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Abstract: In this paper, motivated by ideas of the split feasibility problem and the split common null
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Introduction

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset of H.
A mapping T : C — H is called a strict pseudo-contraction [8] if there exists k € R with
0 < k < 1 such that

T2 = Tyl? < llz = y* + k| (I = T)z = (I = T)y|?, Va,y € C.

We call such a mapping T" a k-strict pseudo-contraction. If £ = 0, then 7" is nonexpansive.
A mapping U : C' — H is called inverse strongly monotone if there exists a > 0 such that

(x —y,Ux —Uy) > a|Uz — Uy|?, Va,yeC.

Such a mapping U is called a-inverse strongly monotone. Let T : C — H be a k-strict
pseudo-contraction. Putting U = I — T, we have that U = I — T is %—inverse strongly
monotone; see Section 4.

Censor and Elfving [10] introduced the split feasibility problem in Hilbert spaces. Let
H, and H> be two real Hilbert spaces. Let D and @ be nonempty, closed and convex
subsets of H; and Hs, respectively. Let A : H;y — Hy be a bounded linear operator. Then
the split feasibility problem is to find z € H; such that z € D N A~'Q. Byrne, Censor,
Gibali and Reich [9] also considered the following problem: Given set-valued mappings
A;t Hy — 21 1 < i <m, and B, : Hy — 22, 1 < j < n, respectively, and bounded
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linear operators Tj : Hy — Ha, 1 < j < n, the split common null point problem [9] is to find
z € Hy such that
ze (Nt A7N0) N (NG_, T 1 (B;10)),

where AZ-_10 and Bj_lo are null point sets of A; and Bj, respectively. Defining U = A*(I —
Pg)A in the split feasibility problem, we have that U : Hy — H; is an inverse strongly
monotone operator [2], where A* is the adjoint operator of A and Py is the metric projection
of Hy onto Q. Furthermore, if D N A~'Q is nonempty, then z € D N A~1Q is equivalent to

2 = Pp(I — AA*(I — Po)A)z, (1.1)

where A > 0 and Pp is the metric projection of Hy onto D. Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility problem
and the split common null point problem; see, for instance, [9, 11, 19, 32].

In 1967, Halpern [15] introduced the following iteration process. Let C' be a nonempty,
closed and convex subset of a Hilbert space H and let T' : C' — C be a nonexpansive
mapping. Take xg,z1 € C arbitrarily and define {z,} recursively by

Tpt1 = apzo + (1 —ap)Tx,, VneN,

where {a,} is a sequence in [0, 1]. There are many investigations of the iterative process for
finding fixed points of nonexpansive mappings.

Recently, by using Halpern-type iteration and nonexpansive mappings, Akashi, Kimura
and Takahashi [1] defined generalized split feasibility problems and then proved strong con-
vergence theorems for the problems in Hilbert spaces.

In this paper, motivated by the ideas of the split feasibility problem and the split common
null point problem and the results of Akashi, Kimura and Takahashi [1], we consider gener-
alized split feasibility problems with inverse strongly monotone mappings and then establish
two strong convergence theorems which are related to the problems and generalize Akashi,
Kimura and Takahashi’s results. As applications, we get new strong convergence theorems
which are connected with fixed point problems of strict pseudo-contractions, generalized
split feasibility problems and equilibrium problems.

Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm || ||, respectively. For
z,y € H and X € R, we have from [28] that

lz + yll* < llzl|* + 2(y, = + y); (2.1)
Az + (1= Nyl = Az ]* + (1 = Vlyll* = M1 = Nl — yl|*. (2.2)

Furthermore, we have that for x,y,u,v € H,
2(z —y,u—v) = llz = vl* + [ly — ull® = llz = u|* — [ly — v||*. (2.3)

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point
projection of H onto C' is denoted by Pc, that is, | — Poz|| < ||z — y|| for all z € H and
y € C. Such a mapping P¢ is called the metric projection of H onto C'. We know that the
metric projection P¢ is firmly nonexpansive, i.e.,

|Pox — Poy|® < (Pox — Pey,x —y) (2.4)
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for all z,y € H. Furthermore, (x — Pcx,y — Pcx) < 0 holds for all z € H and y € C;
see [26]. Let @ > 0 and let A: C' — H be an a-inverse strongly monotone mapping. Then
we have that ||Az — Ay|| < (1/a) ||z — y|| for all z,y € C. Let B be a mapping of H into
2H " The effective domain of B is denoted by dom(B), that is, dom(B) = {z € H : Bx # (0}.
A multi-valued mapping B on H is said to be monotone if (x —y,u —v) > 0 for all z,y €
dom(B), u € Bz, and v € By. A monotone operator B on H is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued operator
J. = (I +rB)"': H — dom(B), which is called the resolvent of B for r. Let B be a
maximal monotone operator on H and let B~10 = {z € H : 0 € Bx}. It is known that the
resolvent J,. is firmly nonexpansive and B~'0 = F(J,.) for all r > 0. It is also known that
|Jxx — Juz|| < (JA — p| /A) [lx — Jxz| holds for all A\, x> 0 and x € H; see [26, 14] for more
details. As a matter of fact, we know the following lemma [25].

