

FIXED POINT THEOREMS AND MEAN CONVERGENCE THEOREMS FOR GENERALIZED HYBRID SELF MAPPINGS AND NON-SELF MAPPINGS IN HILBERT SPACES

Toshiharu Kawasaki

Abstract: In this paper we prove fixed point theorems and mean convergence theorems for widely more generalized hybrid self mappings and non-self mappings in Hilbert spaces.

Key words: fixed point theorem, mean convergence theorem, widely more generalized hybrid mapping, Hilbert space.

Mathematics Subject Classification: 47H10.

1 Introduction

Let H be a real Hilbert space and let C be a non-empty subset of H. In 2010, Kocourek, Takahashi and Yao [16] defined a class of nonlinear mappings in a Hilbert space. A mapping T from C into H is said to be generalized hybrid if there exist real numbers α and β such that

$$\alpha \|Tx - Ty\|^{2} + (1 - \alpha)\|x - Ty\|^{2} \le \beta \|Tx - y\|^{2} + (1 - \beta)\|x - y\|^{2}$$

for any $x, y \in C$. We call such a mapping an (α, β) -generalized hybrid mapping. We observe that the class of the mappings covers the classes of well-known mappings. For example, an (α, β) -generalized hybrid mapping is nonexpansive [21] for $\alpha = 1$ and $\beta = 0$, that is, $||Tx - Ty|| \leq ||x - y||$ for any $x, y \in C$. It is nonspreading [18] for $\alpha = 2$ and $\beta = 1$, that is, $2||Tx - Ty||^2 \leq ||Tx - y||^2 + ||Ty - x||^2$ for any $x, y \in C$. It is also hybrid [22] for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$, that is, $3||Tx - Ty||^2 \leq ||x - y||^2 + ||Tx - y||^2 + ||Ty - x||^2$ for any $x, y \in C$. They proved fixed point theorems for such mappings; see also Kohsaka and Takahashi [17] and Iemoto and Takahashi [9]. Moreover they proved a nonlinear ergodic theorem. Furthermore they defined a more broad class of nonlinear mappings than the class of generalized hybrid mappings. A mapping T from C into H is said to be super hybrid if there exist real numbers α, β and γ such that

$$\begin{aligned} \alpha \|Tx - Ty\|^2 + (1 - \alpha + \gamma)\|x - Ty\|^2 \\ &\leq (\beta + (\beta - \alpha)\gamma)\|Tx - y\|^2 + (1 - \beta - (\beta - \alpha - 1)\gamma)\|x - y\|^2 \\ &+ (\alpha - \beta)\gamma\|x - Tx\|^2 + \gamma\|y - Ty\|^2 \end{aligned}$$

© 2016 Yokohama Publishers

for any $x, y \in C$. We call such a mapping an (α, β, γ) -super hybrid mapping. A generalized hybrid mapping with a fixed point is quasinonexpansive. However a super hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point. Very recently, the author [13] also defined a class of nonlinear mappings in a Hilbert space which covers the class of contractive mappings and the class of generalized hybrid mappings. A mapping T from C into H is said to be widely generalized hybrid if there exist real numbers $\alpha, \beta, \gamma, \delta, \varepsilon$ and ζ such that

$$\alpha ||Tx - Ty||^{2} + \beta ||x - Ty||^{2} + \gamma ||Tx - y||^{2} + \delta ||x - y||^{2} + \max\{\varepsilon ||x - Tx||^{2}, \zeta ||y - Ty||^{2}\} \le 0$$

for any $x, y \in C$. Furthermore the author [14] defined a class of nonlinear mappings in a Hilbert space which covers the class of super hybrid mappings and the class of widely generalized hybrid mappings. A mapping T from C into H is said to be widely more generalized hybrid if there exist real numbers $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ and η such that

$$\alpha \|Tx - Ty\|^{2} + \beta \|x - Ty\|^{2} + \gamma \|Tx - y\|^{2} + \delta \|x - y\|^{2} + \varepsilon \|x - Tx\|^{2} + \zeta \|y - Ty\|^{2} + \eta \|(x - Tx) - (y - Ty)\|^{2} \le 0$$

for any $x, y \in C$. We call such a mapping an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping. Then we prove fixed point theorems for such new mappings in a Hilbert space. Furthermore we prove nonlinear ergodic theorems of Baillon's type in a Hilbert space. It seems that the results are new and useful. For example, using our fixed point theorems, we can directly prove Browder and Petryshyn's fixed point theorem [5] for strictly pseudocontractive mappings and Kocourek, Takahashi and Yao's fixed point theorem [16] for super hybrid mappings. On the other hand, Hojo, Takahashi and Yao [8] defined a more broad class of nonlinear mappings than the class of generalized hybrid mappings. A mapping T from C into H is said to be extended hybrid if there exist real numbers α, β and γ such that

$$\begin{aligned} &\alpha(1+\gamma) \|Tx - Ty\|^2 + (1 - \alpha(1+\gamma)) \|x - Ty\|^2 \\ &\leq (\beta + \alpha\gamma) \|Tx - y\|^2 + (1 - (\beta + \alpha\gamma)) \|x - y\|^2 \\ &- (\alpha - \beta)\gamma \|x - Tx\|^2 - \gamma \|y - Ty\|^2 \end{aligned}$$

for any $x, y \in C$. We call such a mapping an (α, β, γ) -extended hybrid mapping. Furthermore they proved a fixed point theorem for generalized hybrid non-self mappings by using the extended hybrid mapping.

In this paper we prove fixed point theorems and mean convergence theorems for widely more generalized hybrid self mappings and non-self mappings in Hilbert spaces.

2 Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ and let Cbe a non-empty subset of H. We denote by F(T) the set of fixed points of T. A mapping T from C into H with $F(T) \neq \emptyset$ is said to be quasi-nonexpansive if $\|x - Ty\| \leq \|x - y\|$ for any $x \in F(T)$ and for any $y \in C$. It is well-known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [10]. It is not difficult to prove such a result in a Hilbert space; see, for instance, [26]. Let C be a non-empty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. The mapping P_C is said to be the metric projection from H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle \ge 0$$

for any $x \in H$ and for any $u \in C$; see [21] for more details.

