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Introduction

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset of H. A
mapping U : C' — H is called inverse strongly monotone if there exists o > 0 such that

(x —y, Uz — Uy) > o||Uz — Uy||?, Va,yeC.

Such a mapping U is called a-inverse strongly monotone. Let H; and Hs be two real Hilbert
spaces. Let D and ) be nonempty, closed and convex subsets of H; and Hs, respectively.
Let A : H;y — Hs be a bounded linear operator. Then the split feasibility problem [8] is to
find 2 € H; such that 2 € DN A~'Q. Recently, Byrne, Censor, Gibali and Reich [7] also
considered the following problem: Given set-valued mappings A; : H; — 271, 1 < i < m,
and Bj : Hy — 2H2 1 < j < n, respectively, and bounded linear operators T; : H —
Hy, 1 < j<nmn, the split common null point problem [7] is to find a point z € H; such that

z € <ﬁ Afo) N <ﬁ le(leo)>,
i=1 j=1

where A; 10 and B;lo are null point sets of A; and Bj, respectively. Defining U = A*(1 —
Pg)A in the split feasibility problem, we have that U : Hy — H; is an inverse strongly
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2 H. KOMIYA AND W. TAKAHASHI

monotone operator [2], where A* is the adjoint operator of A and Py is the metric projection
of Hy onto Q. Furthermore, if D N A~'(Q is nonempty, then z € DN A~1Q is equivalent to

2= Pp(I — MA*(I — Po)A)z, (1.1)

where A > 0 and Pp is the metric projection of Hy onto D. Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility problem
and the split common null point problem; see, for instance, [1, 2, 7, 9, 19, 33].

On the other hand, in 2003, Nakajo and Takahashi [21] proved the following strong
convergence theorem by using the hybrid method in mathematical programming. Let C
be a nonempty, closed and convex subset of H. For a mapping T : C — C, we denote
by F(T) the set of fixed points of T. A mapping T : C — C is called nonexpansive if
[Tz —Ty|| < |lz —y|| for all z,y € C.

Theorem 1.1. Let C be a nonempty, closed and convex subset of a Hilbert space H and
let T be a nonexpansive mapping of C' into itself such that F(T) # @. Suppose z; =z € C
and {z,} is given by

Yn = QpTy + (1 - an)Txnv
Cpn={2€C:|yn — 2|l < |lzn — 2|},
Qn={2€C:{(x,—z,2—x,) >0},
Tyl = Pcannx, Vn € N,

where P, ng, is the metric projection from C onto C,, N @, and {a,} C [0, 1] is chosen so
that 0 < limsup,, ,., an < 1. Then {z,} converges strongly to Pr(ryx, where Pp(r) is the
metric projection from H onto F(T).

Takahashi, Takeuchi and Kubota [32] also obtained the following result by using the
shrinking projection method:

Theorem 1.2. Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. Let T be a nonexpansive mapping of C' into itself such that F(T) # () and let z € H.
For C; = C and z; € C, define a sequence {x,} of C as follows:

Yn = QpTp + (1 - an)T{L‘na
Cnt1={2 € Oy |lyn — 2|| < [l — 2]|},
Tp+1 = PCW,+1$M n € Na

where 0 < limsup,, ,, a, <1 for all n € N. Then {z,} converges strongly to Ppr)x.

In this paper, motivated by these problems and results, we consider new generalized
split feasibility problems and then obtain two strong convergence theorems by shrinking
projection methods in Hilbert spaces. As applications, we get new strong convergence
theorems which are connected with the split feasibility problem and an equilibrium problem.

Preliminaries

Let H be a Hilbert space with inner product (-, -) and norm || - ||, respectively. For z,y € H
and A € R, we have from [29] that

lz +yl1* < ll2l® + 20y, 2 + )5 (2.1
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A2+ (1= Nyl = All® + (1 = Dllyl* = A1 = Nl —y]*. (2.2)

Furthermore we have that for x,y,u,v € H,
2z —y,u—v) = |z —o|* + ly = u|* = |z — ul® = |y — o[>, (2.3)

