xi, respectively. Under the condition of x = y, then δ(x, y) = 1, otherwise,
δ(x, y) = 0. map(·) is a permutation mapping function, used to map each prediction cluster
label ri to the equivalent label according to the distribution of the true label. When the
predicted cluster label K ′ is obtained and the true label K is given, NMI is defined as
follows:

NMI(K,K ′) =
MI(K,K ′)

max(H(K),H(K ′))
(5.2)

where, H(K),H(K ′) denote the entropy of labels K and K ′, respectively. Mutual informa-
tion MI(·) is calculated as follows:

MI(K,K ′) =
∑
s∈K

∑
t∈K′

p(s, t)log2

(
p(s, t)

p(s)p(t)

)
(5.3)

where, p(s, t) denotes the joint probability distribution of s and t, p(s) and p(t) are the
marginal probability of s and t, respectively.

5.3 Experiments on real well logging data

In this section, we choose three real well logging data, oilsk81, oilsk83, oilsk85 and their
combinations to prove the effectiveness of the proposed method. Table 2 shows the estimated
rank results for oilsk81, oilsk83, oilsk85 and their combinations.
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Table 2: Rank estimation with IALM and WNNM algorithm

Dataset IALM WNNM Samples

oilsk 81 3 3 31
oilsk 83 3 3 50
oilsk 85 2 3 34
oilsk 81-83 3 3 81
oilsk 81-85 3 3 65
oilsk 83-85 3 3 84
oilsk 81-83-85 3 3 115

It can be seen that when estimating the rank of the observation data matrix, WNNM
is more stable than IALM algorithm and it does not increase with the number of logging
data. It reflects that the intrinsic feature number is much lower than the observed attribute
number, and the multidimensional well logging data lie in a low-dimensional linear space.
However, due to differences in algorithm performance, the calculation results still show some
fluctuations. According to the number of prior categories k and possible algorithm errors,
the candidate solution is set as S = {2, 3, 4}.

The evaluation are performed by standard NMF algorithm with different rank in the
three real logging data. In addition, two metrics, i.e., ACC and NMI are selected to quanti-
tatively evaluate clustering performance. Table 3 shows the statistical results of independent
experiments conducted 20 times with standard NMF algorithm for the three well logging
datasets with different rank. The bold numbers in the Table 3 highlight the optimal values
for the rank and clustering results.

Table 3: Clustering performance of NMF with different embedding dimensions.
oilsk81 oilsk83 oilsk85

R ACC NMI ACC NMI ACC NMI

2 89.5 ± 6.6 84.6 ± 5.7 81.6 ± 4.2 73.5 ± 4.4 65.7 ± 5.9 54.7 ± 1.4
3 95.5 ± 2.4 89.6 ± 4.8 88.3 ± 2.4 75.5 ± 4.0 77.6 ± 7.5 69.3 ± 5.6
4 91.2 ± 5.4 85.5 ± 5.4 83.1 ± 6.8 74.3 ± 4.8 75.4 ± 7.4 68.1 ± 8.6

Firstly, it is completely consistent in the issue of rank between calculation results by
WNNM optimization algorithm and clustering effectiveness of NMF, which shows two char-
acteristics of having the highest average value and relatively small standard deviation. It
indicates that model of LRMR with WNNM optimization algorithm can achieve precise
recovery, and the embedded dimension of well logging data can be accurately estimated.
We notice that the estimated result is consistent with the parameter dimension commonly
chosen by experts in the field. The parameters POR, PERM and SO are commonly used
in combination with the upper and lower limits of electrical properties of other logging in-
dicators to determine reservoir categories [41]. Therefore, the method of estimating the
embedded features in well logging data has good interpretability and high precision. By
mathematically constructing the intrinsic structure of the original data and accurately rep-
resenting low-dimensional features, it reduces the randomness and subjectivity in setting
the feature dimensions for NMF or GNMF.

Due to good adjustment function for singular values, the WNNM algorithm can obtain
the accurate low-rank part of well logging data. It reveals the optimal number of latent
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features in multidimensional well logging data. However, the low-rank part can not only
reveal the intrinsic structure of the data but also express its local features. NJW algorithm
is employed to partition the low-rank part to represent the local feature of the reservoir.
Then three local features are selected to construct the basis matrix for GNMF. Figure 2
illustrates the spatial geometric distribution of the low-dimensional features extracted from
the proposed method. The (a), (b), (c), (d), (e), (f) and (g) in Figure 2 correspond to
the oilsk81, oilsk83, oilsk85, oilsk81-83, oilsk81-85, oilsk83-85, and oilsk81-83-85 datasets,
respectively.

