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Lucchetti and Patrone [27] introduced the notion of well-posedness for variational in-
equalities and proved some related results by means of Ekeland ’s variational principle.
From then on, many papers have been devoted to the extensions of well-posedness of mini-
mization problems to various variational inequalities. Lignola and Morgan [25] generalized
the notion of well-posedness by perturbations to a variational inequality and established
the equivalence between the well-posedness by perturbations of a variational inequality and
the well-posedness by perturbations of the corresponding minimization problem. Lignola
and Morgan [26] investigated the concepts of α-well-posedness for variational inequalities.
Del Prete et al. [10] further proved that the α-well-posedness of variational inequalities
is closely related to the well-posedness of minimization problems. Recently, Fang et al.
[16] generalized the notions of well-posedness and α-well-posedness to a mixed variational
inequality. In the setting of Hilbert spaces, Fang et al. [16] proved that under suitable
conditions the well-posedness of a mixed variational inequality is equivalent to the exis-
tence and uniqueness of its solution. They also showed that the well-posedness of a mixed
variational inequality has close links with the well-posedness of the corresponding inclusion
problem and corresponding fixed point problem in the setting of Hilbert spaces. Very re-
cently, Fang et al. [15] generalized the notion of well-posedness by perturbations to a mixed
variational inequality in Banach spaces. In the setting of Banach spaces, they established
some metric characterizations, and showed that the well-posedness by perturbations of a
mixed variational inequality is closely related to the well-posedness by perturbations of the
corresponding inclusion problem and corresponding fixed point problem. They also derived
some conditions under which the well-posedness by perturbations of the mixed variational
inequality is equivalent to the existence and uniqueness of its solution.

On the other hand, the notion of hemivariational inequality was introduced by Pana-
giotopoulos [34, 35] at the beginning of the 1980s as a variational formulation for several
classes of mechanical problems with nonsmooth and nonconvex energy super-potentials. In
the case of convex super-potentials, hemivariational inequalities reduce to variational in-
equalities which were studied earlier by many authors (see e.g. Fichera [17] or Hartman and
Stampacchia [19]). Wangkeeree and Preechasilp [38] also introduced and studied some exis-
tence results for the hemivariational inequality governed by a multi-valued map perturbed
with a nonlinear term in reflexive Banach spaces. Recently Ceng et al. [4] considered an
extension of the notion of well-posedness by perturbations, introduced by Zolezzi for a min-
imization problem, to a class of variational-hemivariational inequalities with perturbations
in Banach spaces. Under very mild conditions, they established some metric characteri-
zations for the well-posed variational-hemivariational inequality, and proved that the well-
posedness by perturbations of a variational hemivariational inequality is closely related to
the well-posedness by perturbations of the corresponding inclusion problem. Furthermore,
in the setting of finite-dimensional spaces they also derived some conditions under which
the variational-hemivariational inequality is strongly generalized well-posed-like by pertur-
bations.

The aim of this paper is to introduce the new notion of well-posedness by perturbations
to the hemivariational inequality governed by a multi-valued map perturbed with a nonlinear
term (HVIMN) in Banach spaces. Under very suitable conditions, we establish some metric
characterizations for the well-posed (HVIMN). In the setting of finite-dimensional spaces,
the strongly generalized well-posedness by perturbations for (HVIMN) are established. The
example illustrating main results is established. Our results are new and improve recent
existing ones in the literature.
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2 Preliminaries

Let K be a nonempty, closed and convex subset of a real reflexive Banach space E with
its dual E∗, F : K ⇒ 2E

∗
a multivalued mapping. Let Ω be a bounded open set in RN ,

T : E → Lq(Ω;Rk) a linear continuous mapping, where 1 < q < ∞, k ≥ 1 and j : Ω×Rk → R
a function. We shall denote û := Tu, j◦(x, y;h) denotes the Clarke’s generalized directional
derivative of a locally Lipschitz mapping j(x, ·) at the point y ∈ Rk with respect to direction
h ∈ Rk, where x ∈ Ω.

