
2016



102 M. HOJO, S. PLUBTIENG AND W. TAKAHASHI

linear operators Tj : H1 → H2, 1 ≤ j ≤ n, the split common null point problem [9] is to find
z ∈ H1 such that

z ∈
(
∩m
i=1 A

−1
i 0

)
∩ (∩n

j=1T
−1
j (B−1

j 0)
)
,

where A−1
i 0 and B−1

j 0 are null point sets of Ai and Bj , respectively. Defining U = A∗(I −
PQ)A in the split feasibility problem, we have that U : H1 → H1 is an inverse strongly
monotone operator [2], where A∗ is the adjoint operator of A and PQ is the metric projection
of H2 onto Q. Furthermore, if D ∩A−1Q is nonempty, then z ∈ D ∩A−1Q is equivalent to

z = PD(I − λA∗(I − PQ)A)z, (1.1)

where λ > 0 and PD is the metric projection of H1 onto D. Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility problem
and the split common null point problem; see, for instance, [9, 11, 19, 32].

In 1967, Halpern [15] introduced the following iteration process. Let C be a nonempty,
closed and convex subset of a Hilbert space H and let T : C → C be a nonexpansive
mapping. Take x0, x1 ∈ C arbitrarily and define {xn} recursively by

xn+1 = αnx0 + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]. There are many investigations of the iterative process for
finding fixed points of nonexpansive mappings.

Recently, by using Halpern-type iteration and nonexpansive mappings, Akashi, Kimura
and Takahashi [1] defined generalized split feasibility problems and then proved strong con-
vergence theorems for the problems in Hilbert spaces.

In this paper, motivated by the ideas of the split feasibility problem and the split common
null point problem and the results of Akashi, Kimura and Takahashi [1], we consider gener-
alized split feasibility problems with inverse strongly monotone mappings and then establish
two strong convergence theorems which are related to the problems and generalize Akashi,
Kimura and Takahashi’s results. As applications, we get new strong convergence theorems
which are connected with fixed point problems of strict pseudo-contractions, generalized
split feasibility problems and equilibrium problems.

2 Preliminaries

Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and norm ∥ · ∥, respectively. For
x, y ∈ H and λ ∈ R, we have from [28] that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩; (2.1)

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2. (2.2)

Furthermore, we have that for x, y, u, v ∈ H,

2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2. (2.3)

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point
projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for all x ∈ H and
y ∈ C. Such a mapping PC is called the metric projection of H onto C. We know that the
metric projection PC is firmly nonexpansive, i.e.,

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ (2.4)
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for all x, y ∈ H. Furthermore, ⟨x− PCx, y − PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [26]. Let α > 0 and let A : C → H be an α-inverse strongly monotone mapping. Then
we have that ∥Ax−Ay∥ ≤ (1/α) ∥x− y∥ for all x, y ∈ C. Let B be a mapping of H into
2H . The effective domain of B is denoted by dom(B), that is, dom(B) = {x ∈ H : Bx ̸= ∅}.
A multi-valued mapping B on H is said to be monotone if ⟨x− y, u− v⟩ ≥ 0 for all x, y ∈
dom(B), u ∈ Bx, and v ∈ By. A monotone operator B on H is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued operator
Jr = (I + rB)−1 : H → dom(B), which is called the resolvent of B for r. Let B be a
maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}. It is known that the
resolvent Jr is firmly nonexpansive and B−10 = F (Jr) for all r > 0. It is also known that
∥Jλx− Jµx∥ ≤ (|λ− µ| /λ) ∥x− Jλx∥ holds for all λ, µ > 0 and x ∈ H; see [26, 14] for more
details. As a matter of fact, we know the following lemma [25].

Lemma 2.1 ([25]). Let H be a Hilbert space and let B be a maximal monotone operator
on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

We also know the following lemmas:

Lemma 2.2 ([4], [34]). Let {sn} be a sequence of nonnegative real numbers, let {αn} be a
sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative real numbers

with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with lim supn→∞ γn ≤ 0.
Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 2.3 ([16]). Let {Γn} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for
all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into itself
with F (S) ̸= ∅. Then we have that

⟨x− Sx, Sx− y⟩ ≥ 0 (2.5)

for all x ∈ H and y ∈ F (S). In fact, we have that for all x ∈ H and y ∈ F (S),

⟨x− Sx, Sx− y⟩ = ⟨x− y + y − Sx, Sx− y⟩
= ⟨x− y, Sx− y⟩+ ⟨y − Sx, Sx− y⟩
≥ ∥Sx− y∥2 − ∥Sx− y∥2

= 0.