Figure 2: The visualization of well logging data via extracted low dimensional features

Firstly, it can be seen in Figure 2 that under the extraction of three features from well
logging data, samples of oil layer, inferior oil layer, dry layer, and water layer are distributed
in different spatial regions, showing the characteristic of compact distribution of samples
from the same reservoir type and significant separation of samples from different reservoir
types. The new low-dimensional feature space makes it easier to distinguish well logging
data. On the one hand, it is due to the GNMF model capturing the local geometric struc-
ture information of well logging data, and on the other hand, it is due to the complete
representation of the intrinsic structure within the matrix factors. Secondly, due to signif-
icant differences in features, the oil layer, inferior oil layer, dry layer, and water layer are
completely separated in the feature space, which is beneficial for making decisions about
whether underground reservoirs contain oil. Finally, in the feature space, although the data
of the oil layer and poor oil layer exhibit good separability, there are still individual mis-
classified data points. This is because the interpretation of the inferior oil layer itself is a
compromise concept, which is a method of interpretation that maximally retains oil-bearing
reservoirs while ensuring the non-omission of oil layers. In conclusion, in the extracted fea-
ture space, multidimensional well logging data contains sufficient discriminative information
and exhibits a clear spatial geometric distribution.

To quantitatively demonstrate the feature quality extracted by the proposed algorithm
in this paper, some related algorithms such as NJW, NMF, GNMF, NJW-NMF and Ours,
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are selected to compare based on two evaluation metrices under the K-means clustering. As
we know, NJW-NMF model employs the clustering centers obtained from NJW algorithm
as the initial basis matrix for NMF model. That is to say, the rank of basis matrix is selected
as 4 in NMF model for the well logging data. Similar to this, we set the same rank value
of basis matrix in NMF and GNMF model, and the local features are randomly generated.
In our proposed model, the rank and local features in basis matrix are calculated and
represented from low-rank parts which is separated by LRMR model and WNNM algorithm.
Each algorithm is performed independently for 20 times, and the ACC and NMI values are
recorded to calculate the corresponding means and standard deviations. The results are
presented in Table 4-6. The bold entries in the Table 4-6 highlight the best comparative
results.

Table 4: Comparison of clustering performance with different algorithms.
oilsk81 oilsk83 oilsk85

Algorithms ACC NMI ACC NMI ACC NMI

NJW 74.1 ± 8.1 51.9 ± 6.1 79.8 ± 3.9 72.8 ± 1.1 61.8 ± 0.0 53.1 ± 2.6
NMF 91.2 ± 5.4 85.5 ± 5.4 83.1 ± 6.8 74.3 ± 4.8 75.4 ± 7.4 68.1 ± 8.6
GNMF 93.2 ± 7.6 88.2 ± 6.3 88.5 ± 8.4 81.7 ± 8.1 82.1 ± 7.1 72.7 ± 4.1
NJW-NMF 92.2 ± 8.6 89.1 ± 9.1 86.3 ± 11.5 77.5 ± 10.9 81.2 ± 9.6 76.4 ± 11.5
Ours 96.8 ± 0.0 90.5 ± 0.0 90.5 ± 5.2 82.1 ± 4.1 85.3 ± 0.0 78.2 ± 0.0

Table 5: Comparison of clustering performance with different algorithms.

oilsk81-83 oilsk81-85

Algorithms ACC NMI ACC NMI

NJW 70.1± 5.4 50.4± 4.6 67.3± 3.9 59.3± 3.3
NMF 81.3± 7.9 78.7± 4.3 81.1± 7.1 72.1± 5.6
GNMF 83.2± 6.4 79.4± 7.2 84.6± 2.8 74.7± 8.6
NJW-NMF 82.2± 7.2 80.6± 8.3 82.7± 9.8 73.3± 9.8
Ours 89.8± 4.5 81.4± 3.2 87.3± 4.6 83.4± 2.5

Table 6: Comparison of clustering performance with different algorithms.

oilsk83-85 oilsk81-83-85

Algorithms ACC NMI ACC NMI

NJW 59.4± 1.6 52.8± 3.7 58.3± 2.4 51.6± 2.9
NMF 73.6± 4.7 70.4± 7.9 75.4± 2.7 69.8± 1.4
GNMF 81.8± 6.5 74.1± 3.4 80.6± 4.3 72.7± 2.6
NJW-NMF 79.8± 7.8 72.3± 10.6 78.6± 3.7 71.8± 2.4
Ours 84.8± 1.5 76.1± 1.6 82.7± 4.9 74.3± 2.8