Lemma 2.1 ([25]). Let H be a Hilbert space and let B be a maximal monotone operator
on H. For r > 0 and x € H, define the resolvent J,.x. Then

—1
i (Jex — Jyx, Jox — x) > ||Jex — Jozx||?

for all s, >0 and x € H.
We also know the following lemmas:

Lemma 2.2 ([4], [34]). Let {s,} be a sequence of nonnegative real numbers, let {c,} be a
sequence of [0,1] with >>7 , o, = 00, let {8, } be a sequence of nonnegative real numbers
with >°>° | 8, < oo, and let {7, } be a sequence of real numbers with limsup,,_, .y, < 0.
Suppose that

Spt1 < (1 - an)sn + apYn + Bn
for all n =1,2,.... Then lim,_ .. s, = 0.

Lemma 2.3 ([16]). Let {T',,} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {I'y,,} of {I',,} which satisfies I'),, < T'y,, 41 for
all i € N. Define the sequence {7(n)}n>n, of integers as follows:

7(n) =max{k <n:Tp < Tk},
where ng € N such that {k <ng: Ty < Tky1} # 0. Then, the following hold:
(i) 7(no) <71(ng+1) <--- and 7(n) — oo;
(ii) Try) S Try+1 and Ty < Trnyq1, V0 > ng.

Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into itself
with F(S) # 0. Then we have that

(x —Sz,Sz—y) >0 (2.5)
for all z € H and y € F(5). In fact, we have that for all z € H and y € F(95),
(x — Sz, Sz —y)=(x—y+y— Sz, Sz —vy)
=(z—y, Sz —y) +{y — Sz, Sz —y)
> [|Sz —yl* = ||Sz - y]|?
=0.

We have the following lemma from Alsulami and Takahashi [2].



104 M. HOJO, S. PLUBTIENG AND W. TAKAHASHI

Lemma 2.4 ([2]). Let H; and Hy be Hilbert spaces and let o > 0. Let A : H; — Hy be
a bounded linear operator such that A # 0. Let U : Hy — Hy be an a-inverse strongly

monotone mapping. Then a mapping A*UA : H; — H; is HX‘Hz—inverse strongly monotone.

If T is a nonexpansive mapping, then I — T is %—inverse strongly monotone. So we have

the following result from Lemma 2.4.

Lemma 2.5. Let H; and Hy be Hilbert spaces. Let A : Hy — Hs be a bounded linear
operator such that A # 0. Let T': Ho — Hs be a nonexpansive mapping. Then a mapping
A*(I -T)A:H, — H; is W—inverse strongly monotone.

The following lemma was proved in [32].

Lemma 2.6 ([32]). Let H; and Hs be Hilbert spaces. Let B : H; — 2H1 be a maximal
monotone mapping and let Jy = (I+AB)~! be the resolvent of B for A\ > 0. Let T : Hy — H»
be a nonexpansive mapping and let A : H; — Hs be a bounded linear operator. Suppose
that B~10N A=YF(T) # 0. Let A\, > 0 and z € H;. Then the following are equivalent:

(i) 2= AT —-rA*(I1-T)A)z;
(i) 0 € A*(I — T)Az + Bz;
(iii) z € B-'0N A~1F(T).

Using Lemma 2.6, Plubtieng and Takahashi [21] proved the following lemma. This lemma
is crucial for the proofs of our main results.

Lemma 2.7 ([21]). Let H; and H, be Hilbert spaces and let a > 0. Let B : H; — 2
be a maximal monotone mapping and let Jy = (I + AB)~! be the resolvent of B for A > 0.
Let U : Hy — Hs be an a-inverse strongly monotone mapping and let A : H; — Hs be a
bounded linear operator. Suppose that B~10N A=Y(U~10) # 0. Let A\,7 > 0 and 2z € H;.
Then the following are equivalent:

(i) z2=J\(I—-rA*UA)z;
(ii) 0 € A*UAz + Bz;
(i) =z € B-10N A1 (U10).

Main Results

In this section, we first prove a strong convergence theorem which generalizes Akashi, Kimura
and Takahashi’s theorem [1] in Hilbert spaces.