For the given bifunction f : K × K → [−∞,+∞] imposed the condition that the set
D1(f) = {u ∈ K : f(u, v) ̸= −∞, ∀v ∈ K} is nonempty, Wangkeeree and Preechasilp
[38] introduced and studied the existence of a solution for the following hemivariational
inequality governed by a multi-valued map perturbed with a nonlinear term

(HVIMN)

 Find u ∈ D1(f) and u∗ ∈ F (u) such that
⟨u∗, v − u⟩+ f(u, v) +

∫
Ω
j◦(x, û(x); v̂(x)− û(x))dx ≥ 0,

∀v ∈ K.
(2.1)

Now, let us consider some special cases of the problem (2.1). If f(u, v) = ϕ(v) − ϕ(u),
where ϕ : X → R ∪ {+∞} is a proper, convex and lower semicontinuous function such that
Kϕ = K ∩ domϕ ̸= ∅, then D1(f) = Kϕ and (2.1) is reduced to the following variational-
hemivariational inequality problem: Find u ∈ Kϕ such that

⟨u∗, v − u⟩+ ϕ(v)− ϕ(u) +

∫
Ω

j(x, û(x); v̂(x)− û(x))dx ≥ 0, ∀v ∈ K. (2.2)

The problem (2.2) was studied by Costea and Lupu [8] by assuming that F is monotone and
lower hemicontinuous and several existence results were obtained. Furthermore, if F ≡ 0
and f(u, v) = Λ(u, v)− ⟨g∗, v − u⟩, where Λ : K ×K → R and g∗ ∈ X∗, then (2.1) reduces
to the problem: Find u ∈ K such that

Λ(u, v) +

∫
Ω

j(x, û(x); v̂(x)− û(x))dx ≥ ⟨g∗, v − u⟩, ∀v ∈ K. (2.3)

The problem (2.3) was studied by Costea and Radulescu [9] and it was called nonlinear
hemivariational inequality (see also Andrei and Costea [1] for some applications of nonlinear
hemivariational inequalities to Nonsmooth Mechanics).

Now, suppose that L is a parametric normed space, P ⊂ L is a closed ball with positive
radius p∗ ∈ P is a fixed point. Let F̃ : P × K → 2E

∗
be multivalued mapping. Let

T̃ : P × E → Lp(Ω;Rk) be a linear continuous mapping, where 1 < p < ∞, k ≥ 1 and
j̃ : P × Ω × Rk → R a function. We denote j̃◦p(x, y;h) denotes the Clarke’s generalized

directional derivative of a locally Lipschitz mapping j̃(p, x, ·) at the point y ∈ Rk with
respect to direction h ∈ Rk. For the given bifunction f̃ : P × K × K → [−∞,+∞], we
assume the condition

D̃1(f̃) = {u ∈ K|f̃(p∗, u, v) ̸= −∞, ∀v ∈ K} ≠ ∅.

The perturbed problem of the HVIMN (2.1) is given by

(HVIMNp∗)


Find u ∈ D̃1(f̃) and u∗ ∈ F̃ (p∗, u) such that

⟨u∗, v − u⟩+ f̃(p∗, u, v) +
∫
Ω
j̃◦p∗(x, û(x); v̂(x)− û(x))dx ≥ 0,

∀v ∈ K.

(2.4)
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Let ∂̄j : E → 2E
∗ \ {0} denote the Clarke ’s generalized gradient of locally Lipschitz

functional j (see [7]). That is

∂̄j(x) = {ξ ∈ E∗ : ⟨ξ, v⟩ ≤ j0(x, y), ∀y ∈ E}.

The following useful results can be found in [7].

Proposition 2.1. Let X be a Banach space, x, y ∈ X and J be a locally Lipschitz functional
defined on X. Then

(i) The function y 7→ j◦(x, y) is finite, positively homogeneous, subadditive and then con-
vex on X;

(ii) j◦(x, y) is upper semicontinuous as a function of (x, y), as a function of y alone, is
Lipschitz continuous on X;

(iii) j◦(x,−y) = (−j)◦(x, y);

(iv) ∂̄j(x) is a nonempty, convex, bounded, weak*-compact subset of X∗;

(v) For every y ∈ X, one has

j◦(x, y) = max{⟨ξ, y⟩ : ξ ∈ ∂̄j(x)}.

