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The CPS has a broad range of applications. In [1], the CPS is used for water management
and governance, where the social and ecosystem are integrated into a CPS. The design is
vital for the sustainable development of water management and governance. In [30], the
study is concerned with the development of a simulation platform for lane optimization
of connected autonomous vehicles based on CPS. Then, the usefulness of the platform is
demonstrated by three typical dedicated lane scenarios. In [25], the focus is on the temporary
security solutions based on artificial intelligence. For better accuracy, human activity can
be identified and used as soft biometrics alongside raw biometrics. Traditionally, caregivers
assist and care for patients with cognitive decline, but this places a financial and emotional
burden on both caregivers and patients, affecting their quality of life. In [12], it considers
the applications of CPS in smart buildings for occupants with cognitive decline. These
applications can realize the integrated design of communication, computing, and physical
systems, making the system more efficient, reliable, and real-time cooperation. In [21], CPS
and artificial intelligence are being promoted and applied in the construction industry based
on previous research. In conclusion, two characteristics of CPS are shown in [2]: (i) large-
scale, complex physical, biological, and engineering orientated systems; (ii) network core
consists of communication networks and computing facilities used to monitor, coordinate
and control physical systems. CPS tightly integrates these two critical components so that
analysis and design can be done within a joint framework.

In the past two decades, a great deal of research has been done on the control theory
involving CPS. However, traditional CPS control designs are often result in dense feedback
matrices, meaning that the optimal controller is formed using all the information in the feed-
back matrix. In large networks, implementation costs can be expensive, and computational
burden involved in the communication between the controller and the dynamical system can
be high [3]. Furthermore, there will be transmission delays and propagation delays in the
network communication. In practice, these delays and the sparsity of the feedback matrix
need to be taken into account in the design of the controller. In view of this, we propose a
CPS system with a static state feedback controller u(t) = −Kx(t− τ), K ∈ Rm×n, where τ
is the delay, which can be a constant delay or a varying delay, caused by the communication
between the state x and the input u being computed [23]. The network control design of
this paper aims to balance two key goals: (i) system performance (traditional cost function
J0(K)) and (ii) sparsity of the communication network. Therefore, in this paper, we aim to
solve the following problem: given a CPS system, find a feedback matrix K that balances
system performance and controller sparsity.

Sparsity means that the vast majority of components in a vector or matrix are zero. The
sparsity of a vector or matrix is described by the l0 norm of the vector or matrix. Sparsity
plays an important role in large-scale optimization problems, such as compression mapping
[8]. The use of sparsity not only saves storage space but also reduces transmission costs by
compressing vectors. It simplifies a complex problem by leveraging only useful information
from huge amounts of data. At present, sparse optimization has been widely used in areas
such as signal and image processing [9], machine learning and pattern recognition [10],
portfolio problems in economics [27], regression problems in statistics [11], and principal
component analysis [5]. In [14], the sparsity function is approximated by a folded concave
function. The pairwise separation yields a Z-type objective, and a linear-step parametric
algorithm is proposed to optimize the problem. According to [29], the mathematical models
of sparse optimization can be broadly grouped into two categories: (i) l0-regularization
optimization problems which penalize the traditional objective function by adding the l0-
norm to form a new objective function; and (ii) sparse constrained optimization problems
which put l0-norm in the constraints. However, both of these two problems are NP-hard. In
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the previous studies, the methods to solve the l0-norm minimization problem can be divided
into the model transformation method and the direct processing method. The common
feature of the model transformation method is to approximate l0-norm with l1-norm, such
as the famous lasso problem [17] and its variants [31]. In the aspect of algorithms, there are
Iterative Hard-Thresholding Algorithm [7], Fast Iterative Shrinkage-Thresholding Algorithm
[4], Augmented Lagrangian method [16], Alternating Direction Method of Multipliers [15],
and others. In addition, there are other methods used to approximate the l0-norm, such
as the lp-norm (0 < p < 1). In [13], the l0-norm is written as the difference of two convex
functions (DC method). The direct method usually starts with the optimality conditions
of a sparse optimization problem and then deals with the original problem directly. In this
way, there is no need to check the approximate effect model approximation. Furthermore, it
tends to produce a sparser solution. Recent algorithms include Iterative Hard Thresholding
(IHT) [7] and block coordinate descent (BCD). For the motion control task of manipulators, a
novel motion planning scheme that takes into account sparsity is proposed in [19]. In [22], the
study is concerned with a class of sparse optimization problems with l1-norm regularization
and convex constraints, in which the individual functions involved are differentiable except
the l1-regularization term. It also obtains the necessary and sufficient conditions. On this
basis, a simple neural network with differential equation structure is proposed.