Theorem 3.1. Let H; and Hy be Hilbert spaces and let « > 0. Let B : H;y — 21 be a
maximal monotone mapping and let Jy = (I + AB)~! be the resolvent of B for A > 0. Let
U : Hy — Hjy be an a-inverse strong monotone mapping. Let A : H; — Hs be a bounded
linear operator. Suppose that B0 N A~ (U~10) # 0. Let {u,} be a sequence in H; such
that u, — u. Let 1 =z € H;y and let {z,,} C H; be a sequence generated by

Tn+1 = Qplnp + (1 - O‘n)!])\n (I - AnA*UA)In
for all n € N, where {\,} C (0,00) and {a,,} C (0,1) satisfy

2a >
O<a§)\n§W7 Z|>\n_)\n+l|<oov
n=1
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(o) o0
lim a,, =0, E a, =00, and g |Qpy1 — | < o0
n— o0

n=1 n=1

Then the sequence {x,} converges strongly to a point zg of B~10 N A~1(U~10), where
zZo = PB—lomA—l(U—lo)U-

Proof. Puty, = Jx, (I-X\,A*UA)z,, and let z € B~'0NA~1(U~10). We have that z = J, 2
and UAz = 0. Since J,, is nonexpansive and U is a-inverse strongly monotone, we have
that

lyn = 21* = [T, (I = Ay AU Ay, — T, 2|
< @ — A A U Az, — 2|
@0 — 2]|° = 220 (2 — 2, A*U Azy) + (An)? || A*U Az, ||? (3.1)
= |lzn — 2||> = 2\ (Az, — Az, UAz,) + (\n)? || AU Az, ||?
< [lzn — 21* = 200 [U Az, |* + (0n)? [|A]* U Az, ||
= [lzn = 21”4 X O [ A]* = 20) U A ||

From 0 <a < A, < ”i‘ﬁz we have that |y, — z|| < ||z, — 2| for all n € N. We also have
from zp41 = apu, + (1 — ay)y, that
[#nt1 = 2] = [lan (un = 2) + (1 = an)(yn = 2)||
< ap flup — 2l + (1 — o) [[2n — 2|

Since {u,} is bounded, there exists M > 0 such that sup,cy |un — 2| < M. Putting
K = max{M, ||z1 — z||}, we have that ||z, — z|| < K for all n € N. In fact, it is obvious that
|1 — z|]| < K. Suppose that ||z — z|| < K for some k € N. Then we have that

k1 — 2l < arllux — 2l + (1 — o)z — 2]|
<oapK+(1—ap)K
=K.

By induction, we obtain that ||z, — z|| < K for all n € N. Then {z,} is bounded. Further-
more, {Ax,} and {y,} are bounded. Since

1 1
||UA:cn||2 < —(UAzy,, Az, — Az) < —||U Az, ||| Az, — Az||,
o o
UAz,} is bounded. Then {A*U Az, } is bounded. Putting v,, = z,, — A\, A*U Ax,,, we have
g

Tpt2 = Tnt1 = (Qnt1 — Qp)Un + Qng1 (Unt1 — Up)
+ (1= ans1) I, (Tngr — A1 AU Az 1)
— (1= an)dr, (xn — M\A U Azy,)
= (Qnt1 — @)U + app1(Unt1 — up)
+ (1= ) {nn (Tn1 = A1 AU Az 1)
— D Un + InnVn — In,Un + In, vn} — (1= @)y, vn.
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Thus we have from Lemma 2.1 and the nonexpansiveness of I — A, 11 A*U A that

[Znt+2 — Tng1ll < lantr — anl Jun|l + antallunts — us|
+ (1 — ant1)l|Tnt1 — A1 AUAz 11 — (0, — MyAT U Az ||
+ (1 = ant) [, 100 = In,Onll + |angr — an|[[Ix, vall
= |omt1 — ol [[unll + ol — uall
+ (1= ans)|(I = A1 A UA) T 11 — (I — M1 AU Ay,
+ (I = A1 AU Ay, — (2, — VAU Azy,)||
+ (1 = ant) [, 100 = In, vnll 4 |angr — an|[[Ix, vall
<angr — an| Jun | + angr||tn g1 — un|
+ (1= g 1) l[2ns1 — @all + [Ant1 = Anl[[ AU Az, |
+ lomt1 — anlllIx, onll + 1 Ix, 100 = I, vl
<lant1 = an| [Junll + ang1l[tnss — ual|
+ (1 = ang1)[[ng1 — 2ol + [Ansr = An|[|ATU Az, |
|)‘n+1 )‘ |
An+1
<lant1 — an| [Junll + antilfunsr — unll
+ (1= ant)[zns1 — ol + [Ans1 — An|[|A"U Az, ||
|)‘n+1 /\ |||J/\

+ [ans1 — an|[|Ix, vall + [/ Ant1¥ — vy

+ |an+1 - aanJ)\”vnH + n+1 ’Un”

Using Lemma 2.2, we obtain that

[ 0 (3.2)

We also have from (2.2) that

Zn+1 — xn||2 = |lan(un — n) + (1 — an)(yn — fn)Hz
= ap|u, — anQ + (1 - O‘n)Hyn - xn”Q —an(1 = ap)llup — yn||2

and hence

(1= an)llyn — xn”z = ||lznt1 — xn”Z — aplu, — xn||2 +an (1 —ap)||un, — yn||2

From ay, — 0 and ||x,4+1 — z,|| = 0, we get that

From "7 | [A, — A\ut1| < 0o, we have that {)\,} is a Cauchy sequence. Then we have that
An = Ao and Ay € [a, ”AHQ] Usmg Up = Ty — MA*U Az, and y, = J\, (I — \yA*UA)z,,
we have from Lemma 2.1 that
1750 (T = 2 A" U A = yul| = [Tng (T = XA UA),, — I, (I = Ay AU A)a |
= ||Jag(I = XA UA)z), — I, (I — MA*UA)xy,
+ DI = AMA UA)z, — I, (I = MATUA)z,|| (3.4)
<N = XA UA)zy, — (I = XA UA) 2|l + | Iagon — I, vnll
Anl