Definition 2.2. The set-valued map F is said to be

(i) upper semicontinuous (usc) at x ∈ dom F if for any open set U satisfying F (x) ⊂ U,
there exists a δ > 0 such that F (y) ⊂ U, for every y ∈ B(x, δ);

(ii) lower semicontinuous (lsc) at x ∈ dom F if for any open set U satisfying F (x)∩U ̸= ∅,
there exists a δ > 0 such that F (y) ∩ U ̸= ∅, for every y ∈ B(x, δ);

(iii) closed at x ∈ dom F if for each sequence {xn} in X converging to x and {yn} in Y
converging to y such that yn ∈ F (xn), we have y ∈ F (x).

If S ⊆ X, then F is said to be usc (lsc, closed respectively) on the set S if F is usc (lsc,
closed respectively) at every x ∈ dom F ∩ S.

Remark 2.3. An equivalent formulation of Definition 2.2(ii) is as follows: F is said to be
lsc at x ∈ dom F if for each sequence {xn} in dom F converging to x and for any y ∈ F (x),
there exists a sequence {yn} in F (xn) converging to y.

Definition 2.4 (see [20]). Let S be a nonempty subset of X. The measure, say µ, of
noncompactness for the set S is defined by

µ(S) := inf{ε > 0 : S ⊂ ∪n
i=1Si, diam|Si| < ε, i = 1, 2, . . . , n, for some integer n ≥ 1},

where diam|Si| means the diameter of set Si.

Definition 2.5 (see[20]). Let A,B be nonempty subsets of X. The Hausdorff metric H(·, ·)
between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},

where e(A,B) := supa∈A d(a,B) with d(a,B) = infb∈B ∥a− b∥.

Let {An} be a sequence of nonempty subsets of X. We say that An converges to A in the
sense of Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and only
if d(an, A) → 0 for all section an ∈ An. For more details on this topic, we refer the readers
to [20].
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3 Well-Posedness by Perturbations and Metric Characterizations

In this section, we generalize the concepts of well-posedness by perturbations to the varia-
tionalhemivariational inequality and establish their metric characterizations. In the sequel
we always denote by → and ⇀ the strong convergence and weak convergence, respectively.
Let α ≥ 0 be a fixed number.

Definition 3.1. Let {pn} ⊂ P be such that pn → p∗. A sequence {un} ⊂ E is called an
α-approximating sequence corresponding to {pn} for HVIMN (2.1) if there exist a sequence
{εn} of nonnegative numbers with εn → 0, u∗

n ∈ F̃ (pn, un) such that un ∈ D̃1(f̃), and

⟨u∗
n, v − un⟩+ f̃(pn, un, v) +

∫
Ω

j̃◦pn
(x, ûn(x); v̂(x)− ûn(x))dx

≥ −α

2
∥v − un∥2 − εn, ∀v ∈ K.

for each n ≥ 1. Whenever α = 0, we say that {un} is an approximating sequence correspond-
ing to {pn} for HVIMN (2.1). Clearly, every α2−approximating sequence corresponding to
{pn} is α1−approximating sequence corresponding to {pn} whenever α1 > α2 ≥ 0.

Definition 3.2. We say that HVIMN (2.1) is strongly (resp., weakly) α−well-posed by
perturbations if

(i) HVIMN (2.1) has a unique solution

(ii) for any {pn} ⊂ P with pn → p∗, every α−approximating sequence corresponding to
{pn} converges strongly (resp., weakly) to the unique solution.

In the sequel, strong (resp., weak) 0−well-posedness by perturbations is always called as
strong (resp., weak) well-posedness by perturbations. If α1 > α2 ≥ 0, then strong (resp.,
weak) α1−well-posedness by perturbations implies strong (resp., weak) α2−well-posedness
by perturbations.

Definition 3.3. We say that HVIMN (2.1) is strongly (resp., weakly) generalized α−well-
posed by perturbations if

(i) HVIMN (2.1) has a nonempty solution set S

(ii) for any {pn} ⊂ P with pn → p∗, every α−approximating sequence corresponding to
{pn} has some subsequence which converges strongly (resp., weakly) to some point of
S

In the sequel, strong (resp., weak) generalized 0−well-posedness by perturbations is
always called as strong (resp., weak) generalized well-posedness by perturbations.

If α1 > α2 ≥ 0, then strong (resp., weak) generalized α1−well-posedness by perturbations
implies strong (resp., weak) generalized α2−well-posedness by perturbations.