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping T : C' — C
is quasi-nonexpansive if F(T) # 0 and |Tz — y|| < ||z — y|| for all x € C and y € F(T).
A mapping T : C — C is firmly nonexpansive if [|Tx — Ty||?> < (Tx — Ty,x — y) for all
z,y € C. It is easily found that 7" is firmly nonexpansive if and only if T' = (I+V")/2 for some
nonexpansive mapping V'; hence a firmly nonexpansive mapping must be nonexpansive. We
also notice that if T is quasi-nonexpansive, then the fixed point set F(T) of T is closed
and convex; see [14]. The nearest point projection of H onto C' is denoted by Pc, that is,
|z — Pox| < ||z —yl for all z € H and y € C. Such P¢ is called the metric projection of
H onto C. We know that the metric projection Pg is firmly nonexpansive, i.e.,

|Pox — Poy|® < (Pox — Pey, —y) (2.4)

for all x,y € H. Furthermore (x — Pox,y — Pox) < 0holds for allz € H and y € C; see [27].
Let a > 0 be a given constant and let U: C — H be a-inverse strongly monotone. Then
Uz —Uy| < (1/a) ||z — y|| for all z,y € C, that is, U is continuous. Let B be a mapping
of H into 2H. The effective domain of B is denoted by dom(B), that is, dom(B) = {z €
H : Bz # (}. A multi-valued mapping B on H is said to be monotone if (x —y,u —v) >0
for all z,y € dom(B), u € Bz, and v € By. A monotone operator B on H is said to be
maximal if its graph is not properly contained in the graph of any other monotone operator
on H. For a maximal monotone operator B on H and r > 0, we may define a single-valued
operator J,. = (I +rB)~!': H — dom(B), which is called the resolvent of B for r. Let B be
a maximal monotone operator on H and let B~'0 = {z € H : 0 € Bx}. It is known that
the resolvent J,. is firmly nonexpansive and B=0 = F(J,.) for all r > 0, where F(.J,.) is the
set of fixed points of J,. It is also known that || Jyxz — J,z| < (|]A — p| /A) ||z — Jaz|| holds
for all A, > 0 and x € H; see [27, 12] for more details. As a matter of fact, we know the
following lemma from Takahashi, Takahashi and Toyoda [26].

Lemma 2.1 ([26]). Let H be a Hilbert space and let B be a maximal monotone operator
on H. For r > 0 and « € H, define the resolvent J.x. Then the following holds:

—1
i (Jex — Jox, Jox — x) > ||Jex — Jozx||?

for all s, >0 and x € H.

Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into itself
with F'(S) # 0. Then we have that

(x — Sz, Sz —y) >0 (2.5)
for all z € H and y € F(S). In fact, we have that for all € H and y € F(S)

(x — Sz, Sz —y)={(x—y+y— Sx,Sz —vy)
= (& -y, Sz —y) +(y — Sz, Sz —y)
> ||z —yl* — [[Sz — y|®
= 0.

We have the following lemma from Alsulami and Takahashi [2].
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Lemma 2.2 ([2]). Let H; and Hy be Hilbert spaces and let o > 0. Let A : H; — Hjy be
a bounded linear operator such that A # 0. Let U : Hy — Hy be an a-inverse strongly

monotone mapping. Then a mapping A*UA : H; — H; is HX‘Hz—inverse strongly monotone.

Let T : Hy — Hs be a nonexpansive mapping. Since I —T' is %—inverse strongly monotone,
we have the following result from Lemma 2.2.

Lemma 2.3. Let H; and Hy be Hilbert spaces. Let A : H; — Hy be a bounded linear
operator such that A # 0. Let T : H, — Hy be a nonexpansive mapping. Then a mapping
A*(I-T)A:Hy — Hy is W—inverse strongly monotone.

Using (2.5), Takahashi, Xu and Yao [34] proved the following lemma.

Lemma 2.4 ([34]). Let H; and Hy be Hilbert spaces. Let B : H; — 21 be a maximal
monotone mapping and let Jy = (I+AB)~! be the resolvent of B for A > 0. Let T : Hy — H>
be a nonexpansive mapping and let A : H; — Hs be a bounded linear operator. Suppose
that BT10N A™1F(T) # 0. Let \,7 > 0 and 2z € H;. Then the following are equivalent:

(i) z=J\(I—rA*(I—-T)A)z;
(ii) 0 € A*(I —T)Az + Bz;
(iii) z € B-lon A~1F(T).

Furthermore, using Lemma 2.4, Plubtieng and Takahashi [22] proved the following
lemma. This lemma is crucial for the proofs of our main theorems.

Lemma 2.5 ([22]). Let H; and Ho be Hilbert spaces. Let B : H; — 21 be a maximal
monotone mapping and let Jy = (I+AB)~! be the resolvent of B for A > 0. Let U : Hy — Hy
be an inverse strongly monotone mapping and let A : H; — Hs be a bounded linear operator.
Suppose that B~10N A1 (U~10) # 0. Let A\,7 > 0 and 2 € H;. Then the following are
equivalent:

(i) z=J\(I—rA*UA)z;
(ii) 0 € A*UAz + Bz;
(iii) 2 € B7lon A~Y(U10).