We have the following lemma from Alsulami and Takahashi [2].
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Lemma 2.4 ([2]). Let H1 and H2 be Hilbert spaces and let α > 0. Let A : H1 → H2 be
a bounded linear operator such that A ̸= 0. Let U : H2 → H2 be an α-inverse strongly
monotone mapping. Then a mapping A∗UA : H1 → H1 is α

∥A∥2 -inverse strongly monotone.

If T is a nonexpansive mapping, then I − T is 1
2 -inverse strongly monotone. So we have

the following result from Lemma 2.4.

Lemma 2.5. Let H1 and H2 be Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator such that A ̸= 0. Let T : H2 → H2 be a nonexpansive mapping. Then a mapping
A∗(I − T )A : H1 → H1 is 1

2∥A∥2 -inverse strongly monotone.

The following lemma was proved in [32].

Lemma 2.6 ([32]). Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal
monotone mapping and let Jλ = (I+λB)−1 be the resolvent of B for λ > 0. Let T : H2 → H2

be a nonexpansive mapping and let A : H1 → H2 be a bounded linear operator. Suppose
that B−10 ∩A−1F (T ) ̸= ∅. Let λ, r > 0 and z ∈ H1. Then the following are equivalent:

(i) z = Jλ(I − rA∗(I − T )A)z;

(ii) 0 ∈ A∗(I − T )Az +Bz;

(iii) z ∈ B−10 ∩A−1F (T ).

Using Lemma 2.6, Plubtieng and Takahashi [21] proved the following lemma. This lemma
is crucial for the proofs of our main results.

Lemma 2.7 ([21]). Let H1 and H2 be Hilbert spaces and let α > 0. Let B : H1 → 2H1

be a maximal monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0.
Let U : H2 → H2 be an α-inverse strongly monotone mapping and let A : H1 → H2 be a
bounded linear operator. Suppose that B−10 ∩ A−1(U−10) ̸= ∅. Let λ, r > 0 and z ∈ H1.
Then the following are equivalent:

(i) z = Jλ(I − rA∗UA)z;

(ii) 0 ∈ A∗UAz +Bz;

(iii) z ∈ B−10 ∩A−1(U−10).

3 Main Results

In this section, we first prove a strong convergence theorem which generalizes Akashi, Kimura
and Takahashi’s theorem [1] in Hilbert spaces.

Theorem 3.1. Let H1 and H2 be Hilbert spaces and let α > 0. Let B : H1 → 2H1 be a
maximal monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let
U : H2 → H2 be an α-inverse strong monotone mapping. Let A : H1 → H2 be a bounded
linear operator. Suppose that B−10 ∩ A−1(U−10) ̸= ∅. Let {un} be a sequence in H1 such
that un → u. Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated by

xn+1 = αnun + (1− αn)Jλn(I − λnA
∗UA)xn

for all n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α

∥A∥2
,

∞∑
n=1

|λn − λn+1| < ∞,
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lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, and
∞∑

n=1

|αn+1 − αn| < ∞.

Then the sequence {xn} converges strongly to a point z0 of B−10 ∩ A−1(U−10), where
z0 = PB−10∩A−1(U−10)u.

Proof. Put yn = Jλn(I−λnA
∗UA)xn and let z ∈ B−10∩A−1(U−10). We have that z = Jλnz

and UAz = 0. Since Jλn is nonexpansive and U is α-inverse strongly monotone, we have
that

∥yn − z∥2 = ∥Jλn(I − λnA
∗UA)xn − Jλnz∥

2

≤ ∥xn − λnA
∗UAxn − z∥2

= ∥xn − z∥2 − 2λn⟨xn − z,A∗UAxn⟩+ (λn)
2 ∥A∗UAxn∥2 (3.1)

= ∥xn − z∥2 − 2λn⟨Axn −Az,UAxn⟩+ (λn)
2 ∥A∗UAxn∥2

≤ ∥xn − z∥2 − 2αλn ∥UAxn∥2 + (λn)
2 ∥A∥2 ∥UAxn∥2

= ∥xn − z∥2 + λn(λn ∥A∥2 − 2α) ∥UAxn∥2 .

From 0 < a ≤ λn ≤ 2α
∥A∥2 we have that ∥yn − z∥ ≤ ∥xn − z∥ for all n ∈ N. We also have

from xn+1 = αnun + (1− αn)yn that

∥xn+1 − z∥ = ∥αn(un − z) + (1− αn)(yn − z)∥
≤ αn ∥un − z∥+ (1− αn) ∥xn − z∥ .