To derive the metric characterizations of α-well-posedness by perturbations, we consider
the following approximating solution set of HVIMN (2.1):

Ωα(ε) =
∪

p∈B(p∗,ε)

{u ∈ D̃1(f̃), u
∗ ∈ F̃ (p, u) : ⟨u∗, v − u⟩+ f̃(p, u, v)

+

∫
Ω

j̃◦p(x, û(x); v̂(x)− û(x))dx ≥ −α

2
∥v − u∥2 − ε,∀v ∈ K.}
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when B(p∗, ε) denotes the closed ball centered at p∗ with radius ε. In this section, we assume
that ū is a fixed solution of HVIMN (2.1). Define

θ(ε) = sup{∥u− ū∥ : u ∈ Ωα(ε)}, ∀ε ≥ 0.

It is easy to see that θ(ε) is the radius of the smallest closed ball centered at ū containing
Ωα(ε). Now, we give a metric characterization of strong α-well-posedness by perturbations
by considering the behavior of θ(ε) when ε → 0.

Theorem 3.4. HVIMN (2.1) is strongly α−well-posed by perturbations if and only if θ(ε) →
0 as ε → 0.

Proof. Assume that HVIMN (2.1) is strongly α−well-posed by perturbations. Then ū ∈ E
is the unique solution of HVIMN (2.1). Suppose to the contrary that θ(ε) ̸→ 0 as ε → 0.
There exist δ > 0 and 0 < εn → 0 such that

θ(εn) > δ > 0.

By the definition of θ, there exists un ∈ Ωα(εn) such that

∥un − ū∥ > δ. (3.1)

Since un ∈ Ωα(εn), there exist pn ∈ B(p∗, εn), u
∗
n ∈ F̃ (pn, un) such that

⟨u∗
n, v − un⟩+ f̃(pn, un, v) +

∫
Ω

j̃◦pn
(x, ûn(x); v̂(x)− ûn(x))dx ≥ −α

2
∥v − un∥2 − ε,

for all v ∈ K and n ≥ 1. Since pn ∈ B(p∗, εn), we have pn → p∗. Then {un} is an α
approximating sequence corresponding to {pn} for HVIMN (2.1). Since HVIMN (2.1) is
strongly α−well-posed by perturbations, we can get that ∥un − ū∥ → 0, which leads to a
contradiction with (3.1).

Conversely, suppose that θ(ε) → 0 as ε → 0. Then ū ∈ E is the unique solution of HVIMN
(2.1). Indeed, if û is another solution of HVIMN (2.1) with û ̸= ū, then by definition,

θ(ε) ≥ ∥ū− û∥ > 0, ∀ε ≥ 0,

a contradiction. Let pn ∈ P be such that pn → p∗ and let {un} be an α−approximating
sequence corresponding to {pn} for HVIMN (2.1). Then there exist 0 < εn → 0, u∗

n ∈
F̃ (pn, un) such that un ∈ D̃1(f̃) and

⟨u∗
n, v − un⟩+ f̃(pn, un, v) +

∫
Ω

j̃◦pn
(x, ûn(x); v̂(x)− ûn(x))dx ≥ −α

2
∥v − un∥2 − εn,

for all v ∈ K and n ≥ 1. Take δn = ∥pn − p∗∥ and ε′n = max{δn, εn}. It is easy to verify
that un ∈ Ωα(ε

′
n) with ε′n → 0. Put

tn = ∥un − ū∥,

by definition of θ, we can get that

θ(ε′n) ≥ tn = ∥un − ū∥.

Since θ(ε′n) → 0, we have ∥un−ū∥ → 0 as n → ∞. So, HVIMN (2.1) is strongly α−well-posed
by perturbations.
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Now, we give an example to illustrate Theorem 3.4.