3 Fixed Point Theorems for Self Mappings

In this section we consider fixed point theorems for widely more generalized hybrid self mappings.

Theorem 3.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which satisfies the following condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$ and $\zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$ and $\varepsilon + \eta \ge 0$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, $2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta > 0$ and $\varepsilon + \zeta + 2\eta \ge 0$.

Then T has a fixed point if and only if there exists $z \in C$ such that $\{T^n z \mid n \in \mathbb{N} \cup \{0\}\}$ is bounded. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the conditions (1), (2) and (3).

Proof. In [14] we obtained the results in the cases of (1) and (2). We show in the case of (3). Since T is an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping,

$$\alpha \|Tx - Ty\|^{2} + \beta \|x - Ty\|^{2} + \gamma \|Tx - y\|^{2} + \delta \|x - y\|^{2} + \varepsilon \|x - Tx\|^{2} + \zeta \|y - Ty\|^{2} + \eta \|(x - Tx) - (y - Ty)\|^{2} \le 0$$

for any $x, y \in C$. By replacing the variables x and y, we obtain

$$\alpha \|Tx - Ty\|^{2} + \gamma \|x - Ty\|^{2} + \beta \|Tx - y\|^{2} + \delta \|x - y\|^{2} + \zeta \|x - Tx\|^{2} + \varepsilon \|y - Ty\|^{2} + \eta \|(x - Tx) - (y - Ty)\|^{2} \le 0$$

for any $x, y \in C$. Therefore we obtain

$$2\alpha ||Tx - Ty||^{2} + (\beta + \gamma)||x - Ty||^{2} + (\beta + \gamma)||Tx - y||^{2} + 2\delta ||x - y||^{2} + (\varepsilon + \zeta)||x - Tx||^{2} + (\varepsilon + \zeta)||y - Ty||^{2} + 2\eta ||(x - Tx) - (y - Ty)||^{2} \le 0$$

for any $x, y \in C$ and hence T is a $(2\alpha, \beta + \gamma, \beta + \gamma, 2\delta, \varepsilon + \zeta, \varepsilon + \zeta, 2\eta)$ -widely more generalized hybrid mapping. Moreover, since

$$\begin{aligned} &2\alpha + (\beta + \gamma) + (\beta + \gamma) + 2\delta = 2(\alpha + \beta + \gamma + \delta) \ge 0\\ &2\alpha + (\beta + \gamma) + (\varepsilon + \zeta) + 2\eta > 0,\\ &(\varepsilon + \zeta) + 2\eta \ge 0 \end{aligned}$$

hold, we obtain the desired result by the case of (1) or (2).

Remark 3.2. The conditions (1), (2) and (3) in Theorem 3.1 are not contained each other. For instance, if $\alpha = 2, \beta = -2, \gamma = \delta = \zeta = \eta = 0, \varepsilon = -1$, then, since

$$\begin{split} &\alpha+\beta+\gamma+\delta=0\geq 0,\\ &\alpha+\gamma+\varepsilon+\eta=1>0,\\ &\zeta+\eta=0\geq 0, \end{split}$$

(1) is satisfied and hence this mapping has a fixed point. However, since

$$\begin{split} \varepsilon + \eta &= -1 \not\geq 0, \\ \varepsilon + \zeta + 2\eta &= -1 \not\geq 0, \end{split}$$

(2) and (3) are not satisfied. Similarly, for instance, $\alpha = 2, \beta = \delta = \varepsilon = \eta = 0, \gamma = -2, \zeta = -1$, then, since

$$\begin{aligned} \alpha + \beta + \gamma + \delta &= 0 \ge 0, \\ \alpha + \beta + \zeta + \eta &= 1 > 0, \\ \varepsilon + \eta &= 0 > 0, \end{aligned}$$

(2) is satisfied and hence this mapping has a fixed point. However, since

$$\begin{split} \zeta + \eta &= -1 \not\geq 0, \\ \varepsilon + \zeta + 2\eta &= -1 \not\geq 0, \end{split}$$

(1) and (3) are not satisfied. Similarly, for instance, $\alpha = 2, \beta = \gamma = \zeta = -1, \delta = \eta = 0, \varepsilon = 1$, then, since

$$\begin{aligned} \alpha + \beta + \gamma + \delta &= 0 \ge 0, \\ 2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta &= 2 > 0, \\ \varepsilon + \zeta + 2\eta &= 0 \ge 0, \end{aligned}$$

(3) is satisfied and hence this mapping has a fixed point. However, since

$$\begin{split} \zeta + \eta &= -1 \not\geq 0, \\ \alpha + \beta + \zeta + \eta &= 0 \not\geq 0, \end{split}$$

(1) and (2) are not satisfied.

Such a phenomenon also occurs in Theorem 3.3, Theorem 3.4, Theorem 4.1, Theorem 4.2, Theorem 5.1, Theorem 5.2, Theorem 6.1, Theorem 6.2, Theorem 6.3 and Theorem 6.4.

As a direct consequence of Theorem 3.1, we obtain the following; see Kawasaki and Takahashi [14].

Theorem 3.3. Let H be a real Hilbert space, let C be a bounded closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which satisfies the following condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$ and $\zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$ and $\varepsilon + \eta \ge 0$;
- $(3) \ \alpha+\beta+\gamma+\delta\geq 0, \ 2\alpha+\beta+\gamma+\varepsilon+\zeta+2\eta>0 \ and \ \varepsilon+\zeta+2\eta\geq 0.$

Then T has a fixed point. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the conditions (1), (2) and (3).

Moreover, by Theorem 3.1, we obtain the following fixed point theorem; see Kawasaki and Takahashi [14, 15].

Theorem 3.4. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which satisfies the following conditions (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in [0, 1)$ such that $(\alpha + \beta)\lambda + \zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in [0, 1)$ such that $(\alpha + \gamma)\lambda + \varepsilon + \eta \ge 0$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, $2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta > 0$, and there exists $\lambda \in [0, 1)$ such that $(2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta \ge 0$.