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un − z∥ ≤ M . Putting
K = max{M, ∥x1 − z∥}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is obvious that
∥x1 − z∥ ≤ K. Suppose that ∥xk − z∥ ≤ K for some k ∈ N. Then we have that

∥xk+1 − z∥ ≤ αk∥uk − z∥+ (1− αk)∥xk − z∥
≤ αkK + (1− αk)K

= K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded. Further-
more, {Axn} and {yn} are bounded. Since

∥UAxn∥2 ≤ 1

α
⟨UAxn, Axn −Az⟩ ≤ 1

α
∥UAxn∥∥Axn −Az∥,

{UAxn} is bounded. Then {A∗UAxn} is bounded. Putting vn = xn −λnA
∗UAxn, we have

xn+2 − xn+1 = (αn+1 − αn)un + αn+1(un+1 − un)

+ (1− αn+1)Jλn+1(xn+1 − λn+1A
∗UAxn+1)

− (1− αn)Jλn(xn − λnA
∗UAxn)

= (αn+1 − αn)un + αn+1(un+1 − un)

+ (1− αn+1){Jλn+1(xn+1 − λn+1A
∗UAxn+1)

− Jλn+1vn + Jλn+1vn − Jλnvn + Jλnvn} − (1− αn)Jλnvn.
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Thus we have from Lemma 2.1 and the nonexpansiveness of I − λn+1A
∗UA that

∥xn+2 − xn+1∥ ≤ |αn+1 − αn| ∥un∥+ αn+1∥un+1 − un∥
+ (1− αn+1)∥xn+1 − λn+1A

∗UAxn+1 − (xn − λnA
∗UAxn)∥

+ (1− αn+1)∥Jλn+1vn − Jλnvn∥+ |αn+1 − αn|∥Jλnvn∥
= |αn+1 − αn| ∥un∥+ αn+1∥un+1 − un∥
+ (1− αn+1)∥(I − λn+1A

∗UA)xn+1 − (I − λn+1A
∗UA)xn

+ (I − λn+1A
∗UA)xn − (xn − λnA

∗UAxn)∥
+ (1− αn+1)∥Jλn+1vn − Jλnvn∥+ |αn+1 − αn|∥Jλnvn∥

≤ |αn+1 − αn| ∥un∥+ αn+1∥un+1 − un∥
+ (1− αn+1)∥xn+1 − xn∥+ |λn+1 − λn|∥A∗UAxn∥
+ |αn+1 − αn|∥Jλnvn∥+ ∥Jλn+1vn − Jλnvn∥

≤ |αn+1 − αn| ∥un∥+ αn+1∥un+1 − un∥
+ (1− αn+1)∥xn+1 − xn∥+ |λn+1 − λn|∥A∗UAxn∥

+ |αn+1 − αn|∥Jλnvn∥+
|λn+1 − λn|

λn+1
∥Jλn+1vn − vn∥

≤ |αn+1 − αn| ∥un∥+ αn+1∥un+1 − un∥
+ (1− αn+1)∥xn+1 − xn∥+ |λn+1 − λn|∥A∗UAxn∥

+ |αn+1 − αn|∥Jλnvn∥+
|λn+1 − λn|

a
∥Jλn+1vn − vn∥.

Using Lemma 2.2, we obtain that

∥xn+2 − xn+1∥ → 0. (3.2)

We also have from (2.2) that

∥xn+1 − xn∥2 = ∥αn(un − xn) + (1− αn)(yn − xn)∥2

= αn∥un − xn∥2 + (1− αn)∥yn − xn∥2 − αn(1− αn)∥un − yn∥2

and hence

(1− αn)∥yn − xn∥2 = ∥xn+1 − xn∥2 − αn∥un − xn∥2 + αn(1− αn)∥un − yn∥2.

From αn → 0 and ∥xn+1 − xn∥ → 0, we get that

yn − xn → 0. (3.3)

From
∑∞

n=1 |λn − λn+1| < ∞, we have that {λn} is a Cauchy sequence. Then we have that
λn → λ0 and λ0 ∈ [a, 2α

∥A∥2 ]. Using vn = xn − λnA
∗UAxn and yn = Jλn(I − λnA

∗UA)xn,

we have from Lemma 2.1 that

∥Jλ0(I − λ0A
∗UA)xn − yn∥ = ∥Jλ0(I − λ0A

∗UA)xn − Jλn(I − λnA
∗UA)xn∥

= ∥Jλ0(I − λ0A
∗UA)xn − Jλ0(I − λnA

∗UA)xn

+ Jλ0(I − λnA
∗UA)xn − Jλn(I − λnA

∗UA)xn∥ (3.4)

≤ ∥(I − λ0A
∗UA)xn − (I − λnA

∗UA)xn∥+ ∥Jλ0vn − Jλnvn∥

≤ |λ0 − λn|∥A∗UAxn∥+
|λ0 − λn|

λ0
∥Jλ0vn − vn∥ → 0.
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We also have from (3.3) and (3.4) that

∥xn − Jλ0(I − λ0A
∗UA)xn∥ ≤ ∥xn − yn∥+ ∥yn − Jλ0(I − λ0A

∗UA)xn∥ → 0. (3.5)

