
2016

152 A. F. ALI AND M. A. TAWHID

SA. Metaheuristics have been applied to solve many problems in different fields such as en-
gineering, economics, management, biology and combinatorial optimization problems, see,
e.g., [35], [41]. SA is one of the most applied metaheuristics methods because of its ro-
bustness and high ability to escape from trapping in local minima, however SA suffers from
slow convergence because it explores the search space randomly without saving information
about promising search direction [35]. In order to overcome the slow conference problem of
SA, many researchers have tried to integrate SA with other local search methods such as
Nelder-Mead method and pattern search method to increase its convergence, see, e.g., [6],
[7], [16], [17].

The above mentioned algorithms have been widely used to solve unconstrained and
constrained problems and their applications. However much less work has been done on
algorithms for integer programming and minimax problems. There are many real life ap-
plications such as Warehouse location problem, VLSI (very large scale integration) circuits
design problems, robot path planning problems, scheduling problem, game theory, engineer-
ing design problems can be formulated as integer programming and minimax problems, see,
e.g., [8], [36], [51].

Branch and Bound (BB) is the most popular methods for solving integer programming
problems, however BB suffers from high computational cost, since it explores a search tree
containing hundreds or more nodes on large scale problems.

Recently there have been significant research efforts to apply some of swarm intelli-
gence algorithms such as ant colony algorithm [23], [24], artificial bee colony algorithm [1],
[47], particle swarm optimization algorithm [38], cuckoo search algorithm [48] and firefly
algorithm[2] to solve integer programming problems.

There are some algorithms based on a smooth techniques have been applied for solving
minimax problems. These techniques are solving a sequence of smooth problems, which ap-
proximate the minimax problems in the limit [29], [39], [50]. The algorithms based in theses
techniques aim to generate a sequence of approximations, which converges to Kuhn-Tucker
point of the minimax problem, for a decreasing sequence of positive smoothing parameters.
However, the drawback of theses algorithms is these parameters are small too fast and the
smooth problems become significantly ill-conditioned. Some swarm intelligence algorithms
such as PSO [38] have been applied to solve minimax problems. The main drawback of ap-
plying swarm intelligence algorithms for solving minimax and integer programming problems
is that they are a population based methods which are computationally expensive.

Simulated annealing algorithm (SA) is a popular approximation algorithm that has been
applied to a variety of optimization problems. SA has received significant attention in the
last two decades to solve optimization problems due to its simplicity and powerful ability to
avoid trapping in local minima by accepting the worst solution with a specific probability
and making uphill moves, where a desired global minimum/maximum is hidden among
many poorer local minima/maxima. These days SA has become one of the many heuristic
approaches designed to give a good, not necessarily optimal solution. SA generates a trail
solutions with a random moves, however it suffers from slow convergence.

Pattern search (PS) is a family of numerical optimization methods that do not require
the gradient of the problem to be optimized. Hence PS can be used on functions that are
not continuous or differentiable. Such optimization methods are also known as direct-search,
derivative-free, or black-box methods. The name, pattern search, was coined by Hooke and
Jeeves [20].

In order to overcome the slow convergence of the simulated annealing algorithm, the main
objective of this paper is to produce a new hybrid algorithm by combining the simulated
annealing algorithm with direct search methods in order to solve integer programming and

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 153

minimax problems. In the proposed algorithm, we try to overcome the main problem of
the simulated annealing algorithm which is the slow convergence by invoking the pattern
search and the Nelder-Mead methods in order to accelerate the search and avoid running
the algorithm more iterations around the optimal solution without any improvements.