Ao — n
< Ao — M| A*U Az, || + 120 = An]

" [ TxoVr — vnll — 0.
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We also have from (3.3) and (3.4) that
lzn — Ing(I = XA UA)zp || < |20 — Ynll + [lyn — Irg (I — A A*UA)z,,|| — 0. (3.5)

We will use (3.4) and (3.5) later.

Put zop = Pg-19na-1@w-10)u- Let us show that limsup,, . (v —z0,yn —20) < 0. Put
I =limsup,,_, . (4 — 20,Yn — 20). Then without loss of generality, there exists a subsequence
{Yn, } of {yn} such that | = lim; , (v — 20,Yn, — 20) and {y,,} converges weakly to some
point w € Hy. From ||z, — yn|| — 0, we also have that {z,,} converges weakly to w € Hj.
On the other hand, from A, — Ag € |[a, ”124°|‘|2], we have \,, = Ag € [a, ”ZOI“‘Q]. Using (3.4),
we have that

I Tx, (I — XA UA)zp, — Yn,|| = 0.

Furthermore, using (3.5), we have that
|2n, — Ixng(I — XNgA*UA)xy, || — 0.

Since Jy, (I — AgA*UA) is nonexpansive, we have w = Jy, (I — Mg A*UA)w from [28, p.114].
From Lemma 2.7 we have that w € B~10N A~}(U~10). Then we have

I= lim (u — 20, Yn, — 20) = {(u— 2o, w — 20) < 0.
71— 00

Since Tpy1 — 20 = Qn(Un — 20) + (1 — an)(yn — 20), we have from (2.1) that

||xn+1 - 20”2 < (1 - an)2 ||yn — ZOH2 + 2<an(un - ZO)aanrl - 'ZO>
< (1= o) ||2n — 20]|* + 200 (g — U, Ty — 20) (3.6)

+ 20‘n<u —20,Tn+1 — Tpn + Tp — Yn + Yn — ZO>~

Putting v, = 2{tn — U, Tpy1 — 20) +2{U — 20, Tpt1 — T +Tp — Yn +Yn — 20)s Sn = ||Tn — 20]|?
and 3, = 0 in Lemma 2.2, from Y~ a, = co and (3.6) we have that z,, — zy. This
completes the proof. O

Next, we prove another strong convergence theorem which is obtained by using Maingé
lemma (Lemma 2.3).

Theorem 3.2. Let H; and Hy be Hilbert spaces and let o > 0. Let B : Hy — 271 be a
maximal monotone mapping and let Jy = (I + AB)~! be the resolvent of B for A > 0. Let
U : Hy — Hy be an a-inverse strong monotone mapping. Let A : H; — Hs be a bounded
linear operator. Suppose that B0 N A~1(U~10) # 0. Let {u,} be a sequence in H; such
that w, — u. Let 1 =z € H; and let {z,,} C H; be a sequence generated by

Tl = Pntn + (1 = Bn)(anun + (1 — ap) Iy, (I = \yA*UA)x,)

for all n € N, where {\,} C (0,00), {8} C (0,1) and {ay} C (0, 1) satisfy

O<a<\, <

2«
—, 0 <B.<d<1
_HAH27 <C_/87L_ < )

oo
lim a, =0 and g Q= 00.
n—oo 1

n=

Then {x, } converges strongly to a point z of B~'0NA~!(U~10), where zg = Pg-19na-1(-10)u-
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Proof. Let z € B~10N A=(U~10). As in the proof of Theorem 3.1, we obtain that

[ Tx, (20 — A A UAD,) — 2| < ||an — 2]1* + A (s | A]I = 20) || U Az, (3.7)

< Jln — 2]
Let yn, = anun + (1 — an)Jdx, (xn — Ay A*U Az,,). We have that

1yn — ZH = ||an(un —z)+ (1~ O‘n)(J/\n, (T — M AU Axy) — 2)||

< ap g — 2l + (1 = ay) |z, — 2]
Using this, we get

[€nt1 = 2] = [|Bn(n = 2) + (1 = Bn)(yn = 2)||
< Bullen =2l + (1 = Ba) llyn — =||
< B llon = 2l + (1 = Bn)(an lun — 2l + (1 = an) [lzn = 2[))
(1= an(l = Bu))llzn — 2l + an(l = Bn)llun — 2|
Since {u,} is bounded, there exists M > 0 such that sup,cy||un — 2|| < M. Putting

K = max{||z1 — z||, M}, we have that ||z, — z|| < K for all n € N. In fact, it is obvious that
|lz1 — z|| < K. Suppose that ||z — z|| < K for some k € N. Then we have that

leias — 2l < (1= ax(@ = Bo)llex — 2 + (@ — B g — 2]

<(1—ar(l—B)K + ax(l — Bp)K = K.