Example 3.5. Let E = R, P = [−1, 1],K = R, p∗ = 0, α = 2, F̃ (p, u) = {2u}, j̃ =

0, f̃(p, u, v) = (1− (p2+1)2

4 )u2 for all p ∈ P, u, v ∈ K. Clearly u = 0 is a solution of HVIMN
(2.1). For any ε > 0, it follows that

Ωp
α(ε) =

{
u ∈ D̃1(f̃), u

∗ ∈ F̃ (p) : ⟨u∗, v − u⟩+ u2 − (p2 + 1)2

4
u2 ≥ −(v − u)2 − ε, ∀v ∈ K

}
=

{
u ∈ R : 2u(v − u) + u2 − (p2 + 1)2

4
u2 ≥ −(v − u)2 − ε, ∀v ∈ R

}
=

{
u ∈ R : −u2 + 2uv − (p2 + 1)2

3
u2 ≥ −(v − u)2 − ε, ∀v ∈ R

}
=

{
u ∈ R : v2 − (v − u)2 − (p2 + 1)2

4
u2 ≥ −(v − u)2 − ε, ∀v ∈ R

}
=

{
u ∈ R : −v2 +

(p2 + 1)2

4
u2 ≤ +ε, ∀v ∈ R

}
=

[
− 2

√
ε

p2 + 1
,

2
√
ε

p2 + 1

]
.

Therefore,

Ωα(ε) =
∪

p∈B(0,ε)

Ωp
α(ε) =

[
− 2

√
ε, 2

√
ε
]
,

for sufficiently small ε > 0. By trivial computation, we have

θ(ε) = sup{u− u∗ : u ∈ Ωα(ε)} = 2
√
ε → 0 as ε → 0.

By Theorem 3.4, HVIMN (2.1) is 2-well-posed by perturbations

To derive a characterization of strong generalized α−well-posedness by perturbations,
we need another function q which is defined by

q(ε) = e(Ωα(ε), S), ∀ε ≥ 0,

where S is the solution set of HVIMN (2.1) and e is defined as in definition 2.5.

Theorem 3.6. HVIMN (2.1) is strongly generalized α−well-posed by perturbations if and
only if S is nonempty compact and q(ε) → 0 as ε → 0.

Proof. Assume that HVIMN (2.1) is strongly generalized α−well-posed by perturbations.
Clearly, S is nonempty. Let {un} be any sequence in S and {pn} ⊂ P be such that pn = p∗.
Then {un} is an α-approximating sequence corresponding to {pn} for HVIMN (2.1). Since
HVIMN (2.1) is strongly generalized α−well-posed by perturbations, we have {un} has a
subsequence which converges strongly to some point of S. Thus S is compact. Next, we
suppose that q(ε) ̸→ 0 as ε → 0, then there exist l > 0, 0 < εn → 0 and un ∈ Ωα(εn) such
that

un ̸∈ S +B(0, l), ∀n ≥ 1. (3.2)

Since un ∈ Ωα(εn), there exist pn ∈ B(p∗, ε), u∗
n ∈ F̃ (pn, un) such that un ∈ D̃1(f̃) and

⟨u∗
n, v − un⟩+ f̃(pn, un, v) +

∫
Ω

j̃◦pn
(x, ûn(x); v̂(x)− ûn(x))dx ≥ −α

2
∥v − un∥2 − ε,
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for all v ∈ K and n ≥ 1. Since pn ∈ B(p∗, εn), we have pn → p∗. Then {un} is an α
approximating sequence corresponding to {pn} for HVIMN (2.1). Since HVIMN (2.1) is
strongly generalized α−well-posed by perturbations, there exists a subsequence {unk

} of
{un} converging strongly to some point of S, which leads to a contradiction with (3.2) and
so q(ε) → 0 as ε → 0.

Conversely, we assume that S is nonempty compact and q(ε) → 0 as ε → 0. Let {pn} ⊂ P
be such that pn → p∗ and let {un} be an α−approximating sequence corresponding to {pn}.
Take ε′n = max{εn, ∥pn − p∗∥}. Thus ε′n → 0 and xn ∈ Ωα(ε

′
n). It follows that

d(un, S) ≥ e(Ωα(ε
′
n), S) = q(ε′n) → 0.

Since S is compact, there exists ūn ∈ S such that

∥un − ūn∥ = d(xn, S) → 0.

Again from the compactness of S, {ūn} has a subsequence {ūnk
} which converges to ū. Thus

HVIMN (2.1) is strongly generalized α−well-posed by perturbations.

The following example is shown for illustrating the metric characterizations in The-
orem 3.6.