Then T has a fixed point if and only if there exists $z \in C$ such that $\{((1-\lambda)T+\lambda I)^n z \mid n \in \mathbb{N} \cup \{0\}\}$ is bounded for $\lambda \in [0,1) \cap \{\lambda \mid (\alpha+\beta)\lambda+\zeta+\eta \ge 0\}$, $\lambda \in [0,1) \cap \{\lambda \mid (\alpha+\gamma)\lambda+\varepsilon+\eta \ge 0\}$ or $\lambda \in [0,1) \cap \{\lambda \mid (2\alpha+\beta+\gamma)\lambda+\varepsilon+\zeta+2\eta \ge 0\}$, respectively. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the condition (1), (2) and (3).

Proof. In [14] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

4 Fixed Point Theorems for Non-Self Mappings

In this section we consider fixed point theorems for widely more generalized hybrid non-self mappings. By Theorem 3.3, we obtain a fixed point theorem for widely more generalized hybrid non-self mappings in a Hilbert space; see Kawasaki and Kobayashi [12].

Theorem 4.1. Let H be a real Hilbert space, let C be a non-empty bounded closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H which satisfies the following condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $\lambda \ne 1$ and $(\alpha + \beta)\lambda + \zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $\lambda \ne 1$ and $(\alpha + \gamma)\lambda + \varepsilon + \eta \ge 0$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, $2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $\lambda \ne 1$ and $(2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta \ge 0$.

Suppose that for any $x \in C$ there exist $m \in \mathbb{R}$ and $y \in C$ such that $0 \leq (1 - \lambda)m \leq 1$ and Tx = x + m(y - x). Then T has a fixed point. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the conditions (1), (2) and (3).

Proof. In [12] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

By Theorem 4.1, we obtain a fixed point theorem for widely more generalized hybrid non-self mappings in a Hilbert space; see Kawasaki [11].

Theorem 4.2. Let H be a real Hilbert space, let C be a non-empty bounded closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H which satisfies the following condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $\lambda \ne 1$ and $(\alpha + \beta)\lambda + \zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $\lambda \ne 1$ and $(\alpha + \gamma)\lambda + \varepsilon + \eta \ge 0$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, $2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $\lambda \ne 1$ and $(2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta \ge 0$.

Suppose that there exists $N \in \mathbb{R}$ with N > 0 such that for any $x \in C$ there exist $m \in M(N)$ and $y \in C$ such that Tx = x + m(y - x), where

$$M(N) = \begin{cases} \left[\frac{1}{1-\lambda}, 0\right] & \text{if } \alpha + \beta > 0 \text{ and } \lambda > 1, \\ \left[0, N\right] & \text{if } \alpha + \beta > 0 \text{ and } \lambda < 1, \\ \left[0, N\right] \text{ or } \left[-N, 0\right] & \text{if } \alpha + \beta = 0, \\ \left[-N, 0\right] & \text{if } \alpha + \beta < 0 \text{ and } \lambda > 1, \\ \left[0, \frac{1}{1-\lambda}\right] & \text{if } \alpha + \beta < 0 \text{ and } \lambda < 1 \end{cases}$$

in the case of (1),

$$M(N) = \begin{cases} \left[\frac{1}{1-\lambda}, 0\right] & \text{if } \alpha + \gamma > 0 \text{ and } \lambda > 1, \\ \left[0, N\right] & \text{if } \alpha + \gamma > 0 \text{ and } \lambda < 1, \\ \left[0, N\right] \text{ or } \left[-N, 0\right] & \text{if } \alpha + \gamma = 0, \\ \left[-N, 0\right] & \text{if } \alpha + \gamma < 0 \text{ and } \lambda > 1, \\ \left[0, \frac{1}{1-\lambda}\right] & \text{if } \alpha + \gamma < 0 \text{ and } \lambda < 1 \end{cases}$$

in the case of (2) and

$$M(N) = \begin{cases} \left[\frac{1}{1-\lambda}, 0\right] & \text{if } 2\alpha + \beta + \gamma > 0 \text{ and } \lambda > 1, \\ \left[0, N\right] & \text{if } 2\alpha + \beta + \gamma > 0 \text{ and } \lambda < 1, \\ \left[0, N\right] \text{ or } \left[-N, 0\right] & \text{if } 2\alpha + \beta + \gamma = 0, \\ \left[-N, 0\right] & \text{if } 2\alpha + \beta + \gamma < 0 \text{ and } \lambda > 1, \\ \left[0, \frac{1}{1-\lambda}\right] & \text{if } 2\alpha + \beta + \gamma < 0 \text{ and } \lambda < 1 \end{cases}$$

in the case of (3). Then T has a fixed point. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on (1), (2) and (3).

Proof. In [11] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

5 Mean Convergence Theorems for Self Mappings

In this section we consider mean convergence theorems for widely more generalized hybrid self mappings.

Theorem 5.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which has a fixed point and satisfies the conditions (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, $\alpha + \gamma > 0$ and $\varepsilon + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, $\alpha + \beta > 0$ and $\zeta + \eta \ge 0$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, $2\alpha + \beta + \gamma > 0$ and $\varepsilon + \zeta + 2\eta \ge 0$.

Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

is weakly convergent to $p \in F(T)$, where P is the metric projection of H onto F(T) and $p = \lim_{n \to \infty} PT^n x$.

Proof. In [14] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

By Theorem 5.1, we obtain the following mean convergence theorem; see Kawasaki and Takahashi [14, 15].

Theorem 5.2. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which has a fixed point and satisfies the conditions (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in [0,1)$ such that $0 \le (\alpha + \gamma)\lambda + \varepsilon + \eta < \alpha + \gamma + \varepsilon + \eta$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in [0,1)$ such that $0 \le (\alpha + \beta)\lambda + \zeta + \eta < \alpha + \beta + \zeta + \eta$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, and there exists $\lambda \in [0, 1)$ such that $0 \le (2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta < 2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta$.