The network control design in this paper aims to balance the two key measures: (i) the
system performance (the traditional cost function solvable by many available methods. For
example, the control parametrization used in conjunction with the time scaling transform
in [26]. However, the feedback matrix thus obtained tends to be dense); and (ii) the sparsity
of communication networks. Therefore, in this paper, we aim to solve the following sparse
optimal control problem (SOCP): given the CPS system, find a feedback matrix K to bal-
ance the system performance and the sparsity of the controller. The phase diagram analysis
suggests that the piecewise quadratic approximation (PQA) performs better than l1 and l1/2
regularization. It contains one smooth non-convex term and one non-smooth convex term
[19]. The PQA model works best on [−e, e], where e = (1, 1, . . . , 1)⊤ [18]. In this paper, the
PQA model approximation method is extended to sparse matrix optimization. By dividing
the matrix into columns, and the sparse optimization of each column vector completes the
sparsity of the feedback matrix. The SOCP, the l0-norm of the feedback matrix is approx-
imated by the PQA model. An iterative algorithm with the support of the convergence
analysis is developed to solve the approximate problem. Finally, several numerical examples
are solved so as to demonstrate the effectiveness of the proposed algorithm.

The rest of the paper is organized as follows. We first describe the formulation of the
problem in Section 2, where ∥K∥0 is approximated through the use of PQA model. In
Section 3, after the model approximation, we develop an iterative algorithm to solve the
problem and then carry out the convergence analysis of the algorithm. Finally, several
numerical examples are considered and solved to evaluate the performance of the proposed
algorithm in finding sparse controllers.

2 Problem Formulation

2.1 CPS modeling
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2.1.1 LTI system

We consider the following linear time-invariant (LTI) system [23]:

ẋ(t) = Ax(t) +Bu(t) +Bωw(t), (2.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and w ∈ Rp is the exogenous input,
A ∈ Rn×n, B ∈ Rn×m and Bw ∈ Rn×p are the respective matrices. Assume that (A,B) is
controllable.

2.1.2 Feedback control system with varying delay τ(∥K∥0)

After the sparsity level of matrix K ∈ Rm×n is achieved, the bandwidth c is equally re-
distributed among the remaining links. Assume that the communication network follows
frequency division multiplexing. Then, delay τ can be defined by [6]:

τ(∥K∥0) = τt + τp = Z(∥K∥0, c, τp) := κ (∥K∥0/c) + τp, (2.2)

where ∥K∥0 denotes the number of non-zero elements in K, and κ : R → R is a positive
function. Eq.(2.2) implies that τ will change as ∥K∥0 changes. This change is captured
by the function Z(·) : R × R × R → R. The transmission of state xj for the computation
of input ui is anticipated to encounter a delay denoted as τij (expressed in seconds), i ∈
Im, j ∈ In. This delay comprises two distinct components: τij = τpij

+ τtij , where τpij

denotes the propagation delay, and τtij represents the transmission delay. The parameter
τpij is characterized as the quotient of the link length divided by the speed of light, assumed
to possess a uniform value denoted as τp across all pairs i, j. Our assumption posits an
equal allocation of bandwidth for the communication link connecting any jth sensor to any
ith actuator. Consequently, this implies that τtij maintains a uniform value across all i, j
pairs [6]. Henceforth, we denote τij uniformly as τ across all pairs i, j. In practice, potential
deviations of τij from the designated τ due to variations in traffic and uncertainties within the
network are acknowledged. However, our design remains robust as long as such deviations
remain within the stability radius of the plant (see Proposition 1.14 and Theorem 1.16
in [24]).

This controller will be deployed in a distributed manner utilizing a communication net-
work, as depicted in Figure 1. This figure presents the CPS representation, illustrating the
closed-loop system architecture.