We will use (3.4) and (3.5) later.
Put z0 = PB−10∩A−1(U−10)u. Let us show that lim supn→∞ ⟨u− z0, yn − z0⟩ ≤ 0. Put

l = lim supn→∞ ⟨u− z0, yn − z0⟩. Then without loss of generality, there exists a subsequence
{yni} of {yn} such that l = limi→∞ ⟨u− z0, yni − z0⟩ and {yni} converges weakly to some
point w ∈ H1. From ∥xn − yn∥ → 0, we also have that {xni} converges weakly to w ∈ H1.
On the other hand, from λn → λ0 ∈ [a, 2α

∥A∥2 ], we have λni
→ λ0 ∈ [a, 2α

∥A∥2 ]. Using (3.4),

we have that
∥Jλ0(I − λ0A

∗UA)xni − yni∥ → 0.

Furthermore, using (3.5), we have that

∥xni − Jλ0(I − λ0A
∗UA)xni∥ → 0.

Since Jλ0(I − λ0A
∗UA) is nonexpansive, we have w = Jλ0(I − λ0A

∗UA)w from [28, p.114].
From Lemma 2.7 we have that w ∈ B−10 ∩A−1(U−10). Then we have

l = lim
i→∞

⟨u− z0, yni − z0⟩ = ⟨u− z0, w − z0⟩ ≤ 0.

Since xn+1 − z0 = αn(un − z0) + (1− αn)(yn − z0), we have from (2.1) that

∥xn+1 − z0∥2 ≤ (1− αn)
2 ∥yn − z0∥2 + 2⟨αn(un − z0), xn+1 − z0⟩

≤ (1− αn) ∥xn − z0∥2 + 2αn⟨un − u, xn+1 − z0⟩ (3.6)

+ 2αn⟨u− z0, xn+1 − xn + xn − yn + yn − z0⟩.

Putting γn = 2⟨un−u, xn+1−z0⟩+2⟨u−z0, xn+1−xn+xn−yn+yn−z0⟩, sn = ∥xn−z0∥2
and βn = 0 in Lemma 2.2, from

∑∞
n=1 αn = ∞ and (3.6) we have that xn → z0. This

completes the proof.

Next, we prove another strong convergence theorem which is obtained by using Maingé
lemma (Lemma 2.3).

Theorem 3.2. Let H1 and H2 be Hilbert spaces and let α > 0. Let B : H1 → 2H1 be a
maximal monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let
U : H2 → H2 be an α-inverse strong monotone mapping. Let A : H1 → H2 be a bounded
linear operator. Suppose that B−10 ∩ A−1(U−10) ̸= ∅. Let {un} be a sequence in H1 such
that un → u. Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)Jλn
(I − λnA

∗UA)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and
∞∑

n=1

αn = ∞.

Then {xn} converges strongly to a point z0 ofB−10∩A−1(U−10), where z0 = PB−10∩A−1(U−10)u.
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Proof. Let z ∈ B−10 ∩A−1(U−10). As in the proof of Theorem 3.1, we obtain that

∥Jλn(xn − λnA
∗UAxn)− z∥2 ≤ ∥xn − z∥2 + λn(λn ∥A∥2 − 2α) ∥UAxn∥2 (3.7)

≤ ∥xn − z∥2 .

Let yn = αnun + (1− αn)Jλn(xn − λnA
∗UAxn). We have that

∥yn − z∥ = ∥αn(un − z) + (1− αn)(Jλn(xn − λnA
∗UAxn)− z)∥

≤ αn ∥un − z∥+ (1− αn) ∥xn − z∥ .

Using this, we get

∥xn+1 − z∥ = ∥βn(xn − z) + (1− βn)(yn − z)∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn)(αn ∥un − z∥+ (1− αn) ∥xn − z∥)
(1− αn(1− βn))∥xn − z∥+ αn(1− βn)∥un − z∥.

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un − z∥ ≤ M . Putting
K = max{∥x1 − z∥,M}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is obvious that
∥x1 − z∥ ≤ K. Suppose that ∥xk − z∥ ≤ K for some k ∈ N. Then we have that

∥xk+1 − z∥ ≤ (1− αk(1− βk))∥xk − z∥+ αk(1− βk)∥uk − z∥
≤ (1− αk(1− βk))K + αk(1− βk)K = K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded. Further-
more, {Axn}, {yn} and {Jλn(xn−λnA

∗UAxn)} are bounded. Take z0 = PB−10∩A−1(U−10)u.
Putting zn = Jλn(I − λnA

∗UA)xn, from the definition of {xn} we have that

xn+1 − xn = βnxn + (1− βn){αnun + (1− αn)zn} − xn

and hence

xn+1 − xn − (1− βn)αnun = βnxn + (1− βn)(1− αn)zn − xn

= (1− βn){(1− αn)zn − xn}
= (1− βn){zn − xn − αnzn}.