For a sequence {C),} of nonempty, closed and convex subsets of a Hilbert space H, define
s-Li, C,, and w-Ls, C, as follows: z € s-Li, C,, if and only if there exists {z,,} C H such
that {x, } converges strongly to « and xz,, € C), for all n € N. Similarly, y € w-Ls, C,, if and
only if there exist a subsequence {C,,} of {C,,} and a sequence {y;} C H such that {y;}
converges weakly to y and y; € C), for all ¢ € N. If Cj satisfies

Cy = s-LiC, = w-LsC,,, (2.6)

it is said that {C,} converges to Cy in the sense of Mosco [18] and we write Cy =
M-lim,, 0o Cp,. It is easy to show that if {C,} is nonincreasing with respect to inclu-
sion, then {C,,} converges to ()2, C,, in the sense of Mosco. For more details, see [18]. The
following lemma is easily deduced from the theorem for a strictly convex reflexive Banach

space with the Kadec-Klee property proved by Tsukada [35].

Lemma 2.6 ([35]). Let {C,,} be a sequence of nonempty closed convex subsets of a Hilbert
space H. If Cy =(,—, C), is nonempty, then Pc,u — Pc,u for any u € H.
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Kocourek, Takahashi and Yao [15] defined a broad class of nonlinear mappings in a
Hilbert space. Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping T : C — C is called generalized hybrid [15] if there exist «, 5 € R such
that

af|Tz = Ty|* + (1 - o)z — Tyl]* < BTz — ylI* + (1 - B)llz — y|® (2.7)
for all 2,y € C. We call such a mapping («, §)-generalized hybrid. Notice that this class of
mappings covers several well-known classes of mappings. For example, a (1,0)-generalized
hybrid mapping is nonexpansive. It is nonspreading [16, 17] for « = 2 and § =1, i.e.,

2|Ta - Ty|* < |Te -yl + |Ty — z|*, Vz,yeC.
It is also hybrid [30] for « = 2 and 8 = 1, i.e,,
3| Te — Ty|* < |lz — yl* + |7z —y|* + | Ty — z|*, Vz,yeC.

In general, nonspreading and hybrid mappings are not continuous. We here include such an
example [13] of nonspreading mappings. Set E = {z € H: ||z|| < 1},D={x € H : ||z| < 2}
and C = {z € H : ||z|| < 3}. Define a mapping S : C — C by

0, reD,
Sx =
Pgx, x¢ D.

Then S is a nonspreading mapping which is however not continuous. This implies that the
class of nonexpansive mappings does not contain nonspreading mappings. From [15] we also
know the following lemma for generalized hybrid mappings in a Hilbert space.

Lemma 2.7 ([15]). Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let T : C — C be a generalized hybrid mapping. Suppose that {z,} C C is
such that x,, — z and z,, — Tz, — 0. Then z € F(T).

Main Results

In this section, we prove a strong convergence theorem by the shrinking projection method,
which was first proposed by Takahashi, Takeuchi, and Kubota [32].

Theorem 3.1. Let H; and Hy be Hilbert spaces and let a > 0. Let B : H; — 271 be a
maximal monotone mapping and let Jy = (I + AB)~! be the resolvent of B for A > 0. Let
U : Hy — Hj be an a-inverse strongly monotone mapping. Let A : H; — Hs be a bounded
linear operator. Suppose that B0 N A~ (U~10) # 0. Let {u,} be a sequence in H; such
that u, — u. Let 21 € Hy, C; = Hy, and {z,} be a sequence generated by

Yn = JIx, (I = X\yA*UA)x,,
Cni1 =1z € Hy: |lyn — 2[| < llzn — 2[} N Cy,
Tn4+1 = PCn_Hun—O—la Vn € N7

where {\,} C (0, 00) satisfies

2
@ and limsup A, > 0.