The control input is written as u(t) = −Kx(t−τ(∥K∥0)), and accordingly the closed-loop
system is written as:{

ẋ(t) = Ax(t)−BKx(t− τ(∥K∥0)) +Bωω(t),
x(t) = ν, t ≤ 0,

(2.3)

where ν ∈ Rn is a given vector, each of its elements is assumed, without loss of generality,
to be 0.5. Let x(·|K) be the solution of system (2.3) corresponding to the feedback matrix
K ∈ Rm×n.

2.2 Problem statement
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Figure 1: Closed-loop CPS representation [23]. The cyber network layer is to receive an
input signal, denoted as x(t), which is then transmitted through the network to generate an
output signal, represented as u(t). Clearly, this process will admit a time delay, denoted as
τ(∥K∥0). After the computation of u(t), the resultant signal is transmitted to the actuators
for further action.

2.2.1 Traditional optimal control problem

With reference to the delay mentioned above, we introduce the corresponding cost functions
as given below [20]:

J0(K) = (x(T |K))⊤Sx(T |K) +

∫ T

t0

[(x(t|K))⊤Qx(t|K) + (u(t))⊤Ru(t)]dt, (2.4)

where t0 is the initial time, T is the final time, the matrix R is symmetric positive definite,
and the matrices S and Q are symmetric positive semidefinite.

We now present the feedback optimal control problem as follows.

Problem P1 : minK∈Rm×n J0(K)

s.t. ẋ(t) = Ax(t)−BKx(t− τ(∥K∥0)) +Bωω(t),

x(t) = ν, t ≤ 0,

where J0(K) is given by (2.4).

2.2.2 Sparse optimal control problem

Gradient-based optimization methods [26] can be used to solve Problem P1. LetK
∗
1 ∈ Rm×n

be the optimal feedback matrices for Problem P1. However, these matrices tend to be rather
dense, and for large networks, the implementation cost will be expensive. Furthermore, the
computation burden of the controller will be high because the state information is required
to be transmitted through the communication network. Thus, we introduce the following
Problem P2 given by

Problem P2 : minK∈Rn×m ∥K∥0 (2.5)

s.t. ẋ(t) = Ax(t)−BKx(t− τ(∥K∥0)) +Bωω(t),

x(t) = ν, t ≤ 0,

|J0(K)− J0(K∗
1 )| ≤ ε,
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where ∥K∥0 denotes the number of nonzero entries of the matrix K ∈ Rm×n, J0(K) is given
by (2.4), and J0(K∗

1 ) is the benchmark optimal cost index obtained through solving the
traditional optimal control Problem P1. ε is a small number that is used to ensure that the
system performance is not greatly affected during the sparsity process of K ∈ Rm×n.

Obviously, Problem P2 balances system performance and the sparse level of the controller
K ∈ Rm×n.

2.3 Preconditioning algorithm : the approximation of ∥K∥0.

The matrix K is decomposed as n column vectors, i.e., K = (K1,K2, . . . ,Kn) ∈ Rm×n.
Note that ∥Kl∥0, l ∈ In, regularization is NP-hard. Thus, it is difficult to solve. In the
past two decade, many approximation methods, such as ∥Kl∥1, and ∥Kl∥qq, (0 < q < 1),
have been proposed to approximate it. In [18], the l0-norm of vector is approximated by
a piecewise quadratic approximation (PQA) method. In this paper, we shall extend PQA
to spare the feedback matrix K. We use the following piecewise quadratic function [18] to
approximate ∥Kl∥0 over [−e, e].

P (Kl) = −(Kl)⊤Kl + 2∥Kl∥1, l ∈ In, Kl ∈ Rm.

Remark 2.1. We shall illustrate that P (Kl), l ∈ In, performs better than other common
approximations of ∥Kl∥0, l ∈ In, on [−e, e], e = {1, 1, . . . , 1} ∈ Rm. For l ∈ In, Figure 2
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Figure 2: Various approximations for the one-dimensional case in [-1,1] [18].

shows the approximation effects of ∥Kl∥1, ∥Kl∥1/21/2, ∥K
l∥1/31/3, ∥K

l∥1 −∥Kl∥2 and P (Kl) for

one-dimensional case in [-1,1] [18]. Obviously, for l ∈ In, P (Kl) is superior to ∥Kl∥1 on
approximating the l0-norm when |Kl

i | ≤ 1, i ∈ Im. For l ∈ In, when 0.38 ≤ |Kl
i | ≤ 1, i ∈ Im,

P (Kl) gives a better approximation to ∥Kl∥0, and when 0.61 ≤ |Kl
i | ≤ 1, i ∈ Im, P (Kl)

is better than ∥Kl∥1/31/3. Also, for l ∈ In, P (Kl) is superior than ∥Kl∥1 − ∥Kl∥2, which is

identically equal to 0 and has a large gap with ∥Kl∥0 in [-1,1].