Example 3.7. Let E = R, P = [−1, 1],K = R, p∗ = 0, α = 2, F̃ (p, u) = {2u}, j̃ =

0, f̃(p, u, v) = (1 − (p2+1)2

4 )u2 for all p ∈ P, u, v ∈ K. It is easy to see that u = 0 is a
solution of HVIMN (2.1). Repeating the same argument as in Example 3.5, we obtain that

Ωα(ε) =
∪

p∈B(0,ε)

Ωp
α(ε) =

[
− 2

√
ε, 2

√
ε
]
,

for sufficiently small ϵ > 0. By trivial computation, we have

q(ϵ) = e(Ωα(ϵ), S) = sup
u(ϵ)∈Ωα(ϵ)

d(u(ϵ), S) → 0 as ϵ → 0.

By Theorem 3.6, HVIMN (2.1) is strongly generalized α−well-posed by perturbations.

The strong generalized α-well-posedness by perturbations can be also characterized by
the behavior of the noncompactness measure µ(Ωα(ϵ)).

Theorem 3.8. Let L be finite-dimensional, j̃◦p(x, y) be upper semicontinuous as a functional

of (p, x, y) ∈ P × E × E and f is convex. Let F̃ is closed on P × K and f̃ be continuous
on P ×K ×K. Then HVIMN (2.1) is strongly generalized α−well-posed by perturbations if
and only if Ωα(ε) ̸= ∅,∀ε > 0 and µ(Ωα(ε)) → 0 as ε → 0.

Proof. First, we will prove that Ωα(ε) is closed for all ε ≥ 0. Let {un} ⊂ Ωα(ε) with un → ū.
Then there exist pn ∈ B(p∗, ε), u∗

n ∈ F̃ (pn, un) such that un ∈ D̃1(f̃) and

⟨u∗
n, v − un⟩+ f̃(pn, un, v) +

∫
Ω

j̃◦pn
(x, ûn(x); v̂(x)− ûn(x))dx ≥ −α

2
∥v − un∥2 − ε, (3.3)

for all v ∈ K and n ≥ 1. Without loss of generality, we may assume that pn → p̄ ∈ B(p∗, ε)
because L is finite dimensional. Since j̃p(x, y) is upper semicontinuous as a functional of

(p, x, y) ∈ P × E × E. Hence it follows from (3.3) and the continuity of f̃ that

⟨u∗, v − ū⟩+ f̃(p̄, ū, v) +

∫
Ω

j̃◦p̄(x, ûn(x); v̂(x)− ûn(x))dx
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≥ lim sup
n→∞

⟨u∗
n, v − un⟩+ f̃(pn, un, v) +

∫
Ω

j̃◦pn
(x, ûn(x); v̂(x)− ûn(x))dx

≥ lim sup
n→∞

−α

2
∥v − un∥2 − ε,

= −α

2
∥v − ū∥2 − ε ∀v ∈ K.

Thus ū ∈ Ωα(ε). Hence Ωα(ε) is closed.
Next, we show that

S =
∩
ε>0

Ωα(ε). (3.4)

It is easy to see that S ⊆ ∩ε>0Ωα(ε). Thus, we show that ∩ε>0Ωα(ε) ⊆ S. Let ū ∈ ∩ε>0Ωα(ε).
Let {εn} be a sequence of positive real numbers such that εn → 0. Thus

ū ∈ Ωα(εn)

and so there exist pn ∈ B(p∗, εn) and u∗ ∈ F̃ (pn, ū) such that ū ∈ D̃1(f̃) and

⟨u∗, v − ū⟩+ f̃(pn, ū, v) +

∫
Ω

j̃◦pn
(x, ˆ̄u(x); v̂(x)− ˆ̄u(x))dx ≥ −α

2
∥v − ū∥2 − εn, (3.5)

for all v ∈ K and n ≥ 1. It is easy to verify that pn → p∗. Taking limit as n → ∞, we can
get that

⟨u∗, v − ū⟩+ f(ū, v) +

∫
Ω

j◦(x, ˆ̄u(x); v̂(x)− ˆ̄u(x))dx

= ⟨u∗, v − ū⟩+ f̃(p∗, ū, v) +

∫
Ω

j̃◦p∗(x, ˆ̄u(x); v̂(x)− ˆ̄u(x))dx

≥ −α

2
∥v − ū∥2, ∀v ∈ K (3.6)

Since F̃ is closed on P × K, we have u∗ ∈ F (ū) and for any z ∈ K and t ∈ (0, 1), letting
v = ū+ t(z − ū) in (3.6), we can get from T is linear, f is convex and definition of j◦ that

t⟨u∗, z − ū⟩+ tf(ū, z) +

∫
Ω

j◦(x, ˆ̄u(x); v̂(x)− ˆ̄u(x))dx

≥ t⟨u∗, z − ū⟩+ f(ū, ū+ t(z − ū)) +

∫
Ω

j◦(x, ˆ̄u(x); ẑ(x)− ˆ̄u(x))dx

≥ −αt2

2
∥z − ū∥2.