In this paper, we present a hybrid simulated annealing with direct search method to
solve integer programming and minimax problems. The proposed algorithm is called Hybrid
Simulated Annealing and Pattern Search (HSAPS) algorithm. HSAPS starts with an initial
solution generated randomly and at each temperature, the SA starts to generate a trail
solutions, the best trail solution is accepted if its objective function is better than the
previous best solutions, otherwise it accepted if its probability is less than or equal the
random generated number. The best accepted solution will pass to the pattern search in
order to intensify the search around the best solution and as soon as the temperature reaches
to the minimum value, the overall best solution will pass to the Nelder-Mead algorithm in
order to accelerate the search and accelerate the convergence.

The rest of the paper is organized as follows. In Section 2, we describe the integer
programming and the minimax problems. In Section 3, we give an overview of simulated
annealing algorithm, pattern search and the Nelder-Mead methods as direct search methods.
In Section 4, we present the proposed algorithm. In Section 5, we give the numerical results
of the proposed algorithm. In Section 6, we give summary and conclusion.

2 Definition of the Problems and an Overview of the Applied Al-
gorithms

In this section, we highlight the definitions of integer programming and the minimax prob-
lems and present the main steps of the simulated annealing algorithm and two of the most
wide used direct search methods, pattern search and the Nelder-Mead methods as follows.

2.1 The integer programming problem

An integer programming problem is a mathematical optimization problem in which all of
the variables are restricted to be integers. The unconstrained integer programming problem
can be defined as follows.

minf(x), x ∈ S ⊆ Zn, (2.1)

Where Z is the set of integer variables, S is a not necessarily bounded set.

2.2 Minimax problem

The general form of the minimax problem [50] is defined by:

min F (x) (2.2)

where

F (x) = max fi(x), i = 1, . . . ,m (2.3)

with fi(x) : S ⊂ Rn → R, i = 1, . . . ,m.
The nonlinear programming problems of the form:

min F (x),

gi(x) ≥ 0, i = 2, . . . ,m,

154 A. F. ALI AND M. A. TAWHID

Table 1: The parameters of the pattern search algorithm.

parameter definition
∆0 Initial mesh size
d Variable dimension
σ Reduction factor of mesh size
m Pattern search repetition number
ε Tolerance

can be transformed to minimax problems as follows:

min max fi(x), i = 1, . . . ,m (2.4)

where

f1(x) = F (x),

fi(x) = F (x)− αigi(x), (2.5)

αi > 0, ; i = 2, . . . ,m

It has been proven that for sufficiently large αi, the optimum point of the minimax problem,
coincides with the optimum point of the nonlinear programming problem [3].

2.3 Pattern search method

Direct search method is a method for solving optimization problem that dose not require any
information about the gradient of the objective function. Pattern search method is one of
the most applied direct search method to solve a global optimization problems. The pattern
search method (PS) has been proposed by Hook and Jeeves (HJ) [20]. In PS method, there
are two type of moves, the exploratory moves and the pattern moves. In the exploratory
moves a coordinate search is applied around a selected solution with a step length of ∆ as
in Algorithm 1. The exploratory move is considered successful, if the function value of the
new solution is better than the current solution, Otherwise the step length is reduced as
shown below in Equation 2.6. If the exploratory move is successful, then the pattern search
is applied in order to generate the iterate solution. The exploratory move is applied on the
iterate solution, if the iterate solution is better than the current solution, then the iterate
solution is accepted as a new solution. Otherwise if the exploratory move is unsuccessful,
the pattern move is rejected and the step length ∆ is reduced. The operation is repeated
until termination criteria are satisfied. The algorithm of HJ pattern search and the main
steps of it are presented in Algorithm 2 as follows. The parameters of Algorithms 1, 2 are
given in Table 1

Let us summarize the pattern search algorithm in the following steps:

Step 1. The algorithm starts by setting the initial values of the mesh size ∆0, reduction
factor of mesh size σ and termination parameter ε.

Step 2. Apply exploratory search as shown in algorithm 1 by calculating f(xk) in
order to obtain a new base point

Step 3. If the exploratory move is successful, perform pattern search move; otherwise
check the value of the mesh size ∆, if ∆ < ε, where ε is a very small value, stop the
search and produce the current solution.