On this basis, if we choose f(Kl) = −∥Kl∥22 and g(Kl) = 2∥Kl∥1, then

F (K) =

n∑
l=1

P (Kl) =

n∑
l=1

[
f(Kl) + g(Kl)

]
, (2.6)

where g is a proper closed convex and possibly non-smooth function; f is a smooth non-
convex function of the type C1,1

Lf
(Rn), i.e., continuously differentiable with Lipschitz contin-

uous gradient

∥∇f(Kl)−∇f(yl)∥ ≤ Lf∥Kl − yl∥, Kl ∈ Rm, yl ∈ Rm, l ∈ In,
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with Lf > 0 denoting the Lipschitz constant of ∇f .
Based on the piecewise quadratic approximation [18], Problem P2 can be approximated

as given below:

Problem P3 : minK∈Rm×n F (K)

s.t. ẋ(t) = Ax(t)−BKx(t− τ(∥K∥0)) +Bωω(t),

x(t) = ν, t ≤ 0,

|J0(K)− J0(K∗
1 )| ≤ ε,

where J0(K), J0(K∗
1 ), and ε are the same as Problem P2.

3 Computational Approach

In this section, we present an iterative algorithm for solving Problem P3. The basic
idea of this kind of method is to give the initial point, calculate the new point through the
given iteration formula at each step, and continue the iterative process until the termination
condition is met. In this paper, the iterative formula of each step is a regularization of the
linearized differentiable part f(Kl) of the objective function in Problem P3 [4, 18]. Then,
the unique minimizer at each step can be obtain with constant stepsize 1/Lf . This process
is repeated until we get the minimum value.

3.1 The iterative algorithm

We first present a simple minimization problem and obtain its iterative format to solve it
based on some accepted facts of the gradient-based methods, then we extend it and obtain
the iterative format of our optimization problem in this paper.

3.1.1 the iterative format of a simple optimization problem

Firstly, we consider the following simple minimization Problem O1:

min
Kl∈Rm

f(Kl),

where Kl ∈ Rm is the optimization variable, and the objective function f is smooth and
continuously differentiable. If we use k as the number of iteration steps, then it is well
known that the gradient iterative form can simply obtain a sequence (Kl)k via

(Kl)k = ((K)l)k−1 − 1

Lf
∇f((Kl)k−1), (3.1)

where 1/Lf denotes the suitable stepsize.
Based on [4], this gradient iterative form (3.1) can be viewed as a proximal regularization

of the linearized function f at (Kl)k−1, and written equivalently as following iteration:

(Kl)k = arg min
Kl∈Rm

{
f((Kl)k−1)+ < Kl− (Kl)k−1,∇f((Kl)k−1) > +

Lf

2
∥Kl− (Kl)k−1∥2

}
.

(3.2)
Since we have the iterative formula (3.2) from step k − 1 to step k, we can easily solve

Problem O1.
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3.1.2 the iterative format of the optimization problem in this paper

With the basic results written in above section, we consider the following minimization
Problem O2:

min
Kl∈Rm

f(Kl) + g(Kl),

where g is a proper closed convex and possibly non-smooth function. It is exactly the form
of the optimization problem to be solved in this paper.

To obtain the iterative format, we first define the following quadratic approximation
Q(Kl, yl) to approximate f(Kl) + g(Kl) at a given point yl ∈ Rm [4]:

QLf
(Kl, yl) := f(yl)+ < Kl − yl,▽f(yl) > +

Lf

2
∥ Kl − yl ∥2 +g(Kl), l ∈ In,

and define its unique minimizer as PLf
(yl). Then

PLf
(yl) := arg min

Kl∈Rm

{
QLf

(Kl, yl) : Kl ∈ Rm
}

= arg min
Kl∈Rm

{
f(yl)+ < Kl − yl,▽f(yl) > +

Lf

2
∥ Kl − yl ∥2 +g(Kl)

}
, yl ∈ Rm.