Thus we have that

⟨xn+1 − xn − (1− βn)αnun, xn − z0⟩ = (1− βn)⟨zn − xn, xn − z0⟩
− (1− βn)⟨αnzn, xn − z0⟩ (3.8)

= −(1− βn)⟨xn − zn, xn − z0⟩
− (1− βn)αn⟨zn, xn − z0⟩.

From (2.3) and (3.7), we have that

2⟨xn − zn, xn − z0⟩ = ∥xn − z0∥2 + ∥zn − xn∥2 − ∥zn − z0∥2

≥ ∥xn − z0∥2 + ∥zn − xn∥2 − ∥xn − z0∥2 (3.9)

= ∥zn − xn∥2.



GENERALIZED SPLIT FEASIBILITY PROBLEMS 109

From (3.8) and (3.9), we have that

−2⟨xn − xn+1, xn − z0⟩ = 2(1− βn)αn⟨un, xn − z0⟩
− 2(1− βn)⟨xn − zn, xn − z0⟩ − 2(1− βn)αn⟨zn, xn − z0⟩ (3.10)

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Furthermore, using (2.3) and (3.10), we have that

∥xn+1 − z0∥2−∥xn − xn+1∥2 − ∥xn − z0∥2 ≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Setting Γn = ∥xn − z0∥2, we have that

Γn+1 − Γn − ∥xn − xn+1∥2 ≤ 2(1− βn)αn⟨un, xn − z0⟩ (3.11)

− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Noting that

∥xn+1 − xn∥ = ∥(1− βn)αn(un − zn) + (1− βn)(zn − xn)∥ (3.12)

≤ (1− βn)
(
∥zn − xn∥+ αn∥un − zn∥

)
and hence

∥xn+1 − xn∥2 ≤ (1− βn)
2
(
∥zn − xn∥+ αn∥un − zn∥

)2
= (1− βn)

2∥zn − xn∥2 (3.13)

+ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)
.

Thus we have from (3.11) and (3.13) that

Γn+1 − Γn ≤ ∥xn − xn+1∥2 + 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩

≤ (1− βn)
2∥zn − xn∥2

+ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)

+ 2(1− βn)αn⟨un, xn − z0⟩ − (1− βn)∥zn − xn∥2

− 2(1− βn)αn⟨zn, xn − z0⟩

and hence

Γn+1−Γn + βn(1− βn)∥zn − xn∥2

≤ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)

(3.14)

+ 2(1− βn)αn⟨un, xn − z0⟩ − 2(1− βn)αn⟨zn, xn − z0⟩.

We will divide the proof into two cases.
Case 1: Suppose that there exists a natural numberN such that Γn+1 ≤ Γn for all n ≥ N .

In this case, limn→∞ Γn exists and then limn→∞(Γn+1 − Γn) = 0. Using limn→∞ αn = 0
and 0 < c ≤ βn ≤ d < 1, we have from (3.14) that

lim
n→∞

∥zn − xn∥ = 0. (3.15)
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From (3.12) we have that
lim

n→∞
∥xn+1 − xn∥ = 0. (3.16)

We also have that

∥yn − zn∥ = ∥αnun + (1− αn)zn − zn∥ (3.17)

= αn∥un − zn∥ → 0.

Furthermore, from ∥yn − xn∥ ≤ ∥yn − zn∥+ ∥zn − xn∥, we have that

lim
n→∞

∥yn − xn∥ = 0. (3.18)

Take λ0 ∈ [a, 2α
∥A∥2 ]. Putting vn = xn − λnA

∗UAxn, we have from Lemma 2.1 that

∥αnun + (1− αn)Jλ0(I − λ0A
∗UA)xn − yn∥

= (1− αn)∥Jλ0(I − λ0A
∗UA)xn − Jλn(I − λnA

∗UA)xn∥
= (1− αn)∥Jλ0(I − λ0A

∗UA)xn − Jλ0(I − λnA
∗UA)xn

+ Jλ0(I − λnA
∗UA)xn − Jλn(I − λnA

∗UA)xn∥ (3.19)

≤ (1− αn){∥(I − λ0A
∗UA)xn − vn∥

+ ∥Jλ0vn − Jλnvn∥}

≤ (1− αn)
{
|λ0 − λn|∥A∗UAxn∥+

|λ0 − λn|
λ0

∥Jλ0vn − vn∥
}
.