This implies that

⟨u∗, z − ū⟩+ tf(ū, z) +

∫
Ω

j◦(x, ˆ̄u(x); v̂(x)− ˆ̄u(x))dx ≥ −αt

2
∥z − ū∥2 ∀z ∈ K.

As t → 0 in the last inequality, we get

⟨u∗, z − ū⟩+ tf(ū, z) +

∫
Ω

j◦(x, ˆ̄u(x); v̂(x)− ˆ̄u(x))dx ≥ 0 ∀z ∈ K.

Hence ū ∈ S and thus (3.4) is proved. Next, we suppose that HVIMN (2.1) is strongly
generalized α−well-posed by perturbations. By Theorem 3.6, we can get that S is nonempty
compact and q(ε) → 0. Since S ⊂ Ωα(ε) for all ε > 0, we have

Ωα(ε) ̸= ∅, ∀ε > 0.
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We observe that for each ε > 0,

H(Ωα(ε), S) = max{e(Ωα(ε), S), e(S,Ωα(ε))} = e(Ωα(ε), S).

By the compactness of S, we have

µ(Ωα(ε)) ≤ 2H(Ωα(ε), S) = 2q(ε) → 0.

Conversely, we suppose that Ωα(ε) ̸= ∅, ∀ε > 0 and µ(Ωα(ε)) → 0 as ε → 0. Since Ωα(·),
by the Kuratowski theorem, we can get from (3.4) that

q(ε) = H(Ωα(ε), S) → 0 as ε → 0

and S is nonempty compact. Hence HVIMN (2.1) is strongly generalized α−well-posed by
perturbations by Theorem 3.6.

The following example is given for illustrating the measure in Theorem 3.8.

Example 3.9. Let E = R, P = [−1, 1],K = R, p∗ = 0, α = 2, F̃ (p, u) = {2u}, j̃ =

0, f̃(p, u, v) = (1 − (p2+1)2

4 )u2 for all p ∈ P, u, v ∈ K. It is easy to see that u = 0 is a
solution of HVIMN (2.1). Repeating the same argument as in Example 3.5, we obtain that

Ωα(ε) =
∪

p∈B(0,ε)

Ωp
α(ε) =

[
− 2

√
ε, 2

√
ε
]
.

We will show that µ(Ωα(ϵ)) = 0 for each ϵ > 0. Let ϵ > 0. Consider

µ(Ωα(ϵ)) = inf{λ > 0 : [−2
√
ϵ, 2

√
ϵ] ⊆

n∪
k=1

[ak, bk], with diam[ak, bk] < λ, ∀i = 1, . . . , n, ∃n ∈ N}.

For every λ > 0, we can find n ∈ N with a1 = −2
√
ϵ, bn = 2

√
ϵ such that

[−2
√
ϵ, 2

√
ϵ] ⊆

n∪
k=1

[ak, bk] and diam[ak, bk] < λ.

This implies that µ(Ωα(ϵ)) = 0 for each ϵ > 0. Then HVIMN (2.1) is strongly generalized
α−well-posed by perturbations.

Remark 3.10. Any solution of HVIMN (2.1) is a solution of the α problem: find u ∈ D1(f)
and u∗ ∈ F (u) such that

⟨u∗, v − u⟩+ f(u, v) +

∫
Ω

j◦(x, û(x); v̂(x)− û(x))dx ≥ −α

2
∥y − x∥2, ∀v ∈ K,

but the converse is not true in general. To show this, let K = R,

F (u) = {u}, f(u, v) = 2u2 − v and j = 0,

for all u, v ∈ K. It is easy to see that the solution set of HVIMN (2.1) is empty and u∗ = u = 0
is the unique solution of the corresponding α problem with α = 2.
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