Then for any real number $\lambda \in [0,1) \cap \{\lambda \mid 0 \leq (\alpha + \gamma)\lambda + \varepsilon + \eta < \alpha + \gamma + \varepsilon + \eta\}, \lambda \in [0,1) \cap \{\lambda \mid 0 \leq (\alpha + \beta)\lambda + \zeta + \eta < \alpha + \beta + \zeta + \eta\}$ or $\lambda \in [0,1) \cap \{\lambda \mid 0 \leq (2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta < 2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta\}$, respectively, and for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} ((1-\lambda)T + \lambda I)^k x$$

is weakly convergent to $p \in F(T)$, where P is the metric projection of H onto F(T) and $p = \lim_{n \to \infty} P((1 - \lambda)T + \lambda I)^n x$.

Proof. In [14] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

6 Mean Convergence Theorems for Non-Self Mappings

In this section we consider mean convergence theorems for widely more generalized hybrid non-self mappings.

Theorem 6.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H which has a fixed point and satisfies the condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, $\alpha + \gamma > 0$ and $\varepsilon + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, $\alpha + \beta > 0$ and $\zeta + \eta \ge 0$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, $2\alpha + \beta + \gamma > 0$ and $\varepsilon + \zeta + 2\eta \ge 0$.

Then for any $x \in C(T; 0) = \{z \mid T^n z \in C \text{ for any } n \in \mathbb{N} \cup \{0\}\},\$

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

is weakly convergent to $p \in F(T)$, where P is the metric projection of H onto F(T) and $p = \lim_{n \to \infty} PT^n x$.

Proof. In [12] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

Theorem 6.2. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H which has a fixed point and satisfies the condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (\alpha + \gamma)\lambda + \varepsilon + \eta < \alpha + \gamma + \varepsilon + \eta$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (\alpha + \beta)\lambda + \zeta + \eta < \alpha + \beta + \zeta + \eta$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta < 2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta$.

Then for any $x \in C(T; \lambda) = \{z \mid ((1 - \lambda)T + \lambda I)^n z \in C \text{ for any } n \in \mathbb{N} \cup \{0\}\},\$

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} ((1-\lambda)T + \lambda I)^k x$$

is weakly convergent to $p \in F(T)$, where P is the metric projection of H onto F(T) and $p = \lim_{n \to \infty} P((1 - \lambda)T + \lambda I)^n x$.

Proof. In [12] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

Theorem 6.3. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H which satisfies the following condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (\alpha + \gamma)\lambda + \varepsilon + \eta < \alpha + \gamma + \varepsilon + \eta$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (\alpha + \beta)\lambda + \zeta + \eta < \alpha + \beta + \zeta + \eta$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta < 2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta$.

Suppose that for any $x \in C$ there exist $m \in \mathbb{R}$ and $y \in C$ such that $0 \leq (1 - \lambda)m \leq 1$ and Tx = x + m(y - x). Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} ((1-\lambda)T + \lambda I)^k x$$

is weakly convergent to $p \in F(T)$, where P is the metric projection of H onto F(T) and $p = \lim_{n \to \infty} P((1 - \lambda)T + \lambda I)^n x$.

Proof. In [12] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

By Theorem 6.3, we obtain the following mean convergence theorem; see Kawasaki [11].

Theorem 6.4. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H which satisfies the following condition (1), (2) or (3):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (\alpha + \gamma)\lambda + \varepsilon + \eta < \alpha + \gamma + \varepsilon + \eta$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (\alpha + \beta)\lambda + \zeta + \eta < \alpha + \beta + \zeta + \eta$;
- (3) $\alpha + \beta + \gamma + \delta \ge 0$, and there exists $\lambda \in \mathbb{R}$ such that $0 \le (2\alpha + \beta + \gamma)\lambda + \varepsilon + \zeta + 2\eta < 2\alpha + \beta + \gamma + \varepsilon + \zeta + 2\eta$.

Suppose that there exists $N \in \mathbb{R}$ with N > 0 such that for any $x \in C$ there exist $m \in M(N)$ and $y \in C$ such that Tx = x + m(y - x), where

$$M(N) = \begin{cases} [0, N] & \text{if } \alpha + \gamma > 0, \\ [-N, 0] & \text{if } \alpha + \gamma < 0 \end{cases}$$

in the case of (1) and let

$$M(N) = \begin{cases} [0, N] & \text{if } \alpha + \beta > 0, \\ [-N, 0] & \text{if } \alpha + \beta < 0 \end{cases}$$

in the case of (2) and let

$$M(N) = \begin{cases} [0, N] & \text{if } 2\alpha + \beta + \gamma > 0, \\ [-N, 0] & \text{if } 2\alpha + \beta + \gamma < 0 \end{cases}$$

in the case of (3). Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} ((1-\lambda)T + \lambda I)^k x$$

is weakly convergent to $p \in F(T)$, where P is the metric projection from H onto F(T) and $p = \lim_{n \to \infty} P((1 - \lambda)T + \lambda I)^n x$.

Proof. In [11] we obtained the results in the cases of (1) and (2). Moreover we can show in the case of (3) similarly to Theorem 3.1. \Box

7 Applications

In this section we discuss a strong convergence theorem with implicit iteration for mappings in a Hilbert space. Let H be a real Hilbert space and let C be a non-empty subset of H. A mapping T from C into H is said to be strictly pseudocontractive [5] if there exists $k \in [0, 1)$ such that

$$||Tx - Ty||^2 \le ||x - y||^2 + k||(x - Tx) - (y - Ty)||^2$$

for any $x, y \in C$. If k = 0, T is nonexpansive. In 1967 Browder [4] proved the strong convergence theorem with implicit iteration in a Hilbert space.

Theorem 7.1. Let H be a Hilbert space, let C be a non-empty bounded closed convex subset of H, let T be a nonexpansive mapping from C into itself, let $u \in C$ and let $\{\alpha_n\}$ be a sequence in (0, 1). Define a sequence $\{z_n\}$ in C by

$$z_n = \alpha_n u + (1 - \alpha_n) T z_n.$$

If $\{\alpha_n\}$ is convergent to 0, then $\{z_n\}$ is convergent strongly to $P_{F(T)}u$, where $P_{F(T)}$ is the metric projection of H onto F(T).