We also have that

∥xn−Jλ0(I − λ0A
∗UA)xn∥

≤ ∥xn − yn∥+ ∥yn − {αnun + (1− αn)Jλ0(I − λ0A
∗UA)xn}∥

+ ∥αnun + (1− αn)Jλ0(I − λ0A
∗UA)xn (3.20)

− Jλ0(I − λ0A
∗UA)xn∥

= ∥xn − yn∥+ ∥yn − (αnun + (1− αn)Jλ0(I − λ0A
∗UA)xn)∥

+ αn∥un − Jλ0(I − λ0A
∗UA)xn∥.

We will use (3.19) and (3.20) later.
Let us show that lim supn→∞ ⟨u− z0, yn − z0⟩ ≤ 0, where z0 = PB−10∩A−1(U−10)u. Put

l = lim supn→∞ ⟨u− z0, yn − z0⟩. Then without loss of generality, there exists a subsequence
{yni} of {yn} such that l = limi→∞ ⟨u− z0, yni − z0⟩ and {yni} converges weakly to some
point w ∈ H1. From ∥xn−yn∥ → 0, we also have that {xni} converges weakly to w ∈ H1. On
the other hand, since {λn} ⊂ (0,∞) satisfies 0 < a ≤ λn ≤ 2α

∥A∥2 , there exists a subsequence

{λnij
} of {λni} such that {λnij

} converges to a number λ0 ∈ [a, 2α
∥A∥2 ]. Using (3.19), we

have that
∥αnij

unij
+ (1− αnij

)Jλ0(I − λ0A
∗UA)xnij

− ynij
∥ → 0.

Furthermore, using (3.20), we have that

∥xnij
− Jλ0(I − λ0A

∗UA)xnij
∥ ≤ ∥xnij

− ynij
∥

+ ∥ynij
− {αnij

unij
+ (1− αnij

)Jλ0(I − λ0A
∗UA)xnij

}∥

+ αnij
∥unij

− Jλ0(I − λ0A
∗UA)xnij

∥ → 0.
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Since Jλ0(I − λ0A
∗UA) is nonexpansive, we have w = Jλ0(I − λ0A

∗UA)w from [28, p.114].
From Lemma 2.7 we have that w ∈ B−10 ∩A−1(U−10). Then we have that

l = lim
j→∞

⟨u− z0, ynij
− z0⟩ = ⟨u− z0, w − z0⟩ ≤ 0.

Since yn− z0 = αn(un− z0)+(1−αn){Jλn(xn−λnA
∗UAxn)− z0}, we have from (2.1) that

∥yn − z0∥2 ≤ (1− αn)
2 ∥Jλn(xn − λnA

∗UAxn)− z0∥2 + 2αn ⟨un − z0, yn − z0⟩ .

From (3.7), we have

∥yn − z0∥2 ≤ (1− αn)
2 ∥xn − z0∥2 + 2αn ⟨un − z0, yn − z0⟩ .

This implies that

∥xn+1 − z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥yn − z0∥2

≤ βn ∥xn − z0∥2 + (1− βn)
(
(1− αn)

2 ∥xn − z0∥2 + 2αn ⟨un − z0, yn − z0⟩
)

=
(
βn + (1− βn)(1− αn)

2
)
∥xn − z0∥2 + 2(1− βn)αn ⟨un − z0, yn − z0⟩

≤ (βn + (1− βn)(1− αn)) ∥xn − z0∥2 + 2(1− βn)αn ⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2 + 2(1− βn)αn ⟨un − u, yn − z0⟩
+ 2(1− βn)αn ⟨u− z0, yn − z0⟩ .

Since
∑∞

n=1(1− βn)αn = ∞, by Lemma 2.2 we obtain that xn → z0.
Case 2: Suppose that there exists a subsequence {Γni} ⊂ {Γn} such that Γni < Γni+1

for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then we have from Lemma 2.3 that Γτ(n) ≤ Γτ(n)+1. Thus we have from (3.14) that for all
n ∈ N,

βτ(n)(1− βτ(n))∥zτ(n) − xτ(n)∥2 ≤ (1− βτ(n))
22ατ(n)∥zτ(n) − xτ(n)∥∥uτ(n) − zτ(n)∥

+ (1− βτ(n))
2α2

τ(n)∥uτ(n) − zτ(n)∥2

+ 2(1− βτ(n))ατ(n)⟨uτ(n), xτ(n) − z0⟩ (3.21)

− 2(1− βτ(n))ατ(n)⟨zτ(n), xτ(n) − z0⟩.