Since the constant term has no effect on the result, we remove f(yl) and add (1/2Lf )∇∥f(yl)∥2,
then

PLf
(yl) := arg min

Kl∈Rm

{
Lf

2

[
Kl −

(
yl − 1

Lf
∇f(yl)

)]2
+ g(Kl)

}

= arg min
Kl∈Rm

{
Lf

2

∥∥∥Kl −
(
yl − 1

Lf
∇f(yl)

)∥∥∥2 + g(Kl)

}
.

According to (3.2), and let yl = (Kl)k−1, then we have iterative formula (Kl)k =
PLf

((Kl)k−1) from step k − 1 to step k, we can easily solve Problem O2.
If we write the proximal operator for each column of K = (K1,K2, . . . ,Kn), then we

get the following algorithm to minimize the following approximating of the ∥K∥0:

F (K) =

n∑
l=1

[
f(Kl) + g(Kl)

]
, l ∈ In.

Algorithm 1: The iterative algorithm (IA)

1:Input: Lf (The Lipschitz constant of ▽f);
2:Step 0: Take (K)0 ∈ Rm×n;
3:Step k: (k ≥ 1) Compute

(Kl)k = PLf
((Kl)k−1), (3.3)

where Kk = ((K1)k, (K2)k, . . . , (Kn)k), l ∈ In; (K
l
i)

k ∈ [−1, 1], i ∈ Im.

The convergence of Algorithm 1 and its convergence rate are stated in the next subsec-
tion.
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3.2 Convergence analysis

To begin with, we need to present a key result (Lemma 3.3). It is required for the con-
vergence analysis. Some fundamental properties for a smooth function in the class C1,1

Lf
(Rn)

are stated in the following.

Lemma 3.1 ( [18, 28]). Let f : Rn → R be a continuously differentiable function with
Lipschitz continuous gradient and Lipschitz constant Lf . Then, for any K ∈ Rm×n, yl ∈ Rm,
it holds that

−Lf

2
∥ Kl − y ∥2≤ f(Kl)− f(yl)− < Kl − yl,▽f(yl) >≤ Lf

2
∥ Kl − yl ∥2, l ∈ In.

This statement makes clear the geometric interpretation of functions from C1,1
Lf

(Rn).

Lemma 3.2 ([18, 28]). For any yl ∈ Rm, it holds that zl = PLf
(yl) if and only if there

exists h(yl) ∈ ∂g(zl), the subdifferential of g(·), such that

▽f(yl) + Lf (z
l − yl) + h(yl) = 0, l ∈ In.

This result characterizes the optimality of PLf (·). Now, we can present the required key
result.

Lemma 3.3. Let y := (y1, ..., yn) ∈ Rm×n. Then, for any K ∈ Rm×n,

▽F (K)− F (PLf
(y)) ≥

n∑
l=1

(Lf

2
∥PLf

(yl)−Kl∥2 − Lf∥Kl − yl∥2
)
.

Proof. From Lemma 3.1, we obtain

F (PLf
(y)) =

n∑
l=1

[f(PLf
(yl)) + g(PLf

(yl))] ≤
n∑

l=1

Q(PLf
(yl), yl).

Thus,

F (K)− F (PLf
(y)) ≥ F (K)−

n∑
l=1

Q(PLf
(yl), yl). (3.4)

Since Lemma 3.1 holds and g(Kl) is convex, we have

f(Kl) ≥ f(yl) + ⟨Kl − yl,∇f(yl)⟩ − Lf

2
∥Kl − yl∥2,

g(Kl) ≥ g(PLf
(yl)) + ⟨Kl − PLf

(yl), h(yl)⟩.

Thus,

n∑
l=1

f(Kl) ≥
n∑

l=1

f(yl) + ⟨
n∑

l=1

(Kl − yl),∇f(yl)⟩ − Lf

2

n∑
l=1

∥Kl − yl∥2,

n∑
l=1

g(Kl) ≥
n∑

l=1

g(PLf
(yl)) +

n∑
l=1

(
⟨Kl − PLf

(yl), h(yl)⟩
)
.
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Summing the two inequalities up yields

F (K) =

n∑
l=1

[f(Kl) + g(Kl)] ≥
n∑

l=1

f(yl) +

n∑
l=1

g(PLf
(yl)) + ⟨

n∑
l=1

(Kl − yl),▽f(yl)⟩ (3.5)

+

n∑
l=1

⟨Kl − PLf
(yl), h(yl)⟩ − Lf

2

n∑
l=1

∥Kl − yl∥2.