In 2014, using widely more generalized hybrid mappings, Takahashi [23] proved the strong convergence theorem for strictly pseudocontractive mappings in a Hilbert space. This theorem is an extension of Theorem 7.1.

Theorem 7.2. Let H be a Hilbert space, let C be a non-empty bounded closed convex subset of H, let T be a strictly pseudocontractive mapping from C into itself, that is, there exists $k \in [0, 1)$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + k||(x - Tx) - (y - Ty)||^{2}$$

for any $x, y \in C$, let $u \in C$ and let $\{\alpha_n\}$ be a sequence in (0,1). Define a mapping U_n as follows:

$$U_n x = \alpha_n u + (1 - \alpha_n) T x$$

for any $x \in C$ and for any $n \in \mathbb{N}$. Then the following hold:

- (i) U_n has a unique fixed point z_n in C;
- (ii) if $\{\alpha_n\}$ is convergent to 0, then $\{z_n\}$ is convergent strongly to $P_{F(T)}u$, where $P_{F(T)}$ is the metric projection of H onto F(T).

Let H be a real Hilbert space and let C be a non-empty subset of H. A mapping T from C into H is said to be pseudocontractive-type if there exist real numbers α , δ and η such that

$$\alpha \|Tx - Ty\|^2 + \delta \|x - y\|^2 + \eta \|(x - Tx) - (y - Ty)\|^2 \le 0$$

for any $x, y \in C$. We call such a mapping an (α, δ, η) -pseudocontractive-type mapping. Then we prove a following extension of Theorem 7.2.

Theorem 7.3. Let H be a Hilbert space, let C be a non-empty bounded closed convex subset of H, let T be an (α, δ, η) -pseudocontractive-type mapping from C into itself, let $u \in C$ and let $\{\alpha_n\}$ be a sequence in (0, 1). Define a mapping U_n as follows:

$$U_n x = \alpha_n u + (1 - \alpha_n) T x$$

for any $x \in C$ and for any $n \in \mathbb{N}$. Suppose that $\alpha + \delta \ge 0$, $\alpha + \eta > 0$ and $\alpha > 0$. Then the following hold:

- (i) U_n has a unique fixed point z_n in C;
- (ii) if $\{\alpha_n\}$ is convergent to 0, then $\{z_n\}$ is convergent strongly to $P_{F(T)}u$, where $P_{F(T)}$ is the metric projection of H onto F(T).

The proof of Theorem 7.3 is almost the same as that of Theorem 7.2. However for the proof we provide the following lemmas.

Lemma 7.4. Let H be real Hilbert space, let C be a non-empty closed convex subset of H and let T be an (α, δ, η) -pseudocontractive-type mapping from C into H. Suppose that $\alpha + \delta \geq 0, \ \alpha + \eta > 0$ and $\alpha > 0$. Then I - T is $\frac{\alpha + \eta}{2\alpha}$ -inverse strongly monotone.

Proof. Suppose that T is an (α, δ, η) -pseudocontractive-type mapping, that is,

$$\alpha \|Tx - Ty\|^2 + \delta \|x - y\|^2 + \eta \|(I - T)x - (I - T)y\|^2 \le 0$$

for any $x, y \in C$. Since Tx - Ty = (x - y) - ((I - T)x - (I - T)y), we obtain

$$\begin{split} &\alpha(\|x-y\|^2 + \|(I-T)x - (I-T)y\|^2 - 2\langle x-y, (I-T)x - (I-T)y\rangle) \\ &+ \delta \|x-y\|^2 + \eta \|(I-T)x - (I-T)y\|^2 \\ &= (\alpha + \eta) \|(I-T)x - (I-T)y\|^2 + (\alpha + \delta) \|x-y\|^2 \\ &- 2\alpha \langle x-y, (I-T)x - (I-T)y\rangle \\ &\leq 0. \end{split}$$

Since $\alpha + \delta \ge 0$ and $\alpha > 0$, we obtain

$$\frac{\alpha+\eta}{2\alpha}\|(I-T)x-(I-T)y\|^2 \le \langle x-y, (I-T)x-(I-T)y\rangle,$$

that is, I - T is $\frac{\alpha + \eta}{2\alpha}$ -inverse strongly monotone.

Lemma 7.5. Let H be real Hilbert space, let C be a non-empty closed convex subset of H and let T be an (α, δ, η) -pseudocontractive-type mapping from C into H. Suppose that $\alpha+\delta \geq 0$ and $\alpha+\eta > 0$. If $\{x_n\}$ is convergent weakly to $z \in H$ and $\{x_n-Tx_n\}$ is convergent strongly to 0, then z is a fixed point of T.

Proof. We know, if $\{x_n\}$ is convergent weakly to $z \in H$, then

$$\limsup_{n \to \infty} \|x_n - x\|^2 = \limsup_{n \to \infty} \|x_n - z\|^2 + \|x - z\|^2$$

for any $x \in H$. In particular,

$$\limsup_{n \to \infty} \|x_n - Tz\|^2 = \limsup_{n \to \infty} \|x_n - z\|^2 + \|Tz - z\|^2.$$

Since $\{x_n - Tx_n\}$ is convergent strongly to 0, we obtain

$$\limsup_{n \to \infty} ||Tx_n - Tz||^2 = \limsup_{n \to \infty} ||x_n - Tz||^2.$$

Therefore for any positive number ρ there exists a natural number N_1 such that, for any $n \ge N_1$

$$||Tx_n - Tz||^2 < \limsup_{n \to \infty} ||x_n - z||^2 + ||Tz - z||^2 + \rho$$

and there exists a natural number m with $m \ge n$ such that

$$\limsup_{n \to \infty} \|x_n - z\|^2 + \|Tz - z\|^2 - \rho < \|Tx_m - Tz\|^2.$$