First, it can be observed from Table 4-6 that the proposed algorithm in this paper out-
performs other relevant algorithms in terms of both ACC and NMI metrics in the three well
logging datasets, which demonstrates that the algorithm has a high recognition accuracy
in identifying oil-bearing reservoirs. In comparing algorithms, GNMF outperforms NMF,
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demonstrating that the enhanced local geometric structural information in well logging data
improves the discriminative capability of feature representation. GNMF outperforms NJW-
NMF, indicating that in enhancing the representation capability of NMF, mining and uti-
lizing the local geometric structural information between data is superior to optimizing the
intrinsic structure representation of the basis matrix. NJW-NMF outperforms NMF, indi-
cating that the initialization of the basis matrix can enhance the representational capability
of feature extraction. In conclusion, establishing a matrix with an appropriate structure by
mining and utilizing the hidden low-rank information and category structural information
in well logging data can obtain a good approximation for low rank factorization model.
It can enhance the representational capability of feature extraction in the GNMF model
and thereby improve the recognition ability of well logging data in low-dimensional feature
subspace.

6 Conclusions

To achieve feature extraction from multi-dimensional well logging data, this paper proposes
a modified GNMF model with optimal basis matrix based on the low-rank part recovered
accurately by WNNM algorithm, which integrates the non-negativity and low-rank char-
acteristics and structural information of data. The intrinsic embedding dimension of well
logging data is estimated in the low-rank part obtained from the LRMR model and WNNM
algorithm, and it is used to construct the rank of basis matrix. Additionally, the basis
vector of basis matrix, that is local feature, is represented by the class center obtained from
NJW algorithm in the low-rank part. The visualized spatial distribution and comparison
experiment validate the effectiveness of the proposed model and algorithm in well logging
feature extraction. It is beneficial to automatically recognize the oil-bearing of reservoir by
virtue of well logging data. This precise estimation is achieved by the WNNM algorithm
under the assumptions of small rank values and sparse noise. However, the separation of
the low-rank part for the original well logging data is based on the assumption of sparse
noise in low-rank matrix recovery. Meanwhile, the estimation of rank relies on the accurate
recovery for the low-rank part obtained from optimization algorithm. This somewhat limits
its general applicability in practical scenario. When the structural distribution and the types
of noise in the data become complex, estimating the embedded low-rank structure remains
a challenging task.
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A Section Title of First Appendix

Table 7: Log explanation of oilsk81 well

Layer AC CNL RT POR SO PERM Conclusion

1 195 7.5 13.0 6.0 0 0 Dry
2 225 10.0 7.3 11.0 0 0 Water
3 230 14.0 5.5 12.0 0 0 Water
4 220 9.0 25.0 9.0 56 1.3 Oil
5 225 8.0 30.0 9.0 58 2.3 Oil
6 210 7.0 26.0 6.0 0 0 Dry
7 220 8.0 26.0 10.0 60 2.4 Oil
8 225 9.0 30.0 10.0 62 2.5 Oil
9 195 4.0 36.0 5.5 0 0 Dry
10 220 9.0 30.0 9.0 61 1.7 Oil
11 217 7.5 50.0 8.0 55 1.1 Oil
12 210 6.0 130.0 7.0 48 0.7 Inferior oil
13 195 4.0 100.0 5.0 0 0 Dry
14 195 4.0 70.0 5.0 0 0 Dry
15 200 6.0 90.0 6.0 0 0 Dry
16 200 4.0 130.0 6.0 0 0 Dry
17 200 4.0 90.0 5.0 0 0 Dry
18 215 9.0 25.0 9.0 54 1.6 Oil
19 195 4.0 70.0 4.0 0 0 Dry
20 200 6.0 55.0 6.0 0 0 Dry
21 200 4.0 100.0 5.0 0 0 Dry
22 240 13.5 12.0 12.0 40 2.4 Oil
23 212 8.0 36.0 8.0 60 1.5 Oil
24 197 6.0 50.0 6.0 0 0 Dry
25 202 6.0 55.0 7.0 52 0.8 Inferior oil
26 195 4.5 50.0 6.0 0 0 Dry
27 203 5.0 45.0 7.0 46 0.6 Inferior oil
28 195 6.0 50.0 6.0 0 0 Dry
29 210 7.5 20.0 8.0 57 1.2 Oil
30 201 6.0 16.0 7.0 40 0.4 Inferior oil
31 213 9.5 12.0 9.0 61 2 Oil
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Table 8: Log explanation of oilsk83 well