By the definition of PLf
(yl), we get

Q(PLf
(yl), yl) = f(yl) + ⟨PLf

(yl)− yl,▽f(yl)⟩+ Lf

2
∥PLf

(yl)− yl∥2 + g(PLf
(yl)),

n∑
l=1

Q(PLf
(yl), yl) =

n∑
l=1

f(yl)

+

n∑
l=1

[
⟨PLf

(yl)− yl,▽f(yl)⟩+ Lf

2
∥PLf

(yl)− yl∥2 + g(PLf
(yl))

]
.

(3.6)

Therefore, substituting (3.5) and (3.6) into (3.4) gives

F (K)− F (PLf
(y))

≥
n∑

l=1

⟨Kl − PLf
(yl),∇f(yl) + h(yl)⟩

− Lf

2

n∑
l=1

∥Kl − yl∥2 − Lf

2

n∑
l=1

∥PLf
(yl)− yl∥2

=

n∑
l=1

[
Lf ⟨Kl − PLf

(yl), yl − PLf
(yl)⟩ − Lf

2
∥Kl − yl∥2 − Lf

2
∥PLf

(yl)− yl∥2
]

=

n∑
l=1

(Lf

2
∥PLf

(yl)−Kl∥2 − Lf∥Kl − yl∥2
)
,

where the first equality above comes from Lemma 3.2.

Lemma 3.3 is essential for the establishment of the convergence of Algorithm 1. To give
the stopping criterion for Algorithm 1, we need the following lemma.

Lemma 3.4 ( [18]). Let Kk be the sequence generated by Algorithm 1. If ∥Lf ((K
l)k −

(Kl)k−1) ∥2< ϵ after k iterations, then there exists h((Kl)k−1) ∈ ∂g((Kl)k), such that

∥ ▽f((Kl)k) + h((Kl)k−1)∥2 ≤ 4ϵ.

Lemma 3.4 shows that as ∥Lf (K
k −Kk−1) ∥2 decreases, iterations sequence {Kk} gen-

erated by Algorithm 1 converges to a stationary point of F (K). Now, we discuss the con-
vergence and convergence rate of Algorithm 1.

Theorem 3.5. Let {Kk} be the sequence generated by Algorithm 1. Suppose that {Kk} is
bounded. Then, the following statements hold:

(i)
∑∞

k=0

∑n
l=0 ∥(Kl)k+1 − (Kl)k∥2 < ∞;



SPARSE OPTIMAL CONTROL OF CYBER-PHYSICAL SYSTEMS VIA PQA APPROACH 563

(ii) Any accumulation point of {Kk} is a stationary point of F .

Proof. Invoking Lemma 3.3 with K = y = Kk, we obtain

F (Kk)− F (Kk+1) ≥
n∑

l=1

(Lf

2

n∑
l=0

∥(Kl)k+1 − (Kl)k∥2 − Lf∥(Kl)k − (Kl)k∥
)
, ∀k ≥ 0.

Thus, we have

F (Kk)− F (Kk+1) ≥ Lf

2

n∑
l=0

∥(Kl)k+1 − (Kl)k∥2, ∀k ≥ 0, (3.7)

which implies that the sequence {F (xk)} is monotonically decreasing. Summing both sides
of (3.7) from 0 to N , we have

Lf

2

N∑
k=0

n∑
l=1

∥(Kl)k+1 − (Kl)k∥2 ≤ F (K0)− F (KN+1). (3.8)

Since {Kk} is bounded, together with the fact that {F (Kk)} is monotonically decreasing,
{F (Kk)} is convergent. Let N → ∞ in (3.8). Then, we have

Lf

2

∞∑
k=0

n∑
l=0

∥(Kl)k+1 − (Kl)k∥2 < ∞.