By induction, we obtain that ||z, — z|| < K for all n € N. Then {z,,} is bounded. Further-
more, { Az, }, {yn} and {Jx, (vn — A, A*U Ax,,)} are bounded. Take zo = Pg-19na-1(-10)U-
Putting z, = Jx, (I — \yA*UA)x,,, from the definition of {z,} we have that

Tn4+1 — Tp = ﬂnxn + (1 - Bn){anun + (1 - an)zn} — Tn
and hence

Tn+1 — Tn — (1 - 5n)anun = ann + (1 - Bn)(l - an)zn — Tn
=(1- ﬁn){(l — Q) Zp — xn}
Thus we have that

(Xpg1 — T — (1 = Br)antin, Tn — 20) = (1 — Bn){(2n — Tn, Tn — 20)
— (1 = Bn){anzn, Tn — 20) (3.8)
= —(1=Bn){Tn — 2n,Tn — 20)
— (1= Bn)an(zn, n — 20)-

From (2.3) and (3.7), we have that

2(Tn, = 2n, Tn — 20) = ||T0 — ZO||2 + |20 — xn”Q — [lzn — ZO||2
> ||z — z0ll* + 120 — @nll® — [l2n — 20l (3.9)

= ||z, — anQ
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From (3.8) and (3.9), we have that
—2(Tn — Tng1, Tn — 20) = 2(1 — Bn)an (Un, Tn — 20)
—2(1 = Bp){(xn — zny T — 20) — 2(1 — Bn)an{zn, Tn — 20)
< 2(1 - 6n)an<un7xn - ZO>
— (1= B)1Zn — x> = 2(1 = Bn)an(2n, 2n — 20).
Furthermore, using (2.3) and (3.10), we have that
Hxn+1 - 20”2_”1'71 - xn+1||2 — |z — ZO||2 <2(1- ﬁn)anwnvxn — 20)
— (1= Bn)llzn — xn”Q = 2(1 = Bn)an(zn, Tn — 20)-
Setting I',, = ||z, — 20]|?, we have that
Fn—i—l - Fn - ”xn - xn+1||2 S 2(1 - ﬁn)an<unvxn - ZO>
- (1 - Bn)”zn - -rn”2 - 2(1 - Bn)an<zn7xn - Z0>~
Noting that
[Znt1 — 2nll = (1 = Bn)an(un — 2n) + (1 = Bn) (20 — 20|
<(1- ﬁn)(Hzn — @p|| + apllun — Zn”)
and hence
2
Hxn-i-l - anQ < (1 - Bn)2(”2n - an + anHun - Zn”)
=(1- 6n)2||zn - CCTLHQ
+ (1 — ﬂn)2(204n||zn — Zn[lun — 2zall + O‘iHun - Zn||2)
Thus we have from (3.11) and (3.13) that
Fn+1 -I, < ||xn - xn+1H2 + 2(1 - ﬂn)an<un7xn - ZO>
- (1 - Bn)”'zn - xn||2 - 2(1 - Bn)an<znzxn - ZO>
<(1- 511)2”271 - anz
+ (1 — 671)2(20%”371 - an”un — Zn|| + O‘iH“n - Zn||2)
+ 2(1 - 5n)an<unaxn - ZO> - (]- - ﬁn)”'zn - anz
—2(1 = Bn)an(zn, n — 20)
and hence
Log1=T0 + Bn(1 = Bn)llzn — xn”Q
<(1- ﬁn)2(2anllzn — Zn|[|un — 2nll + O‘?LHun - Zn||2)
+ 2(1 - Bn)an<un7$n - ZO> - 2(1 - ﬂn)an<znvxn - ZO>~

We will divide the proof into two cases.

109

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Case 1: Suppose that there exists a natural number N such that ',y < T, foralln > N.
In this case, lim,, o, I';, exists and then lim,, oo (I'n41 — I'n) = 0. Using lim,, 00y = 0

and 0 < ¢ < B3, <d < 1, we have from (3.14) that

lim ||z, — z,| =0.
n— oo

(3.15)
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From (3.12) we have that
ILm |Xnt1 — znll = 0. (3.16)

We also have that

[y — 2nll = [lanun + (1 — an)zn — 24| (3.17)

= ap||un — 2| = 0.
Furthermore, from ||y, — 2| < ||yn — 2nll + [|2n — 2 ||, we have that

lim ||y, — 2n| = 0. (3.18)

n—oo

Take Ao € [a, Hial“g]. Putting v, = x,, — \yA*U Ax,,, we have from Lemma 2.1 that

[lantn + (1 — a)JIag (I — Mo A U A)x, — ynl|
=(1—an)|lIngI = XA UA)x), — Jr, (I — NyA*U Az, ||
= (1= an) I, = XA UA)z, — In,(I — \A*UA)x,,
4 T (I = MA* UA)z, — Iy (I — Ay A* UA)z | (3.19)
< (1= an){I(] = A U Az — v
+ | Tx0vn — Ix, vnll}

Ao = Al

< (1= an){ Ao = Ml A" U A, | + | o I vn = vl

We also have that

|xn—Jxr, (I — AA U A)zy||
<zn = ynll + [yn — {anun + (1 — an)Jng (I — XA UA)z, |
+ [lantn + (1 — apn)Jrg (I — AgA*UA)z, (3.20)
— g (I = XA UA) x|
= |2n = yull + [lyn — (anun + (1 — an)Jx, (I — AgA U A)z,,)||
+ apllun — Ing (I — Mg A*UA)x,||.