0< A\, <
[|All? n—o00

Then the sequence {x,} converges strongly to a point 2o € B~10 N A=1(U~10), where
20 = PB—IOQA—I(U—I())U.
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Proof. We first show that the sequence {x,} is well defined. Let z1 € Hy and y,, = Jx, (I —
A A*UA)x, with 0 < A, < HE\%' For z € B~'0N A=Y(U~10), we have that

[yn — 2012 = | Jx, (I = MA* U A)z,, — I, 2|
< lzn — A A U Az, — 2|
= ||zn — 2|* = 2An @y — 2, AU Az, + (An)? | A*U Az, |2
= ||lzn — 2||> = 20 (Azy — Az, UAz,) + (\n)? || A*U Az, ||?
< |z — 2I1* = 200, |U Az, ||* + (M) ? [ A% |2 | A*U Az, |12
= Hxn - Z||2 + )‘n()‘n ||A||2 - 20‘) HUAxn||2

<z —2)*.
Moreover, since

{z € Hi:llyn — 2l < lon — 21} = {z € Hi : llyn — 2|* < llzn — 211}
= {z € Hi: lyall”* = lonll® < 2 (yn — 2, 2)},

it is closed and convex. Applying these facts inductively, we obtain that C,, is nonempty,
closed, and convex for every n € N, and hence {z,} is well defined.

Let Co =2, Cpn. Then since Co D B~10N A~ (U~10) # 0, Cy is also nonempty. Let
zn = Po, u for every n € N. Then, by Lemma 2.6, we have z,, = zg = P, u. Since a metric
projection is nonexpansive, it follows that

[n = 20l < llzn = znll + ll2n — 20l
= [Pe,un — P, ull + [|zn — 20|
< Jun — ull 4 [[2n — 20|
— 0,

and hence x, — zg.

Since zy € Cy C Cpy1, we have ||y, — 20| < ||Jzn — 20| for all n € N. Tending n — oo,
we get that v, — 29. By the assumption of {\,}, there exists a subsequence {\,,} of {\,}
converging to A\g. From A, < Hiﬁ and limsup,,_, ., An > 0, we have that 0 < Ao < H124$'
Put v, =z, — \yA*U Azx,,. We have from Lemma 2.1 that

||J>\o (I - )\OA*UA)xm — Yn, H
= |7 (I = XA UA)z,, — J, (I = A, A*UA)y,
= ||Ing(I = M A UA)z,,, — Irg (I — A, AU A)z,,
+ IngI = A, AU Az, — Jn,, (I = A, AU A)zy, |
<N = XA UA) z,, — (I = M, AU A, || + | TrgUn; — I, Un,

|)‘0 - )"ﬂl|
L

< ‘)\0 — )\nL — 0.

A*U Az,

||J/\0Uni — Un;

On the other hand, by the continuity of Jyx,(I — AgA*UA), we have

Ing (I = Mo A*U Az, — Iy (I — Mo A" UA)zo]| — 0.
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Hence we have

20 = Ixo (I = M A UA)zo| < [[20 = Yo, | + [|Un; — Ing(I = Mo AU Ay, ||
- Tne (T = MoA U A, — Jng (T — Mo A*U A)zo)|
— 0.

This implies zo € B~10N A~1(U~10) by Lemma 2.4. Since zy = Pc,u € B~10N A~Y(U~10)
and B~10N A=Y (U~10) C Cy, we have zg = Pg-19na-1(y-10)u, which completes the proof.
]

Next, we prove a strong convergence theorem for generalized split feasibility problems
which are governed by generalized hybrid mappings in Hilbert spaces.

Theorem 3.2. Let H; and Hy be Hilbert spaces and let C' be a nonempty, closed and
convex subset of H;. Let B : Hy — 21 be a maximal monotone mapping such that the
domain of B is included in C and let Jy = (I+AB)~! be the resolvent of B for A > 0. Let S
be a generalized hybrid mapping from C into C. Let U : Hy — Hs be an a-inverse strongly
monotone mapping with o > 0. Let A : H; — Hs be a bounded linear operator such that
A # 0. Suppose that F(S) N B~t0N A1 (U~10) # 0. Let {u,} be a sequence in H; such
that w, — u. Let C1 = H; and let {z,,} be a sequence in H; generated by z; = = € H; and

zn = JIx, (I = \MA*UA)zy,

Yn = ATy + (]- - an)Sz'ru
Crnt1={2€Cn:|lyn — 2l < [lon — 2|},
Tn+1 = PCnJrlun—i-lv vn €N,

where Pg,_, is the metric projection of H; onto Cy 41, and {a,} C [0,1] and {\,} C (0,00)
are sequences such that

2c0
liminfa, <1 and 0 <liminf ), <limsup\, < ——.
n—00 n—o0 N—s00 I A])2
Then the sequence {z,} converges strongly to wo = Pp(s)np-1ona-1(v-10)4, where

PF(S)QB—IOQA—I(U—I()) is the metric projection of H onto F(S) NB~oN Ail(Uilo).