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 155

Algorithm 1 Exploratory search

INPUT: Get the values of x0, k, ∆0, d
OUTPUT: New base point xk

1: Set i = 1
2: Set k = 1
3: repeat
4: Set xk

i = xk−1
i +∆k−1x

k−1
i

5: if f(xk
i) < f(xk−1

i) then
6: Set xk+1

i = xk
i

7: end if
8: Set i = i+ 1
9: Set k = k + 1

10: until i ≤ d

Algorithm 2 The basic pattern search algorithm

INPUT: Get the values of x
OUTPUT: Best solution x∗

1: Set the values of the initial values of the mesh size ∆0, reduction factor of mesh size σ
and termination parameter ε

2: Set k = 1 {Parameter setting}
3: Set the starting base point xk−1 {Initial solution}
4: repeat
5: Perform exploratory search as shown in Algorithm 1
6: if exploratory move success then
7: Go to 16
8: else
9: if ∥∆k∥ < ε, then

10: Stop the search and the current point is x∗

11: else
12: Set ∆k = σ∆k−1 {Incremental change reduction}
13: Go to 5
14: end if
15: end if
16: Perform pattern move, where xk+1

p = xk + (xk − xk−1)
17: Perform exploratory move with xp as the base point
18: Set xk+1 equal to the output result exploratory move
19: if f(xk+1

p) < f(xk) then

20: Set xk−1 = xk

21: Set xk = xk+1 {New base point}
22: Go to 16
23: else
24: Go to 9 {The pattern move is failure}
25: end if
26: Set k = k + 1
27: until k ≤ m

156 A. F. ALI AND M. A. TAWHID

Step 4. If the exploratory move is unsuccessful and ∆ is not less than ε, reduce the
mesh size as shown in the following equation

∆k = σ∆k−1 (2.6)

Step 5. Apply pattern move by calculating xp, where xk+1
p = xk + (xk − xk−1).

Step 6. Set xp as a new base point and apply exploratory move on it.

Step 7. If the pattern move is successful, repeat the pattern search move on the new
point; otherwise the pattern search is unsuccessful and reduce the mesh size as shown
in Equation 2.6.

Step 8. The steps are repeated until the termination criteria are satisfied (number of
iterations).

2.4 Nelder Mead method

The Nelder-Mead algorithm (NM) is proposed by Nelder and Mead in 1965 [34]. NM
algorithm is one of the most popular derivative-free nonlinear optimization algorithms. It
starts with n+ 1 points (vertices) x1, x2, . . . , xn+1. The vertices are evaluated, ordered and
re-labeled in order to assign the best point and the worst point. In minimization problems,
the x1 is considered as the best vertex or point if it has the minimum value of the objective
function, while the worst point xn+1 with the maximum value of the objective function.
At each iteration, new points are computed, along with their function values, to form a
new simplex. Four scalar parameters must be specified to define a complete Nelder-Mead
algorithm: coefficients of reflection ρ, expansion χ, contraction τ , and shrinkage ϕ. These
parameters are chosen to satisfy ρ > 0, χ > 1, 0 < τ < 1, and 0 < ϕ < 1. The main steps of
the Nelder-Mead algorithm are presented as shown below in Algorithm 3. The Nelder-Mead
algorithm starts with n+ 1 vertices xi, i = 1, . . . , n+ 1, which are evaluated by calculation
their fitness function values. The vertices are ordered according to their fitness function.
The reflection process starts by computing the reflection point xr = x̄+ρ(x̄−x(n+1)), where
x̄ is the average of all points except the worst. If the reflected point xr is lower than the
nth point f(xn) and greater than the best point f(x1), then the reflected point is accepted
and the iteration is terminated. If the reflected point is better than the best point, then the
algorithm starts the expansion process by calculating the expanded point xe = x̄+χ(xr−x̄).
If xe is better than the reflected point nth, the expanded point is accepted; otherwise the
reflected point is accepted and the iteration will be terminated. If the reflected point xr

is greater than the nth point xn the algorithm starts a contraction process by applying an
outside xoc or inside contraction xic depending on the comparison between the values of the
reflected point xr and the nth point xn. If the contraction point xoc or xic is greater than
the reflected point xr, the shrink process is starting. In the shrink process, the points are
evaluated and the new vertices of simplex at the next iteration will be x′