We will use (3.19) and (3.20) later.

Let us show that limsup,, . (v — 20,yn — 20) < 0, where 20 = Pg-19na-1(-10)u. Put
I =limsup,,_, . (v — 20, yn — 20). Then without loss of generality, there exists a subsequence
{Yn,} of {yn} such that | = lim; ,oc (u — 20, Yn, — 20) and {y,,} converges weakly to some
point w € Hy. From ||z, —y,| — 0, we also have that {z,, } converges weakly tow € H;. On
the other hand, since {\,,} C (0, c0) satisfies 0 < a < A, < ”124%, there exists a subsequence

{)\nij} of {\,,} such that {)\nij} converges to a number )y € [a, |‘124(ﬁ2]. Using (3.19), we
have that

oo, un,, + (1 = an, ) Iag(I = AA UA)zn, —yn, || = 0.

Furthermore, using (3.20), we have that

l@n, = Iro(L = AA UA)Tn, || < |20, — y, |
+ ||ymj - {anij unij + (1 - anij )J)\O(I - AOA*UA)me }”
+ o, Nun,, = Jxg(I = XA UA)zy, || = 0.
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Since J, (I — Mg A*UA) is nonexpansive, we have w = Jx, (I — A A*UA)w from [28, p.114].
From Lemma 2.7 we have that w € B~10N A~}(U~10). Then we have that

I = lim (u— 20,Yn,, = 20) = (u— 20, w — z0) < 0.
Jj—o0

Since ypn, — 20 = an(Un — 20) + (1 — an){ I, (@n — A\ A*U Azy,) — 20}, we have from (2.1) that
[y = 20l* < (1= @n)? 5, (20 = AnA"UAzn) = 20l|” + 200 (1 = 20,40 = 20)
From (3.7), we have
lyn = 20[1* < (1 = n)? [z — 20l* + 200, (= 20, Y — 20) -
This implies that
|1 = 20ll* < Bn lwn = 20/1” + (1= Ba) g — 2o|”
< B llew = 2ol + (1= Ba) (1 = @a)? = 20l1* + 200 (1 = 20,9 — 20))
= (B + (1= Bn)(1 = an)?) l2n — 20/ + 2(1 = Bu)wn (tn — 20, Yn — 20)
< (Bn+ (1= Bu)(1 = an)) & — 20]|* + 2(1 = Ba)an (un — 20,y — 20)

=1 —(1-Bn)an) Hxn - ZO||2 +2(1 = Bn)an <un — U, Yn — 20)
+2(1 = Bn)an (u— 2o, Yn — 20) -

Since >-° (1 — B,)a, = 00, by Lemma 2.2 we obtain that z,, — zo.
Case 2: Suppose that there exists a subsequence {I',,;} C {I';,} such that I';,, < I'y, 11
for all 4 € N. In this case, we define 7 : N — N by

7(n) =max{k <n:Tp <Try1}.

Then we have from Lemma 2.3 that I';(,y < I'7(p)41. Thus we have from (3.14) that for all
neN,

Brny (L = Bl zrn) — T2 < (1= Br(n)) 2071 2r(n) — oyl tir(n) — Zr()
+ (1= Brw)? T(n)”“T(n) — Zr () I?
2(1 = Br(n)) @ (n) (Ur(n), Tr(n) = 20) (3.21)
= 2(1 = Br(n))@r(n){2r(n)s Tr(n) — 20)-

Using lim,, 00 @, =0 and 0 < ¢ < 3, < d < 1, we have from (3.21) that

HILH;O | 2r(n) — Zr@)ll = 0. (3.22)

As in the proof of Case 1 we have that

nll)m 127 (n)+1 = T2yl = 0. (3.23)
and

Since [|yrm) — Zrm)ll < NYrm) = 2em) |l + 1 27(n) — T () ||, We have that

n—
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For 29 = Pg-1pna-1(u-10)U, let us show that limsup,, ., (20 — U, ¥r(n) — 20) = 0. Put

= lim sup <zo — Uy Yr(n) — z0> .
n— o0

Without loss of generality, there exists a subsequence {y.(n,)} of {yr(n)} such that | =
lim; o0 <u — 20, Yr(n;) — zo> and {yr(,,)} converges weakly to some point w € H;. From
1Yr(n) — 7|l — 0, we also have that {,(,,)} converges weakly to w € Hy. As in the proof
of Case 1 we have that w € B~10 N A~1(U~10). Then we have