Moreover there exists a natural number N_2 such that, for any $n \ge N_2$

$$||x_n - z||^2 < \limsup_{n \to \infty} ||x_n - z||^2 + \rho$$

and there exists a natural number m with $m \geq n$ such that

$$\limsup_{n \to \infty} \|x_n - z\|^2 - \rho < \|x_m - z\|^2.$$

Since $\{x_n - Tx_n\}$ is convergent strongly to 0, for any positive number ρ there exists a natural number N_3 such that

$$||Tz - z||^2 - \rho < ||(I - T)x_n - (I - T)z||^2 < ||Tz - z||^2 + \rho$$

for any $n \ge N_3$. Put $N = \max(N_1, N_2, N_3)$ and take a natural number n with $n \ge N$. If $\alpha \ge 0$, then there exists a natural numbers m with $m \ge n$ such that

$$||Tx_m - Tz||^2 > \limsup_{n \to \infty} ||x_n - z||^2 + ||Tz - z||^2 - \rho.$$

Moreover, since

$$\limsup_{n \to \infty} \|x_n - z\|^2 > \|x_m - z\|^2 - \rho,$$

we obtain

$$\begin{aligned} \alpha \|Tx_m - Tz\|^2 &\geq & \alpha \left((\|x_m - z\|^2 - \rho) + \|Tz - z\|^2 - \rho \right) \\ &= & \alpha \|x_m - z\|^2 + \alpha \|Tz - z\|^2 - 2|\alpha|\rho. \end{aligned}$$

If $\alpha < 0$, then there exists a natural numbers m with $m \ge n$ such that

$$\limsup_{n \to \infty} \|x_n - z\|^2 < \|x_m - z\|^2 + \rho.$$

Moreover, since

$$||Tx_m - Tz||^2 < \limsup_{n \to \infty} ||x_n - z||^2 + ||Tz - z||^2 + \rho,$$

we obtain

$$\alpha \|Tx_m - Tz\|^2 \geq \alpha \left((\|x_m - z\|^2 + \rho) + \|Tz - z\|^2 + \rho \right) \\ = \alpha \|x_m - z\|^2 + \alpha \|Tz - z\|^2 - 2|\alpha|\rho.$$

Therefore we obtain

$$0 \geq \alpha \|Tx_m - Tz\|^2 + \delta \|x_m - z\|^2 + \eta \|(I - T)x_m - (I - T)z\|^2$$

$$\geq \alpha \|x_m - z\|^2 + \alpha \|Tz - z\|^2 - 2|\alpha|\rho + \delta \|x_m - z\|^2 + \eta \|Tz - z\|^2 - |\eta|\rho$$

$$= (\alpha + \delta) \|x_m - z\|^2 + (\alpha + \eta) \|Tz - z\|^2 - (2|\alpha| + |\eta|)\rho.$$

Since $\alpha + \delta \ge 0$ and $\alpha + \eta > 0$, we obtain

$$||Tz - z||^2 \le \frac{2|\alpha| + |\eta|}{\alpha + \eta}\rho.$$

Since ρ is arbitrary, we obtain $||Tz - z||^2 = 0$ and hence z is a fixed point of T.

Proof of Theorem 7.3. Since $\alpha + \eta > 0$, there exists $\lambda \in [0, 1)$ such that $\alpha \lambda + \eta \ge 0$. Moreover, since $\alpha + \delta \ge 0$ and $\alpha + \eta > 0$, by Theorem 3.4 F(T) is not empty. Since $\alpha + \eta > 0$, by [12, Lemma 4.1] F(T) is closed. Since $\alpha + \delta \ge 0$ and $\alpha + \eta > 0$, by [12, Lemma 4.2] F(T) is convex. Therefore $P_{F(T)}$ is well-defined. Since

$$U_n x = \alpha_n u + (1 - \alpha_n) T x$$

we obtain

$$0 \geq \alpha \left\| \left(\frac{U_n x - \alpha_n u}{1 - \alpha_n} \right) - \left(\frac{U_n y - \alpha_n u}{1 - \alpha_n} \right) \right\|^2 + \delta \|x - y\|^2$$
$$+ \eta \left\| \left(x - \frac{U_n x - \alpha_n u}{1 - \alpha_n} \right) - \left(y - \frac{U_n y - \alpha_n u}{1 - \alpha_n} \right) \right\|^2$$
$$= \frac{\alpha}{(1 - \alpha_n)^2} \|U_n x - U_n y\|^2 + \delta \|x - y\|^2$$
$$+ \eta \left(\frac{\alpha_n}{1 - \alpha_n} \right)^2 \left\| - \frac{1 - \alpha_n}{\alpha_n} (x - y) + \frac{1}{\alpha_n} (U_n x - U_n y) \right\|^2$$

Since $\|(1-\lambda)u + \lambda v\|^2 = (1-\lambda)\|u\|^2 + \lambda\|v\|^2 - (1-\lambda)\lambda\|u - v\|^2$ for any $\lambda \in \mathbb{R}$, we obtain

$$\frac{\alpha + \eta \alpha_n}{(1 - \alpha_n)^2} \|U_n x - U_n y\|^2 + \left(\delta - \frac{\eta \alpha_n}{1 - \alpha_n}\right) \|x - y\|^2 + \frac{\eta}{1 - \alpha_n} \|(I - U_n)x - (I - U_n)y\|^2 \le 0.$$

We obtain

$$\frac{\alpha + \eta \alpha_n}{(1 - \alpha_n)^2} + \left(\delta - \frac{\eta \alpha_n}{1 - \alpha_n}\right) = \frac{(\delta + \eta)\alpha_n^2 - 2\delta\alpha_n + \alpha + \delta}{(1 - \alpha_n)^2}.$$