Proof. Since S is a generalized hybrid mapping from C into C with F(S) # 0, S is quasi-
nonexpansive. Then F(.9) is closed and convex. Since B~10 and U !0 are closed and convex
[26], B~10 N A=Y(U~10) is closed and convex. Then F(S)N B~'0N A=(U~10) is closed
and convex. Thus there exists the mertic projection of H onto F(S)N B~t0N A= (U10).
We show that C), are closed and convex for all n € N. It is obvious from assumption that
Cy = H; is closed and convex. Suppose that C is closed and convex. We know that for
z € Cy,

lye = 21* <l — 2|
=yl = loxll® — 20k — 21, 2) < 0.

Then Cy4 is closed and convex. By induction, C,, are closed and convex for all n € N. Next
we show that F(S)N B~'0N A~ (U10) C C, for all n € N. It is obvious from assumption
that F(S)NB~10N A= (U~10) C C; = Hy. Suppose that F(S)NB~10N A1 (U~10) C Oy
for some k € N. Put 2, = Jy, (I = A\ A*UA)zy, and take z € F(S)NB~0NA~1({U~10) C C.
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From z = Jy, (I — M\yA*UA)z and 0 < liminf, o A, < limsup,, .o An < HE‘O“IQ, we have

that

llze — 2% = [|[Ja, (I = MA U A)ay, — Iy, (I — M AU A)z2|)?
< |lxg — AA*U Az, — z||2
= ||lzk — 2| — 2\ (g — 2, A U Azy,) + A2 || AU Az |
= |lzk — 2||> — 2M(Azy, — Az, UAzg) + (\)? || AU Az | (3.1)
<l — 2* = 22 |U Az ||* + ()| AU Az |
= [z — 20 + A [|A]]? = 20) U Az |®

< Jlan — 2.
Since S is quasi-nonexpansive, we have from (3.1) that

lyx — 201> = llanzr + (1 — ax)Szg — 2|
< agllay — 2l + (1 — aw)|[Sz — 2|
< agllzg — 2l + (1 — ax)llz — 2]
<agllze — 2l + (1 — ax)llzx — 2

< lx — 2]
Hence we have z € Cj41. By induction, we have that
F(S)nB'onA YU t0) c C,

for all n € N. Since C), is nonempty, closed and convex, there exists the metric projection
Pc, of H onto Cy,. Thus {x,,} is well-defined.

Since {C,} is a nonincreasing sequence of nonempty, closed and convex subsets of H
with respect to inclusion, it follows that

n—oo

0#F(S)NBT'0N AT (U'0) € M- lim C,, = (] Cn. (3.2)
n=1
Put Cp = (),—; Cn. Then, by Theorem 2.6, we have that {Pc,u} converges strongly to
wo = Poyu, ie.,
wy, = Po,u — wp.

To complete the proof, it is sufficient to show that wo = Pp(s)np-10na-1(v-10)u-
Since a metric projection is nonexpansive, it follows that

[ = woll < flzn = wall + [lwn — woll

= || Pc,un — P, ull + [lwn — wol|

< lun = ull + [lwn — wol|
and hence x,, — wg. Thus we have that

@n — Zps1]] = O. (3.3)
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From x,41 € Cy41, we also have that ||y, — zp41]| < [|£n — Zp41]|. Then we get from (3.3)
that ||yn — Zn41]| = 0. Using this, we have

1Yn = znll < llyn — Tngall + 2041 — zall = 0. (3-4)

From 0 < liminf,,_, o oy < 1, we have a subsequence {ay, } of {a,} such that a,,, — v and
0 <~y <1 From

20 = ynll = 20 — @nzn — (1 — an) Szl = (1 — an)l|lzn — Sznll,
we have that
1Szn, — xn,|| — 0. (3.5)

Let us show ||Szn, — 2, || = 0 by using (3.5). We have from (3.1) that for any z € F(S) N
B~ lon A~Y(U—1t0),
1yn — z||2 = [Jan@n + (1 — an) Sz, — Z||2
< ap ||z, — sz + (1 —an)llzn — Z||2
< ap |z, - ZH2 + (1 —an) |on — ZH2
+ (1= )X (A 4] = 20) [T Az, ||
< lwn = 2 4+ (1= an) A (A [|A]* = 20) U Az |
Thus we have
2 2 2 2
(1= an)An 2a=Xy [AI%) [UAzn " < [2n = 2]1" = [lyn — 2]
= (lon = 2l + lyn = 2D ([[#n = 2] = [lyn — 2]))
< (len = 211 + llyn = 2[) [0 — yull -
From ||y, — z,|| — 0 and a,, — 7, we have that
lim |UAz,,| = 0. (3.6)
1— 00
Since Jy, is firmly nonexpansive, we have that
20|z — 2% = 2||Jn, (I = \MpA* U A)z,, — Ty, (I — N\ A*UA)z||?
< 2zp — 2z, (I = \A"UA)z,, — 2)
= llzn = 2l + (1 = M A" U A)zy, — 2|2
—lzn — (I = My A U A)z,, |2
<lzn =2l + llzn = 2[° = 20 = (I = X A*U A)z, |2
=120 — 2|12 + |20 — 2|12 = |20 — T + M A U Az, ||?
< lzn = 217 + ll2n = 201> = |20 — za)?
— 2\ (2 — xp, AU Az,)) — N2 || A*U Az, ||?
and hence