I = lim (20 — U, Yr(n,) — 20) = (20 — u,w — 29) > 0.
1— 00
As in the proof of Case 1, we also have that
gy = 20l* < (1 = @ ))? [Jazrm) = 20| ” + 2007y () = 20,92 00) = 20)
and then
||xr(n)+1 - ZOHQ < ﬁr(n) HxT(n) - ZOH2 + (1 - 57‘(71)) ||y7(n) - ZOH2

2
< (1= (1= Brm)orm) |- — 20
+ 2(1 - BT(H))aT(n) <u'r(n) — 20, Y7r(n) — ZO> :

From I'(,) < T'r(y)41, we have that

2
(1 - /BT(H))QT(R) ||x7'(n) - ZOH < 2(]— - 67'(71))0‘7'(71) <u‘r(n) - ZanT(n) - ZO>'
Since (1 — Br(n))r(ny > 0, we have that

2
||x"'(”) - ZOH < 2<u7(n) — 20, Yr(n) — ZO>
= 2{Usr(n) = Uy Yr(n) — 20) + 2{U — 20, Yr(n) — 20)

Thus we have that
lim sup HxT(n) - 20H2 <0
n— o0

and hence [|2;(,) — 20| — 0. From (3.23), we have also that 2,(,) — Z;(n)41 — 0. Thus
|Z7(n)+1 — 20l = 0 as n — oo. Using Lemma 2.3 again, we obtain that

llzn — 20l < [|Zr(n)4+1 — 20| = 0

as n — oo. This completes the proof. O

Applications

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of H. Let
T : C — H be a strict pseudo-contraction, that is, there exists £k € R with 0 < k < 1 such
that

1Tz = Ty|* < llo —y* + kI(I = T)x — (I = T)yl*, Va,yeC.
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Putting U = I — T, we have that
(I = U)z — (I = U)yl* < llo —y|* + k|Uz — Uy|®, Va,yeC.
Thus we have that
lz = ylI* + Uz = Uy|* - 2(z — y, Uz — Uy) < ||z —y|* + k|Uz - Uy|*.

Then

1—k
— Uz =Uy|* <z -y, Uz~ Uy).

Therefore, U = I — T is %-inverse strongly monotone.

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function
of H into (—o0,00]. Then the subdifferential 9f of f is defined as follows:

of(x) ={z€ H: f(x) + (2,y —x) < f(y), Vye H}

for all x € H. By Rockafellar [22], it is shown that df is maximal monotone. Let C be a
nonempty, closed and convex subset of H and let ic be the indicator function of C, i.e.,

io(z) = 0, ifx € C,
T N, ifzec

Then i¢ : H — (—00,00] is a proper, lower semicontinuous and convex function on H and
hence Oi¢ is a maximal monotone operator. Thus we can define the resolvent Jy of di¢c for
A > 0 as follows:

I = I+ Nic) 'z, VreH, A>0.
We know that Jyz = Pox for all € H and A > 0; see [28]. From Theorem 3.1 we obtain

the following strong convergence theorem which is a generalization of [1].

Theorem 4.1. Let H; and Hs be Hilbert spaces. Let B : H; — 2t be a maximal monotone
mapping and let Jy = (I + AB)~! be the resolvent of B for A > 0. Let T': Hy — Hj be a
k-strict pseudo-contraction with 0 < k < 1. Let A : H; — Hs be a bounded linear operator.
Suppose that B~10 N A1 F(T) # (. Let {u,} be a sequence in H; such that u, — u. Let
x1 =z € Hy and let {x,} C H; be a sequence generated by

Tnt1 = Qplip + (1 —ap)In, (I = X\A (I —T)A)x,

for all n € N, where {\,} C (0,00) and {«a,} C (0,1) satisfy

oy Lok =
0<a7A,_W7 > A = Anga| < o0,
n=1
oo oo
nlLIr;oan =0, zjlan =00, and z:1|an+1 — ap| < 0.
n= n=

Then the sequence {z,,} converges strongly to a point zg € B~10 N A~'F(T), where zy =
Pp-1ona-1p(T)u.

Proof. Suppose that T is a k-strict pseudo-contraction with 0 < k < 1. Then U =1 — T is

1gk-invelrse strongly monotone. Thus we obtain the desired result by Theorem 3.1. O
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Similarly, from Theorem 3.2 we get the following theorem which is another generalization
of [1].