This proves (i).
We now prove (ii). Let K∗ = ((Kl)∗, (K2)∗, · · · , (Kn)∗) be an accumulation point of the

sequence {Kk}. Then, there exists a subsequence {(Kl)ki} such that limi→∞(Kl)ki = (Kl)∗.
Using Lemma 3.2, we obtain

−Lf ((K
l)ki − (Kl)ki) ∈ ∇f((Kl)ki) + ∂g((Kl)ki+1). (3.9)

Invoking ∥(Kl)ki−(Kl)ki∥ → 0 from (i), together with the continuity of ∇f and the closeness
of ∂g, passing to the limit in (3.9), we have

0 ∈ ∇f((Kl)∗) + ∂g((Kl)∗).

This means that (Kl)∗ is a stationary point of F . Thus, the proof is complete.

By virtue of Theorem 3.5, we see that ∥ Kk+1 −Kk∥2 measures the convergence of the
iterative sequence {Kk} to a stationary point. We shall use it to establish its convergence
rate.

Theorem 3.6. Let {Kk} be the sequence generated by Algorithm 1. Assume that {Kk} is
bounded. Then, for any N ≥ 1, there exists a constant M such that

min
k=0,···,N−1

n∑
l=1

∥ Lf ((K
l)k+1 − (Kl)k) ∥2 ≤

2(N + 1)nML2
f

N(N − 1)
. (3.10)

Proof. Invoking Lemma 3.3 with y = Kk,K = K∗ := ((K∗)1, ..., (K∗)n), where K∗ is an
accumulation point of Kk, we obtain

F (K∗)− F (Kk+1) ≥ Lf

2

n∑
l=1

(
∥(Kl)k+1 − (K∗)l∥2 − 2∥(Kl)k − (K∗)l∥2

)
. (3.11)
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Since F (Kk) is monotonically decreasing and Kk is bounded, we have limk→∞ F (Kk) =
F (K∗) and F (Kk) ≥ F (K∗), k ≥ 0. Summing the inequality (3.11) over k ∈ {0, 1, · · · , N −
1} gives

0 ≥ NF (K∗)−
N−1∑
k=0

F (Kk+1)

≥ Lf

2

n∑
l=1

( ∥(Kl)N − (K∗)l∥2 − ∥(Kl)0 − (K∗)l∥2 −
N−1∑
k=0

∥(Kl)k − (K∗)l∥2 ).

(3.12)

Invoking Lemma 3.3 one more time with K = y = Kk yields

F (Kk)− F (Kk+1) ≥ Lf

2

n∑
l=1

∥(Kl)k+1 − (Kl)k∥2.

Multiplying the last inequality by k and summing over k ∈ {0, 1, · · · , N − 1}, we obtain

N−1∑
k=0

( kF (Kk)− kF (Kk+1) ) ≥ Lf

2

n∑
l=1

N−1∑
k=0

k∥(Kl)k+1 − (Kl)k∥2,

which can be simplified to

−NF (KN ) +

N−1∑
k=0

≥ Lf

2

n∑
l=1

N−1∑
k=0

k∥(Kl)k+1 − (Kl)k∥2. (3.13)

Adding (3.12) and (3.13), we get

0 ≥ NF (K∗)−NF (KN ),

≥ Lf

2

n∑
l=1

∥(Kl)N − (K∗)l∥2 − Lf

2

n∑
l=1

∥(Kl)0 − (K∗)l∥2 − Lf

2

n∑
l=1

∥(Kl)N − (K∗)l∥2

+
Lf

2

n∑
l=1

N−1∑
k=0

k∥(Kl)k+1 − (Kl)k∥2,

By the assumption thatKk is bounded, there exists a series of constants (M1, M2, · · · ,M l)
such that

∥(Kl)k+1 − (K∗)l∥2 ≤ M l.

Define M = min
l

M l. Then, we have

∥(Kl)k+1 − (K∗)l∥2 ≤ M, ∀k ≥ 0, l ∈ In,
n∑

l=1

N−1∑
k=0

k∥(Kl)k+1 − (Kl)k∥2 ≤ (N + 1)nM.

Thus, (3.10) holds. This completes the proof.

From (3.10), we see that a stationary point (Kl)k satisfying ∥ Lf (K
k−Kk−1) ∥2≤ ϵ, i.e.