l2n = 2]1* < llzn = 2II* = ll2n — @nll?

— 2\ (2 — T, AU Az,)) — N2||A*U Az, ||
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Furthermore, we have
2 2 2
lyn — 2|I” <an [z — 2[|” + (1 — an) |52, — 2|

<oy [|Tn — 2”2 + (L —an)llzn — Z||2

<o ||z — 2I° + (1 = an){llzn — 2I° = |20 — znll?
— W (2n — T, A UAD,) — M2 || AU Az, ||}

2 2 * 2

<wn —2[I" = (1 = an) lzn — za||” - )‘n2(1 —ay) [|[ATU Az, ||

=20 (1 — ap)(zp — zp, AU Azy,).

This means that

(1 —an)[lzn — anZ <@ — ZH2 = lyn — 2”2
+ |A*U Az || {200 || 20 — 20| + A2 ||A*U Az, ||}
< (lon =2l + lyn = 2[) llzn — yull
+ |A*U Az || {200 |20 — || + A2 | A*U Az, ||}

Since lim;_, o0 ||UAxy, || = 0, limy o0 [|[Tn — Ynl|l = 0, an, — v < 1 and {yn}, {2} and {z,}
are bounded, we have
lim |z, —xn,|| = 0. (3.7)

n—00

Since y, = apzy + (1 — ay)Szy,, we have y,, — Sz, = an(x, — Sz,). From (3.5) we have

lyn, — Szn, || = an,l|Tn, — Szn,|| = 0. (3.8)
Since [|zn; — Szn; || < 120, — T |l + 1Zn; — Ynill + |Yn; — Szn,ll, from (3.4), (3.7) and (3.8)
we have
Since z,, = Pe, un, — wo, we have from (3.7) that z,, — wg. Then we have z,, — wy.

From (3.9) and Lemma 2.7, we have that wy € F(S). Next, let us show that wy € B~10N
A=YUT10). From the definition of Jy,, we have that

zn = Jx, (I = \MA*UA)z,
s (I - A UA)x, € I+ M\,B)zyy = 2 + Ay Bz
S Ty — 2y — MATU Az, € N\, Bz,
1

& /\—(xn — zn — MA*U Az,) € Bz,

Since B is monotone, we have that for (s,t) € B,

<zn _s, an— AU A,y — t> > 0. (3.10)

From z,, — wo, ||Zn, — zn,|| = 0 and A*UAz,,, — 0, we have (wg — s, —t) > 0. Since B is
maximal, we have 0 € Bwy. Furthermore, since U is a-inverse strongly monotone,

(A, — Awo, UAz,, — UAwg) > a |UAz,, — UAwl*.

From x,,, — wo and U Az, — 0, we have U Awg = 0. This implies Awy € U~'0. Therefore,
wo € B7'10N A1 (U7'0). Thus we have wyg € F(S) N B~'0N A1 (U10). Put 29 =
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PF(S)QB—IOQA—I(U—lo)U. Since 20 = PF(S)QB—IOﬂAfl(Uflo)x S Cn and Wy = Pc'nu, we have
that
= wn | < flu = 20]1*. (3.11)

Thus we have that
[u—woll* = lim fu—w,|* < |lu— zol*.
n— o0

Then we get zg = wg. This completes the proof. O

We do not know whether such theorems (Theorems 3.1 and 3.2) hold or not for the
hybrid method of Nakajo and Takahashi (Theorem 1.1).

Applications

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of H. A
mapping T : C — H is called a strict pseudo-contraction [6] if there exists k € R with
0 < k < 1 such that

1Tz = Ty|* < llo —y* + kI(I - T)x — (I = T)yl*, Va.yeC.