Theorem 4.2. Let H; and Hs be Hilbert spaces. Let B : H; — 27t be a maximal monotone
mapping and let Jy = (I + AB)~! be the resolvent of B for A > 0. Let T : Hy — Hs be a
k-strict pseudo-contraction with 0 < k < 1. Let A: H; — Hs be a bounded linear operator.
Suppose that B=10N A1F(T) # (. Let {u,} be a sequence in H; such that u, — u. Let
x1 =x € Hy and let {z,,} C H; be a sequence generated by

Tp4+1 = /Bnmn + (1 - ﬁn)(anun + (1 - a’ﬂ)JAn (I - )‘RA*(I - T)A)x’ﬂ>

for all n € N, where {\,} C (0,00), {Bn} C (0,1) and {a,} C (0,1) satisfy

1
O<a<\ <

_W, 0<c<B,<d<]1,

(oo}
lim a, =0 and g ay, = 0.
n—oo 1

—

Then the sequence {x,} converges strongly to a point zg € B0 N AL F(T), where 2o =
PB—lonA—lF(T)U-

Let C be a nonempty, closed and convex subset of a Hilbert space H and let f : CxC — R
be a bifunction. Then we consider the following equilibrium problem: Find z € C such that

f(z,9) >0, VyeC. (4.1)
The set of such z € C' is denoted by EP(f), i.e.,
EP(f)={z€C: f(z,y) 20, vy € C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the follow-
ing conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C;
(A3) for all z,y,z € C,
limsup f(tz + (1 = )z, y) < f(z,y);
t10
(A4) f(z,-) is convex and lower semicontinuous for all x € C.

We know the following lemmas; see, for instance, [6] and [12].

Lemma 4.3 ([6]). Let C be a nonempty, closed and convex subset of H, let f be a bifunction
from C x C to R satisfying (A1)-(A4) and let r > 0 and € H. Then, there exists z € C
such that

Fy)+ 1y =22 -2 20

for all y € C.
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Lemma 4.4 ([12]). For r > 0 and = € H, define the resolvent T;. : H — C of f for r > 0
as follows:

T.x = {z eC: f(z,y)—k%(y—z,z—x) >0, Vy e C}
for all x € H. Then, the following hold:
(i) T, is single-valued;
(ii) T, is firmly nonexpansive, i.e., for all z,y € H,

1Tz — Toyl|? < (T — Toy, @ — y);

(iii) F(T,) = EP(f);
(iv) EP(f) is closed and convex.
Takahashi, Takahashi and Toyoda [25] showed the following,.

Lemma 4.5 ([25]). Let C be a nonempty, closed and convex subset of a Hibert space H
and let f : C' x C' — R be a bifunction satisfying the conditions (A1)-(A4). Define A; as
follows:

Agp(z) = {éZGH:f(x,y) > (y—w,2), Wy eCl iizg

Then EP(f) = A;l(O) and Ay is maximal monotone with the domain of Ay in C. Further-
more,

T.(x) = (I +7A;)"*(x), VxeH, r>0.
We obtain the following theorem from Theorem 3.1.

Theorem 4.6. Let H; and Hy be Hilbert spaces. Let C be a nonempty, closed and convex
subset of Hy. Let f : C' x C — R satisfy the conditions (A1)-(A4) and let T, be the
resolvent of Ay for A, > 0 in Lemma 4.5. Let U : Hy — H> be an a-inverse strongly
monotone mapping. Let A : Hy — Hjy be a bounded linear operator. Suppose that EP(f)N
A=Y U710) # 0. Let {u,} be a sequence in H; such that u, — u. Let 2; = 2 € H; and let
{z,} C H; be a sequence generated by

Tpt1 = Qutn + (1 — an)Th, (I = X\, A"UA)z,

for all n € N, where {\,,} C (0,00) and {a,,} C (0, 1) satisfy

2¢ >
0<a§/\n§W, > A = Angal < o0,
n=1
o oo
nh_)rrgo a, =0, 2:104” =00, and zjl |1 — | < o0
n= n=

Then the sequence {x,} converges strongly to a point 2o of EP(f) N A=Y(U~'0), where
20 = PEp(f)na-1(u-10)U-

Proof. Define Ay for the bifunction f and set B = Ay in Theorem 3.1. Thus we have the
desired result from Theorem 3.1. O
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As in the proof of Theorem 4.6, we obtain the following result from Theorem 3.2.

Theorem 4.7. Let Hy and H; be Hilbert spaces. Let C' be a nonempty, closed and convex
subset of a real Hilbert space Hy. Let f: C x C' — R satisfy the conditions (A1)-(A4) and
let T, be the resolvent of Ay for A, > 0 in Lemma 4.5. Let U : Hy — H» be an a-inverse
strongly monotone mapping. Let A : H; — Hs be a bounded linear operator. Suppose that
EP(f)NA=Y({U710) # 0. Let {u,} be a sequence in H; such that u,, — u. Let x1 = x € H;
and let {z,} C Hy be a sequence generated by

Tn+1 = 571,1771 + (1 - /Bn)(anun + (1 - O‘n)T)\n (I - /\TLA*UA)xn)

for all n € N, where {\,} C (0,00), {8} C (0,1) and {a,,} C (0, 1) satisfy

0<a<< A < 0<cec< B, <d<1,

2
(| A2’

oo
lim a,, =0 and E o, = 00.
n—oo 1

n—

Then the sequence {z,} converges strongly to a point zy of EP(f) N A~}(U~10), where
z0 = Prp(f)na-1(u-10)u-
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