Put $f(x) = (\delta + \eta)x^2 - 2\delta x + \alpha + \delta$. If $\delta + \eta > 0$, then f is convex. Moreover, if $\frac{\delta}{\delta + \eta} \leq 0$, then f is increasing on (0, 1) and $f(0) = \alpha + \delta \geq 0$, and hence f(x) > 0 for any $x \in (0, 1)$; if $0 < \frac{\delta}{\delta + \eta} < 1$, then $\delta > 0$ and $\eta > 0$, and hence $f(x) \geq f\left(\frac{\delta}{\delta + \eta}\right) = -\frac{\delta^2}{\delta + \eta} + \alpha + \delta > \alpha > 0$ for any $x \in (0, 1)$; if $1 \leq \frac{\delta}{\delta + \eta}$, then f is decreasing and $f(1) = \alpha + \eta > 0$, and hence f(x) > 0 for any $x \in (0, 1)$. If $\delta + \eta \leq 0$, then f is concave. Moreover, since $f(0) = \alpha + \delta \geq 0$ and $f(1) = \alpha + \eta > 0$, f(x) > 0 for any $x \in (0, 1)$. Therefore we obtain

$$\frac{\alpha + \eta \alpha_n}{(1 - \alpha_n)^2} + \left(\delta - \frac{\eta \alpha_n}{1 - \alpha_n}\right) > 0.$$

Since $\alpha + \eta > 0$, we obtain

$$\frac{\alpha + \eta \alpha_n}{(1 - \alpha_n)^2} + \frac{\eta}{1 - \alpha_n} = \frac{\alpha + \eta}{(1 - \alpha_n)^2} > 0$$

Moreover we obtain

$$\frac{\alpha + \eta \alpha_n}{(1 - \alpha_n)^2} \lambda + \frac{\eta}{1 - \alpha_n} = \frac{\alpha \lambda + \eta - \eta (1 - \lambda) \alpha_n}{(1 - \alpha_n)^2}$$
$$\geq \frac{\alpha \lambda + \eta - |\eta| (1 - \lambda)}{(1 - \alpha_n)^2}$$
$$= \frac{(\alpha + |\eta|) \lambda - (|\eta| - \eta)}{(1 - \alpha_n)^2}$$

Since $\alpha + \eta > 0$, we obtain $\frac{|\eta| - \eta}{\alpha + |\eta|} < 1$. Therefore, if $\frac{|\eta| - \eta}{\alpha + |\eta|} \le \lambda < 1$, then

$$\frac{\alpha + \eta \alpha_n}{(1 - \alpha_n)^2} \lambda + \frac{\eta}{1 - \alpha_n} \ge 0$$

Therefore by Theorem 3.4 U_n has a unique fixed point $z_n \in C$. To show that $\{z_n\}$ is convergent strongly to $P_{F(T)}u$, we may show that any subsequence $\{z_{n(i)}\}$ of $\{z_n\}$ has a subsequence $\{z_{n(i,j)}\}$ of $\{z_{n(i)}\}$ such that $\{z_{n(i,j)}\}$ is convergent to $P_{F(T)}u$. Without loss of generality, we may assume that $\{z_{n(i)}\}$ is convergent weakly to $v \in C$. Let us show $v \in F(T)$. Since $\{\alpha_n\}$ is convergent to 0, we obtain $\{z_n - Tz_n\}$ is convergent strongly to 0. In fact, since

$$z_n = U_n z_n = \alpha_n u + (1 - \alpha_n) T z_n,$$

we obtain

$$z_n - Tz_n = \alpha_n (u - Tz_n).$$

Since $\{Tz_n\}$ is bounded and $\{\alpha_n\}$ is convergent to 0, we obtain $\{z_n - Tz_n\}$ is convergent strongly to 0. Since $\{z_{n(i)}\}$ is convergent weakly to $v \in C$, by Lemma 7.5 we obtain $v \in F(T)$. Since $z_{n(i)} \in F(U_{n(i)})$, we obtain

$$z_{n(i)} = \alpha_{n(i)}u + (1 - \alpha_{n(i)})Tz_{n(i)}$$

and hence

$$\alpha_{n(i)}z_{n(i)} + (1 - \alpha_{n(i)})(z_{n(i)} - Tz_{n(i)}) = \alpha_{n(i)}u.$$

Moreover, since $P_{F(T)}u \in F(T)$, we obtain

$$\alpha_{n(i)} P_{F(T)} u + (1 - \alpha_{n(i)}) (P_{F(T)} u - T P_{F(T)} u) = \alpha_{n(i)} P_{F(T)} u$$

Therefore we obtain

$$\begin{aligned} &\alpha_{n(i)} \langle z_{n(i)} - P_{F(T)} u, z_{n(i)} - P_{F(T)} u \rangle \\ &+ (1 - \alpha_{n(i)}) \langle (I - T) z_{n(i)} - (I - T) P_{F(T)} u, z_{n(i)} - P_{F(T)} u \rangle \\ &= \alpha_{n(i)} \langle u - P_{F(T)} u, z_{n(i)} - P_{F(T)} u \rangle. \end{aligned}$$

By Lemma 7.4, I - T is $\frac{\alpha + \eta}{2\alpha}$ -inverse strongly monotone and hence

$$\frac{\alpha + \eta}{2\alpha} \|z_{n(i)} - P_{F(T)}u\|^2 \le \langle (I - T)z_{n(i)} - (I - T)P_{F(T)}u, z_{n(i)} - P_{F(T)}u \rangle.$$

Therefore we obtain

$$||z_{n(i)} - P_{F(T)}u||^{2} \leq \langle u - P_{F(T)}u, z_{n(i)} - P_{F(T)}u \rangle = \langle u - P_{F(T)}u, z_{n(i)} - v \rangle + \langle u - P_{F(T)}u, v - P_{F(T)}u \rangle.$$

Since $v \in F(T)$, we obtain

$$\langle u - P_{F(T)}u, v - P_{F(T)}u \rangle \le 0.$$

Therefore we obtain

$$||z_{n(i)} - P_{F(T)}u||^2 \le \langle u - P_{F(T)}u, z_{n(i)} - v \rangle.$$

Since $\{z_{n(i)}\}$ is convergent weakly to $v \in C$, we obtain $\{z_{n(i)}\}$ is convergent strongly to $P_{F(T)}u$.

Moreover, we obtain the following.