We call such T a k-strict pseudo-contraction. If & = 0, then T is nonexpansive. Putting
U =1-T, where T is a k-strict pseudo-contraction, we have that

I(I-=U)z—(I—-0U)yl* < |z =yl +kl|Uz - Uy|?, Va,yeC.
Thus we have that
lz =yl + Uz — Uy||* = 2(x — y, Uz — Uy) < ||lz —y|> + k||Uz — Uy|*.

Then

1—k
5 IIUz — Uyl < (x—y,Uz — Uy).

Therefore, U = I — T is 1;k—invelrse strongly monotone.

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function
of H into (—o0,00]. Then the subdifferential df of f is defined as follows:

f(x) ={ze H: f(x) + (z,y —x) < fy), Vye H}

for all x € H. By Rockafellar [23], it is shown that 0f is maximal monotone. Let C be a
nonempty, closed and convex subset of H and let i¢ be the indicator function of C, i.e.,

io(z) = 0, if x € C,
T Vo, itz ec

Then i¢ : H — (—00,00] is a proper, lower semicontinuous and convex function on H and
hence Oic is a maximal monotone operator. Thus we can define the resolvent Jy of dic for
A > 0 as follows:

Iz = (I 4+ Nic) e, Ve H, \A>0.

On the other hand, for any v € C, we also define the normal cone N¢(u) of C at u as
follows:
Ne(u)={z€ H:{(z,y—u) <0, VyeC}.
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Then we have that for any x € C

Oic(z) ={z € H :ic(x) + (z,y —z) <icly), Yye H}
={zeH:(z,y—2)<0, VyeC}
ZNc(JZ)

Thus we have that

u=Jyr < (I+Nic) 'z =usx€ut+ Nic(u)
sz eu+ANc(u) & x—u € ANg(u)
S(x—uy—u)y <0, Yyel
& Po(z) =,

that is, Jy = P¢. Using these results and Theorems 3.1 and 3.2, we can obtain the following
strong convergence theorems in Hilbert spaces.

Theorem 4.1. Let H; and Hy be Hilbert spaces and let C' be a nonempty, closed and
convex subset of Hy. Let T : Hy, — Hy be a k-strict pseudo-contraction with 0 < k < 1.
Let A: Hy — Hj be a bounded linear operator. Suppose that C'N A= F(T) # (. Let {u,}
be a sequence in H; such that w, — u. Let zy € Hy, C; = Hy, and {x,} be a sequence
generated by

yn = Po(I — XA (I = T)A)x,,
Cni1={z € Hy: |lyn — 2[| < ||zn — 2[|} N Ch,
Tn1 = PCn+1un+17 Vn €N,

where {\,} C (0, 00) satisfies

1-k
0< A\, < —_— and limsup A, > 0.
IA]l n—o0

Then the sequence {z,} converges strongly to a point zg € C N A™1F(T), where z =
Pona-1p(ryu.

Proof. Define U = I — T in Theorem 3.1. Then U is %—inverse strongly monotone. Thus
we have the desired result from Theorem 3.1. O

Theorem 4.2. Let H; and Hy be Hilbert spaces and let C' be a nonempty, closed and
convex subset of H;. Let B : Hy — 2t be a maximal monotone mapping such that the
domain of B is included in C and let Jy = (I + AB)~! be the resolvent of B for A\ > 0.
Let S be a generalized hybrid mapping from C into C. Let T : Hy — Hs be a k-strict
pseudo-contraction with 0 < k < 1. Let A : Hy — Hs be a bounded linear operator such
that A # 0. Suppose that F(S)NB 0N A~ F(T) # 0. Let {u,} be a sequence in H; such
that u, — u. Let C; = Hy and let {x,} be a sequence in H; generated by z1 = x € Hy and

zn = Jn, (I = MA* (I —T)A)x,,

Yn = Qpdp + (1 - O[n)SZn,
Cni1={z€Cn: llyn — 2l < llzn — 2|1},
Tny1 = P, Uny1, Vn €N,
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where Pg,_, is the metric projection of Hy onto Cy41, and {a,} C [0,1] and {\,} C (0,00)
are sequences such that

1—k
liminfa, <1 and 0 <Iliminf), <limsup A, < ——
n—00 n—00 n—00 ||A||2
Then the sequence {w,} converges strongly to wy = Pps)np-10na-1r()U, Where

Pp(synB-10na-1F(7) is the metric projection of H onto F'(S) N Bl0N AR (T).