2, . . . , x
′
n+1, where

x′ = x1 + ϕ(xi − x1), i = 2, . . . , n+ 1.
In Figure 1, we present an example in order to explain the main steps of the Nelder-Mead

algorithm in two dimensions.

Step 1. Given the current solution x, two neighborhood trial points y1 and y2 are
generated in a neighborhood of x as in Figure 1 (a).

Step 2. A simplex is constructed in order to find a local trial point as in Figure 1 (b).

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 157

Figure 1: Nelder-Mead search strategy in two dimensions.

Step 3. If y2 is a worst point, we apply the Nelder-Mead algorithm to find a better
movement, as in Figure 1 (c). If we find a better movement, we refer to this point as
a local trial point.

3 Simulated Annealing Algorithm

In the following section, we describe the main concepts and structure of the standard simu-
lated annealing algorithm.

3.1 Main concepts

Simulated annealing (SA) is probably the most widely used meta-heuristic algorithms in
combinatorial optimization problem. SA was proposed by Kirkpatrick et al. [25]. It was
motivated by the analogy between the physical annealing of metals and the process of
searching for the optimal solution in a combinatorial optimization problem. It is inspired
by the Metropolis algorithm [11]. The main objective of SA method is to escape from local
optima and so to delay the convergence.

Many trial solutions are generated at a particular level of temperature in the epoch length
(SA inner loop). The operation is repeated until the temperature reaches to its minimum
value.

3.2 Cooling schedule

We should deal carefully with the tuning parameters of the cooling schedule in order to
improve the performance of SA.

• Choice of an initial temperature. Choosing too high temperature will cost com-
putation time expensively, while too low temperature will exclude the possibility of

158 A. F. ALI AND M. A. TAWHID

Algorithm 3 The Nelder-Mead Algorithm

1. Let xi denote the list of vertices in the current simplex, i = 1, . . . , n+ 1.
2. Order. Order and re-label the n + 1 vertices from lowest function value f(x1) to
highest function value f(xn+1) so that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1).
3. Reflection. Compute the reflection point xr by
xr = x̄+ ρ(x̄− x(n+1)), where x̄ is the centroid of the n best points,
x̄ =

∑
(xi/n), i = 1, . . . , n.

if f(x1) ≤ f(xr) < f(xn) then
replace xn+1 with the reflected point xr and go to Step 7.

end if
4. Expansion.
if f(xr) < f(x1) then

Compute the expansion point xe by xe = x̄+ χ(xr − x̄).
end if
if f(xe) < f(xr) then

Replace xn+1 with xe and go to Step 7.
else

Replace xn+1 with xr and go to Step 7.
end if
5. Contraction.
if f(xr) ≥ f(xn) then

Perform a contraction between x̄ and the best among xn+1 and xr.
end if
if f(xn) ≤ f(xr) < f(xn+1) then

Calculate xoc = x̄+ τ(xr − x̄) {Outside contract}
end if
if f(xoc) ≤ f(xr) then

Replace xn+1 with xoc and go to Step 7.
else

Go to Step 6.
end if
if f(xr) ≥ f(x(n+1) then

Calculate xic = x̄+ τ(xn+1 − x̄). {Inside contract}
end if
if f(xic) ≥ f(x(n+1) then

replace xn+1 with xic and go to Step 7.
else

go to Step 6.
end if
6. Shrink. Evaluate the n new vertices
x′ = x1 + ϕ(xi − x1), i = 2, . . . , n+ 1.
Replace the vertices x2, . . . , xn+1 with the new vertices x′

2, . . . , x
′
n+1.