Using limn→∞ αn = 0 and 0 < c ≤ βn ≤ d < 1, we have from (3.21) that

lim
n→∞

∥zτ(n) − xτ(n)∥ = 0. (3.22)

As in the proof of Case 1 we have that

lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0. (3.23)

and
lim
n→∞

∥yτ(n) − zτ(n)∥ = 0. (3.24)

Since ∥yτ(n) − xτ(n)∥ ≤ ∥yτ(n) − zτ(n)∥+ ∥zτ(n) − xτ(n)∥, we have that

lim
n→∞

∥yτ(n) − xτ(n)∥ = 0. (3.25)
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For z0 = PB−10∩A−1(U−10)u, let us show that lim supn→∞
⟨
z0 − u, yτ(n) − z0

⟩
≥ 0. Put

l = lim sup
n→∞

⟨
z0 − u, yτ(n) − z0

⟩
.

Without loss of generality, there exists a subsequence {yτ(ni)} of {yτ(n)} such that l =

limi→∞
⟨
u− z0, yτ(ni) − z0

⟩
and {yτ(ni)} converges weakly to some point w ∈ H1. From

∥yτ(n)−xτ(n)∥ → 0, we also have that {xτ(ni)} converges weakly to w ∈ H1. As in the proof
of Case 1 we have that w ∈ B−10 ∩A−1(U−10). Then we have

l = lim
i→∞

⟨z0 − u, yτ(ni) − z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that∥∥yτ(n) − z0
∥∥2 ≤ (1− ατ(n))

2
∥∥xτ(n) − z0

∥∥2 + 2ατ(n)

⟨
uτ(n) − z0, yτ(n) − z0

⟩
and then

∥xτ(n)+1 − z0∥2 ≤ βτ(n)

∥∥xτ(n) − z0
∥∥2 + (1− βτ(n))

∥∥yτ(n) − z0
∥∥2

≤
(
1− (1− βτ(n))ατ(n)

) ∥∥xτ(n) − z0
∥∥2

+ 2(1− βτ(n))ατ(n)

⟨
uτ(n) − z0, yτ(n) − z0

⟩
.

From Γτ(n) ≤ Γτ(n)+1, we have that

(1− βτ(n))ατ(n)

∥∥xτ(n) − z0
∥∥2 ≤ 2(1− βτ(n))ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩.

Since (1− βτ(n))ατ(n) > 0, we have that∥∥xτ(n) − z0
∥∥2 ≤ 2⟨uτ(n) − z0, yτ(n) − z0⟩

= 2⟨uτ(n) − u, yτ(n) − z0⟩+ 2⟨u− z0, yτ(n) − z0⟩

Thus we have that
lim sup
n→∞

∥∥xτ(n) − z0
∥∥2 ≤ 0

and hence ∥xτ(n) − z0∥ → 0. From (3.23), we have also that xτ(n) − xτ(n)+1 → 0. Thus
∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.3 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof.

4 Applications

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let
T : C → H be a strict pseudo-contraction, that is, there exists k ∈ R with 0 ≤ k < 1 such
that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C.
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Putting U = I − T , we have that

∥(I − U)x− (I − U)y∥2 ≤ ∥x− y∥2 + k∥Ux− Uy∥2, ∀x, y ∈ C.

Thus we have that

∥x− y∥2 + ∥Ux− Uy∥2 − 2⟨x− y, Ux− Uy⟩ ≤ ∥x− y∥2 + k∥Ux− Uy∥2.

Then

1− k

2
∥Ux− Uy∥2 ≤ ⟨x− y, Ux− Uy⟩.

Therefore, U = I − T is 1−k
2 -inverse strongly monotone.

LetH be a Hilbert space and let f be a proper, lower semicontinuous and convex function
of H into (−∞,∞]. Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}

for all x ∈ H. By Rockafellar [22], it is shown that ∂f is maximal monotone. Let C be a
nonempty, closed and convex subset of H and let iC be the indicator function of C, i.e.,

iC(x) =

{
0, if x ∈ C,

∞, if x ̸∈ C.

Then iC : H → (−∞,∞] is a proper, lower semicontinuous and convex function on H and
hence ∂iC is a maximal monotone operator. Thus we can define the resolvent Jλ of ∂iC for
λ > 0 as follows:

Jλx = (I + λ∂iC)
−1x, ∀x ∈ H, λ > 0.

We know that Jλx = PCx for all x ∈ H and λ > 0; see [28]. From Theorem 3.1 we obtain
the following strong convergence theorem which is a generalization of [1].

Theorem 4.1. LetH1 andH2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal monotone
mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let T : H2 → H2 be a
k-strict pseudo-contraction with 0 ≤ k < 1. Let A : H1 → H2 be a bounded linear operator.
Suppose that B−10 ∩ A−1F (T ) ̸= ∅. Let {un} be a sequence in H1 such that un → u. Let
x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated by

xn+1 = αnun + (1− αn)Jλn(I − λnA
∗(I − T )A)xn

for all n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 1− k

∥A∥2
,

∞∑
n=1

|λn − λn+1| < ∞,

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞, and

∞∑
n=1

|αn+1 − αn| < ∞.