∥ ∇f(Kk) + h(Kk−1) ∥2≤ 4ϵ, h(Kk−1) ∈ ∂g(Kk) can be obtained after running Algorithm
1 for at most O(1/ϵ) iterations.
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4 Numerical Results

4.1 Experiment Design

In this section, all computations are carried out in MATLAB R2021a on a computer with
3.70 GHz Intel Core i9-10900K CPU243 and 32.0GB RAM. The Euler method is used to
solve system (2.3) with a step size of 1/10, and the initial time and terminal time are 0 and
1, respectively. We consider 10-th order, and set τ changes with ∥K∥0 according to (2.2).

We use the gradient-based methods described in [26] for solving Problem P1 to obtain the
optimal dense feedback matrix denoted by K∗

1 , respectively. Then, through the application
of Algorithm 1, we solve Problem P3 to obtain the optimal sparse feedback matrix K∗

2 . To
indicate the sparse level of the feedback matrix K, we define the following indicators:

r =
Number of non− zero elements in K

Number of elements in K
,

it represents the proportion of non-zero elements in the matrix. Obviously, a smaller value
of r means a better sparse level of K.

4.2 Parameters Setting

We consider a 10-th order LTI system with a randomly generated state matrix

A =



−8 −10 0 −1 −9 −2 −8 −4 −4 −6
−10 −4 −9 −7 −5 −6 −4 −3 −1 0
−4 −6 −4 −7 −3 −4 −4 −8 −1 −9
−6 −9 −7 0 −4 −6 −5 −7 −5 −1
−2 −1 −5 −9 0 −2 −5 −5 −10 −7
−5 −5 −10 −2 −6 −8 −5 −3 −3 0
−4 −6 0 −9 −9 −4 −5 −10 −9 −9
−3 −3 −4 −2 −3 −6 −6 −7 −10 −5
−9 −7 −8 −6 −9 −4 −10 −2 −7 −9
0 −5 −9 −3 0 0 −1 −4 −8 −2


.

Assume that B1 = B1
ω = R = Q = E10, S = 0 ∈ R10×10, ε = 0.1, τp = 9.83ms, c = 956

and κ = 0.01, ω is a 10-dimensional column vector with all 1 elements. The cost function is
given by [20]:

J0(K) =

∫ 1

0

[(x(t|K))⊤x(t|K) + u(t)⊤u(t)]dt.

4.3 Results and Analysis

Table 1: The optimal feedback matrix, the optimal cost function and sparsity indicators r.
The optimal feedback matrix The optimal cost function r

K∗
1 J0(K∗

1 ) = 0.4188 0.94
K∗

2 J0(K∗
2 ) = 0.4406 0.19
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Figure 3: (a)Distribution of nonzero components in K∗
1 ; (b)Distribution of nonzero compo-

nents in K∗
2 ; (c)Changes in state values x of K∗

1 ; (d)Changes in state values x of K∗
2 .

The distributions of nonzero components in the feedback matrices K∗
1 , K∗

2 and their
corresponding state at each moment are displayed in Figure 3, where nz means the number
of non-zero elements. Their corresponding optimal cost and sparsity levels are given in
Table 1. Figure 3 indicates that the feedback matrix K∗

1 exhibits a high degree of density,
while the feedback matrix K∗

2 displays a notable level of sparsity. Furthermore, from Table
1, it is pertinent to note that the value of the cost function, specifically J0(K∗

2 ), slightly
exceeds that of J0(K∗

1 ). We can see that the number of zero components in K∗
2 increases

rapidly initially with only a small increase in cost. So we can conclude that the Algorithm
1 proposed in this paper can produce a better quality solution which balances the system
performance and sparsity.

5 Discussions

Traditional CPS control designs are often result in dense feedback matrices, meaning that
the optimal controller is formed using all the information in the feedback matrix. However,
in large networks, these controllers can be expensive and computational burdensome. In the
paper, we develop an algorithm to design sparse optimal controllers for an LTI system in
the presence of feedback delay. The design of control balances system performance and the
l0 norm of feedback matrix. We use the piecewise quadratic approximation to approximate
the ∥K∥0, and propose an iterative algorithm to solve the sparsity problem. Finally, we use
a numerical experiment to evaluate the effectiveness of the proposed algorithm in balance
the performance of LTI system and the sparsity of feedback matrix.

Future research can focus on the weight of system performance and sparsity to make
them better balanced. It is also possible to consider other types of systems and perform
numerical experiments with larger dimensions.
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