Theorem 7.6. Let H be a Hilbert space, let C be a non-empty bounded closed convex subset of H, let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself, let $u \in C$ and let $\{\alpha_n\}$ be a sequence in (0, 1). Define a mapping U_n as follows:

$$U_n x = \alpha_n u + (1 - \alpha_n) T x$$

for any $x \in C$ and for any $n \in \mathbb{N}$. Suppose that $\beta + \gamma + \varepsilon + \zeta \ge 0$, $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \eta > 0$ and $2\alpha + \beta + \gamma > 0$. Then the following hold:

- (i) U_n has a unique fixed point z_n in C;
- (ii) if $\{\alpha_n\}$ is convergent to 0, then $\{z_n\}$ is convergent strongly to $P_{F(T)}u$, where $P_{F(T)}$ is the metric projection of H onto F(T).

Proof. Since T is an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping,

$$\alpha \|Tx - Ty\|^{2} + \beta \|x - Ty\|^{2} + \gamma \|Tx - y\|^{2} + \delta \|x - y\|^{2}$$

$$+ \varepsilon \|x - Tx\|^{2} + \zeta \|y - Ty\|^{2} + \eta \|(x - Tx) - (y - Ty)\|^{2} \le 0$$

for any $x, y \in C$. By replacing the variables x and y, we obtain

$$\begin{aligned} \alpha \|Tx - Ty\|^2 + \gamma \|x - Ty\|^2 + \beta \|Tx - y\|^2 + \delta \|x - y\|^2 \\ + \zeta \|x - Tx\|^2 + \varepsilon \|y - Ty\|^2 + \eta \|(x - Tx) - (y - Ty)\|^2 &\leq 0 \end{aligned}$$

for any $x, y \in C$. Therefore we obtain

$$\begin{aligned} &2\alpha \|Tx - Ty\|^2 + (\beta + \gamma)\|x - Ty\|^2 + (\beta + \gamma)\|Tx - y\|^2 + 2\delta \|x - y\|^2 \\ &+ (\varepsilon + \zeta)\|x - Tx\|^2 + (\varepsilon + \zeta)\|y - Ty\|^2 + 2\eta \|(x - Tx) - (y - Ty)\|^2 \leq 0 \end{aligned}$$

for any $x, y \in C$ and hence T is a $(2\alpha, \beta + \gamma, \beta + \gamma, 2\delta, \varepsilon + \zeta, \varepsilon + \zeta, 2\eta)$ -widely more generalized hybrid mapping. Since $\beta + \gamma + \varepsilon + \zeta \ge 0$, we obtain $-(\beta + \gamma) \le \varepsilon + \zeta$ and hence

$$\begin{split} &2\alpha \|Tx - Ty\|^2 + (\beta + \gamma)\|x - Ty\|^2 + (\beta + \gamma)\|Tx - y\|^2 + 2\delta \|x - y\|^2 \\ &- (\beta + \gamma)\|x - Tx\|^2 - (\beta + \gamma)\|y - Ty\|^2 + 2\eta \|(x - Tx) - (y - Ty)\|^2 \\ &= (2\alpha + \beta + \gamma)\|Tx - Ty\|^2 + (2\delta + \beta + \gamma)\|x - y\|^2 \\ &+ (2\eta - \beta - \gamma)\|(x - Tx) - (y - Ty)\|^2 \\ &\leq 0. \end{split}$$

Since $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \eta > 0$ and $2\alpha + \beta + \gamma > 0$, by Theorem 7.3 we obtain the desired results.

Acknowledgements. The author is grateful to Professor Wataru Takahashi and Professor Tetsuo Kobayashi for their suggestions and comments.

References

- J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Sér. A-B 280 (1975) 1511–1514.
- [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922) 133–181.
- [3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, *Math. Student* 63 (1994) 123–145.
- [4] F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967) 201–225.
- [5] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197–228.
- [6] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117–136.
- [7] K. Goebel and W.A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [8] M. Hojo, W. Takahashi and J.-C. Yao, Weak and strong mean convergence theorems for super hybrid mappings in Hilbert spaces, *Fixed Point Theory* 12 (2011) 113–126.
- [9] S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, *Nonlinear Anal.* 71 (2009) 2082–2089.
- [10] S. Itoh and W. Takahashi, The common fixed point theory of singlevalued mappings and multivalued mappings, *Pacific J. Math.* 79 (1978) 493–508.
- [11] T. Kawasaki, An extension of existence and mean approximation of fixed points of generalized hybrid non-self mappings in Hilbert spaces, J. Nonlinear Convex Anal. to appear.

- [12] T. Kawasaki and T. Kobayashi, Existence and mean approximation of fixed points of generalized hybrid non-self mappings in Hilbert spaces, *Scientiae Mathematicae Japonicae* 77 (Online Version: e-2014) (2014) 13–26 (Online Version: 29–42).
- [13] T. Kawasaki and W. Takahashi, Fixed point and nonlinear ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal. 13 (2012) 529–540.
- [14] T. Kawasaki and W. Takahashi, Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013) 71–87.
- [15] T. Kawasaki and W. Takahashi, Fixed point and nonlinear ergodic theorems for widely more generalized hybrid mappings in Hilbert spaces and applications, in *Proceedings* of Nonlinear Analysis and Convex Analysis 2013, Yokohama Publishers, Yokohama, to appear.
- [16] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, *Taiwanese J. Math.* 14 (2010) 2497–2511.
- [17] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824–835.
- [18] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008) 166–177.
- [19] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981) 253–256.
- [20] W. Takahashi, Nonlinear Functional Analysis, -Fixed Points Theory and its Applications-, Yokohama Publishers, Yokohama, 2000.
- [21] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- [22] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010) 79–88.
- [23] W. Takahashi, Unique fixed point theorems for nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 15 (2014), 831–849.
- [24] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
- [25] W. Takahashi, N.-C. Wong and J.-C. Yao, Weak and strong mean convergence theorems for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011) 553–575.
- [26] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, *Taiwanese J. Math.* 15 (2011) 457–472.

Manuscript received 12 December 2014 revised 10 March 2015 accepted for publication 19 March 2015

TOSHIHARU KAWASAKI College of Engineering, Nihon University Fukushima 963-8642, Japan E-mail address: toshiharu.kawasaki@nifty.ne.jp