7. Stopping Condition. Order and re-label the vertices of the new simplex as
x1, x2, . . . , xn+1 such that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1)
if f(xn+1)− f(x1) < ϵ then

Stop, where ϵ > 0 is a small predetermined tolerance.
else

Go to Step 3.
end if

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 159

ascent steps, thus losing the global optimization feature of the method. We have to
balance between these two extreme procedures.

• Choice of the temperature reduction strategy. If the temperature is decreased
slowly, better solutions are obtained but with a more significant computation time. On
the other side, a fast decrement rule causes increasing the probability of being trapped
in a local minimum.

• Equilibrium State. In order to reach an equilibrium state at each temperature, a
number of sufficient transitions (moves) must be applied. The number of iterations
must be set according to the size of the problem instance and particularly proportional
to the neighborhood size.

3.3 Stopping criteria

Concerning the stopping condition, theory suggests the final temperature is equal to 0. In
practice, one can stop the search when the probability of accepting move is negligible, or
reaching to the final temperature Tmin.

3.4 Simulated annealing algorithm

The basic SA algorithm is described below in Algorithm 4. SA proceeds in several iterations
from an initial solution x0, which is generated randomly across the search space given by
each search function. At each iteration (SA external loop), a random neighbor solution x′ is
generated at the current temperature (SA inner loop). The neighbor solution that improves
the objective function is always accepted. Otherwise, the neighbor solution is selected with a
given probability that depends on the current temperature T and the amount of degradation
∆E of the objective function. ∆E represents the difference in the objective value between
the current solution x and the generated neighboring solution x′. This probability follows,
in general, by the Boltzmann distribution as in (3.1).

P (∆E, T) = exp(
−f(x′)− f(x)

T
). (3.1)

Algorithm 4 The basic simulated annealing algorithm

1: x = x0 {initial solution}
2: T = Tmax {starting temperature}
3: repeat
4: repeat
5: Generate a random neighbor x′ {at a fixed temperature}
6: ∆E = f(x′)− f(x)
7: if ∆E ≤ 0 then
8: x = x′. {accept the neighbor solution}
9: else

10: Accept x′ with probability e
−∆E

T

11: end if
12: until (Equilibrium condition) {e.g. number of iterations executed at each T}
13: T = g(T) {temperature update}
14: until (stopping criteria satisfied) {e.g. T < Tmin}

160 A. F. ALI AND M. A. TAWHID

4 The Proposed HSAPS Algorithm

In this section, we present in Algorithm 5 the main structure of the proposed HSAPS
algorithm. Now, we give a brief description of the main components of the proposed HSAPS.

• Initial temperature. The starting temperature T = Tmax is one of the important
control parameters in HSAPS algorithm, that has direct effect to accept all neighbors
during the initial phase of the method. It must not be too high to conduct a random
search for a period of time but high enough to allow moves to almost neighborhood
state.

• Equilibrium state. In order to reach an equilibrium state at each temperature, a
number of moves must be applied, which is determined before the search starts. The
equilibrium state of HSAPS is applied in the epoch length (SA inner loop), which based
on the number of the generated trail solutions m1. The high number of generated trail
solutions we get, the more expensive cost function we have.

• Temperature reduction value.There is a direct relation between the quality of the
generated trail solutions and the speed of the cooling schedule. If the temperature is
decreased slowly, better solutions are obtained, but high computation time is obtained.
The temperature T can be updated, i.e., T = λT , where λ is a cooling ratio, λ ∈
[0.9, 0.99].

• SA stopping condition. The basic SA method uses one of the following stopping
criteria.