Let C be a nonempty, closed and convex subset of a Hilbert space H, let f: C xC — R
be a bifunction. Then we consider the following equilibrium problem: Find z € C' such that

f(zy) >0, VyeC. (4.1)
The set of such z € C' is denoted by EP(f), i.e.,
EP(f)={z€C: f(z,y) >0, Yy € C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the follow-
ing conditions:

(A1) f(z,z) =0 for all z € C;

(A2) f is monotone, i.e., f(z,y)+ f(y,z) <0 for all z,y € C;
(A3) limsup,_,o f(tz + (1 —t)z,y) < f(x,y) for all z,y,z € C;
(A4) f(z,-) is convex and lower semicontinuous for all z € C'.

We know the following lemmas; see, for instance, [5] and [10].

Lemma 4.3 ([5]). Let C be a nonempty, closed and convex subset of H, let f be a bifunction
from C' x C to R satisfying (A1)-(A4) and let » > 0 and « € H. Then, there exists z € C
such that

1
Fle) +—ly = 2,2 = 2) 20
forally € C.

Lemma 4.4 ([10]). Define the resolvent T, : H — C of f for r > 0 as follows:

1
Trscz{ZGC’:f(z,y)—Fr(y—z,z—m}20, VyEC}

for all x € H. Then, the following hold:
(i) T, is single-valued,;
(ii) T, is firmly nonexpansive, i.e., for all z,y € H,
”Trf - Try||2 < <T7’x - Ty, — y>5
(ii) F(Tv) = EP(f);

(iv) EP(f) is closed and convex.
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Takahashi, Takahashi and Toyoda [26] showed the following. See [3] for a more general
result.

Lemma 4.5 ([26]). Let C be a nonempty, closed and convex subset of a Hilbert space H
and let f : C' x C' — R be a bifunction satisfying the conditions (Al)-(A4). Define A; as
follows:

Af@)_{ézEH:f(x,y)z<y—m,z>, wee itaco

Then EP(f) = A;l(O) and A; is maximal monotone with the domain in C. Furthermore,
T.(z) = (I +7Af) Y (z), VxeH, r>0.
Using Theorems 3.1 and 3.2 and Lemma 4.5, we have the following theorems.

Theorem 4.6. Let H; and H, be Hilbert spaces and let C' be a nonempty, closed and
convex subset of H;. Let f : C' x C — R satisty the conditions (A1)—(A4) and let T),
be the resolvent of Ay for A, > 0 in Lemma 4.5. Let 7" : Hy — H> be a k-strict pseudo-
contraction with 0 < k < 1. Let A: H; — Hs be a bounded linear operator. Suppose that
EP(f)NA=YF(T) # 0. Let {u,} be a sequence in H; such that u, — u. Let 1 € Hy,
Cy = Hy, and {x,} be a sequence generated by

Yn =T, (I — A A (I = T)A)z,,
Cn+1={z € Hy : [lyn — 2[| < |lzn — 2[|} N Ch,
Tny1 = Po,  Uny1, VneEN,

where {\,} C (0, 00) satisfies

1-k
0< A\, < 7 and limsup A, > 0.

|A nvo0

Then the sequence {w,} converges strongly to a point zg € EP(f) N A'F(T), where
20 = Ppp(f)na-1r(T)U-

Proof. Define Ay for the bifunction f and set B = Ay in Theorem 3.1. Thus we have the
desired result from Theorem 3.1. O

Theorem 4.7. Let Hy and H> be Hilbert spaces. Let C' be a nonempty, closed and convex
subset of a real Hilbert space Hy. Let f: C x C — R satisfy the conditions (A1)-(A4) and
let T\, be the resolvent of Ay for A, > 0 in Lemma 4.5. Let S be a generalized hybrid
mapping from C' into C. Let T': Hy — Hs be a k-strict pseudo-contraction with 0 < k < 1.
Let A : Hy — Hs be a bounded linear operator. Suppose that F(S)NEP(f)NA= F(T) # 0.
Let {u,} be a sequence in Hy such that u, — u. Let C; = Hy and let {z,,} be a sequence
in H; generated by x1 = x € H; and

zn = Jn, (I = MA (I —T)A)x,,

Yn = Qpdp + (1 - O[n)SZn,
Cni1={z2€Cn:lyn — 2l < llzn — 2|1},
Tny1 = P, Uny1, Vn €N,
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where Pg,_, is the metric projection of Hy onto Cy41, and {a,} C [0,1] and {\,} C (0,00)
are sequences such that

1—k
liminfa, <1 and 0 <liminfA, <limsup ), < +——-.
n—00 n—00 N 00 | Al
Then the sequence {z,} converges strongly to wo = Pps)nep(fna-1rr)u, where

Pr(synEP(f)na-1F(r) is the metric projection of H onto F(S)NEP(f)NA™'F(T).
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