Then the sequence {xn} converges strongly to a point z0 ∈ B−10 ∩ A−1F (T ), where z0 =
PB−10∩A−1F (T )u.

Proof. Suppose that T is a k-strict pseudo-contraction with 0 ≤ k < 1. Then U = I − T is
1−k
2 -inverse strongly monotone. Thus we obtain the desired result by Theorem 3.1.
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Similarly, from Theorem 3.2 we get the following theorem which is another generalization
of [1].

Theorem 4.2. LetH1 andH2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal monotone
mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let T : H2 → H2 be a
k-strict pseudo-contraction with 0 ≤ k < 1. Let A : H1 → H2 be a bounded linear operator.
Suppose that B−10 ∩ A−1F (T ) ̸= ∅. Let {un} be a sequence in H1 such that un → u. Let
x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)Jλn(I − λnA
∗(I − T )A)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 1− k

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and
∞∑

n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 ∈ B−10 ∩ A−1F (T ), where z0 =
PB−10∩A−1F (T )u.

Let C be a nonempty, closed and convex subset of a Hilbert spaceH and let f : C×C → R
be a bifunction. Then we consider the following equilibrium problem: Find z ∈ C such that

f(z, y) ≥ 0, ∀y ∈ C. (4.1)

The set of such z ∈ C is denoted by EP (f), i.e.,

EP (f) = {z ∈ C : f(z, y) ≥ 0, ∀y ∈ C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the follow-
ing conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) f(x, ·) is convex and lower semicontinuous for all x ∈ C.

We know the following lemmas; see, for instance, [6] and [12].

Lemma 4.3 ([6]). Let C be a nonempty, closed and convex subset ofH, let f be a bifunction
from C × C to R satisfying (A1)-(A4) and let r > 0 and x ∈ H. Then, there exists z ∈ C
such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0

for all y ∈ C.
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Lemma 4.4 ([12]). For r > 0 and x ∈ H, define the resolvent Tr : H → C of f for r > 0
as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
for all x ∈ H. Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(iii) F (Tr) = EP (f);

(iv) EP (f) is closed and convex.

Takahashi, Takahashi and Toyoda [25] showed the following.

Lemma 4.5 ([25]). Let C be a nonempty, closed and convex subset of a Hibert space H
and let f : C × C → R be a bifunction satisfying the conditions (A1)-(A4). Define Af as
follows:

Af (x) =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, if x ∈ C,

∅, if x ̸∈ C.

Then EP (f) = A−1
f (0) and Af is maximal monotone with the domain of Af in C. Further-

more,
Tr(x) = (I + rAf )

−1(x), ∀x ∈ H, r > 0.

We obtain the following theorem from Theorem 3.1.

Theorem 4.6. Let H1 and H2 be Hilbert spaces. Let C be a nonempty, closed and convex
subset of H1. Let f : C × C → R satisfy the conditions (A1)-(A4) and let Tλn be the
resolvent of Af for λn > 0 in Lemma 4.5. Let U : H2 → H2 be an α-inverse strongly
monotone mapping. Let A : H1 → H2 be a bounded linear operator. Suppose that EP (f)∩
A−1(U−10) ̸= ∅. Let {un} be a sequence in H1 such that un → u. Let x1 = x ∈ H1 and let
{xn} ⊂ H1 be a sequence generated by

xn+1 = αnun + (1− αn)Tλn(I − λnA
∗UA)xn

for all n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α

∥A∥2
,

∞∑
n=1

|λn − λn+1| < ∞,

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞, and

∞∑
n=1

|αn+1 − αn| < ∞.

Then the sequence {xn} converges strongly to a point z0 of EP (f) ∩ A−1(U−10), where
z0 = PEP (f)∩A−1(U−10)u.

Proof. Define Af for the bifunction f and set B = Af in Theorem 3.1. Thus we have the
desired result from Theorem 3.1.
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As in the proof of Theorem 4.6, we obtain the following result from Theorem 3.2.

Theorem 4.7. Let H1 and H2 be Hilbert spaces. Let C be a nonempty, closed and convex
subset of a real Hilbert space H1. Let f : C × C → R satisfy the conditions (A1)-(A4) and
let Tλn be the resolvent of Af for λn > 0 in Lemma 4.5. Let U : H2 → H2 be an α-inverse
strongly monotone mapping. Let A : H1 → H2 be a bounded linear operator. Suppose that
EP (f)∩A−1(U−10) ̸= ∅. Let {un} be a sequence in H1 such that un → u. Let x1 = x ∈ H1

and let {xn} ⊂ H1 be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)Tλn(I − λnA
∗UA)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and
∞∑

n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 of EP (f) ∩ A−1(U−10), where
z0 = PEP (f)∩A−1(U−10)u.
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