Layer AC CNL RT POR SO PERM Conclusion

1 225 10 4 10 0 0 Water
2 226 10 5 10.5 0 0 Water
3 220 8.5 6.6 9.5 0 0 Water
4 235 12 8.8 10 32 0.4 Inferior oil
5 226 13 8 9 35 0.2 Inferior oil
6 202 10 11 7 0 0 Dry
7 209 12 30 3 0 0 Dry
8 198 8 46 4 0 0 Dry
9 178 0.8 600 1.5 0 0 Dry
10 220 9 35 10 52 1.8 Oil
11 205 6 58 8 36 0.5 Inferior oil
12 216 8.3 40 10 55 2.6 Oil
13 197 3.5 120 4 0 0 Dry
14 236 11 17 9 51 1.2 Oil
15 213 6 40 5 0 0 Dry
16 235 10 30 9.5 52 2.5 Oil
17 202 6 60 5 0 0 Dry
18 206 7 40 8 50 1.6 Oil
19 192 4 130 3 0 0 Dry
20 210 8 40 7.6 53 2.2 Oil
21 205 7.5 50 7 36 0.7 Inferior oil
22 208 5 18 7 35 0.8 Inferior oil
23 225 7 15 9 50 1.2 Oil
24 190 2 53 3 0 0 Dry
25 212 5 30 7 30 0.5 Inferior oil
26 200 4 40 2 0 0 Dry
27 201 4 46 2.9 0 0 Dry
28 195 3.5 100 3 0 0 Dry
29 199 11 40 1 0 0 Dry
30 188 3.8 400 2 0 0 Dry
31 197 6 280 3 0 0 Dry
32 200 6 105 5 0 0 Dry
33 196 6 190 3 0 0 Dry
34 210 11 60 8.5 62 2.6 Oil
35 209 9 48 8 52 1.6 Oil
36 185 1.6 70 1 0 0 Dry
37 188 4 70 2 0 0 Dry
38 203 8 27 7 40 0.8 Inferior oil
39 192 5.5 98 3 0 0 Dry
40 190 4 100 2 0 0 Dry
41 191 4.3 105 3 0 0 Dry
42 188 5 70 2 0 0 Dry
43 210 8.3 30 8 60 4 Oil
44 185 3.9 85 1 0 0 Dry
45 190 5 23 4 0 0 Dry
46 211 9.5 10 7.5 61 4.3 Oil
47 199 5.2 14 2 0 0 Dry
48 205 8 12 4 0 0 Dry
49 200 5 18 3 0 0 Dry
50 211 8.5 9 7.5 50 5 Oil
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Table 9: Log explanation of oilsk85 well

Layer AC CNL RT POR SO PERM Conclusion

1 225 15.1 10.5 10.7 0 3.2 Water
2 224 13.4 16 10.5 0 2.9 Water
3 200 11.9 23 4.8 0 0 Dry
4 230 13 8.5 11.3 0 3.5 Water
5 245 15.7 12 14.8 48 8.1 Inferior oil
6 230 17.5 0 11.3 0 3.8 Water
7 203 7.2 18 5.2 0 0 Dry
8 201 8.1 20 4.8 0 0 Dry
9 208 6.6 16 6.8 35 1 Inferior oil
10 205 9 36 6.1 39 0.9 Inferior oil
11 200 8.1 33 5 0 0 Dry
12 195 9.8 34 3.8 0 0 Dry
13 175 12.4 360 0.1 0 0 Dry
14 190 11.1 100 0.3 0 0 Dry
15 200 14 50 5 0 0 Dry
16 195 12.9 90 3.8 0 0 Dry
17 199 11.5 100 4.7 0 0 Dry
18 190 16.6 100 2.7 0 0 Dry
19 180 8.9 300 0.5 0 0 Dry
20 230 13 40 11.8 59 3.5 Oil
21 200 14.6 160 4.9 0 0 Dry
22 215 12.1 80 8.4 60 2.2 Oil
23 188 8.6 90 2.3 0 0 Dry
24 188 11.3 150 2.3 0 0 Dry
25 200 11.5 165 5 0 0 Dry
26 190 9.5 180 2.7 0 0 Dry
27 198 10.8 60 4.5 0 0 Dry
28 195 9.8 90 3.8 0 0 Dry
29 193 9.4 35 3.4 0 0 Dry
30 195 10 32 3.8 0 0 Dry
31 195 11.6 390 3.8 0 0 Dry
32 197 8.8 100 4.3 0 0 Dry
33 207 8.6 60 6.6 46 1.8 Inferior oil
34 185 10.3 100 1.6 0 0 Dry