1. The probability of accepting move is negligible.

2. Achieving a predetermined number of iterations without improvement of the best
found solution [43].

3. Achieving a predetermined number of times a percentage of neighbors at each
temperature is accepted.

4. Reaching the final temperature T ≤ Tmin.

The proposed HSAPS uses different kinds of termination criteria, condition (4) is one
of them.

• Neighborhood radius update. HSAPS algorithm uses a special parameter called
the neighborhood radius parameter z, which has a direct effect to update the solutions.
The main role of z in HSAPS is to help the algorithm to achieve the global search and
the local search processes. HSAPS starts with initial value z = z0, when HSAPS
could obtain an improvement of the trail solutions, the neighborhood area should be
expanded by increasing the value of z using a factor µ > 1, the increased value of z is
defined in (4.1).

z+ = µz. (4.1)

The expanded neighborhood area is controlled by the value of z+, which is the upper
limit by a pre-specified value zmax.

When HSAPS could not obtain any improvement of the trail solutions, the neighbor-
hood area should be reduced by decreasing the value of z, using a factor ν < 1, the
decreased value of z is defined in (4.2).

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 161

z− = νz. (4.2)

The reduced neighborhood area is controlled by the value of z−, which is the lower
limit by a pre-specified value zmin.

• Pattern search parameters. HSAPS uses PS as a local search method in order to
refine the obtained solution from the simulated annealing algorithm. In PS the mesh
size is initialized as ∆0 and when no improvement archived in the exploration search
process, the mesh size is deducted by using reduction factor σ. The PS steps are
repeated m2 times in order to increase the exploitation process of the algorithm.

• Final intensification. The best obtained solutions from the simulated annealing and
the pattern search are collected in list in order to apply the Nelder-Mead method on
them, the number of the solutions in these list is called Nelite

• Stopping condition parameters. The main termination criterion in HSAPS is
the completeness of the cooling schedule, however HSAPS maybe terminated if the
difference between the function values of the current solution f(x) and the global
optimal solution f(x∗) becomes less than Tol = 10−4, or the number of maximum
iterations exceeds the desired function evaluation number.

We can summarize the main steps of the HSAPS algorithm as follows.

Step 1. The algorithm starts to set the parameter of the simulated annealing (Tmax,
epoch length M , cooling reduction ratio λ and minimum temperature Tmin), pattern
search algorithm parameters (mesh size ∆, reduction factor σ, number of PS iterations
m2).

Step 2. An initial solution x0 is generated randomly in the range [L,U] for each test
function.

Step 3. At a fixed temperature, the SA starts to generate the trail solutions m1

times. The best trail solution is accepted if its function values is better than the
current best solution and the neighborhood radius is expanded and updated using
Equation 4.1, otherwise the solution is selected if its probability P ≥ r, r ∈ [0, 1] and
the neighborhood radius is shrinkage and updated using Equation 4.2.

Step 4. The PS represents the intensification part of the algorithm and it is iterated
m2 times in order to refine the obtained solution from SA by applying Algorithm 2.

Step 5. If the generated pattern search best trail solution is better than the SA
best trail solution, we accept the pattern search trail solution, otherwise the algorithm
accept the SA trail solution.

Step 6. At the end of the search, when the temperature reached to the minimum
temperature T ≤ Tmin, the best solution is refined by applying a the Nelder-Mead
method in order to refine the overall best obtained solution.

5 Numerical Experiments

The general performance of HSAPS algorithm is presented in order to investigate its effi-
ciency, by comparing the results of HSAPS algorithm against other algorithms. HSAPS was

162 A. F. ALI AND M. A. TAWHID

Algorithm 5 The proposed HSAPS algorithm

1: Set the values of the initial values of mesh size ∆0 > 0, reduction factor of mesh size σ,
trail points radius z, initial temperature Tmax epoch length m1, PS repetition numbers
m2, cooling reduction ratio λ and minimum temperature Tmin.

2: Set the initial temperature T := Tmax

3: Set k = 0
4: Generate the initial solution xk randomly across the search space of the given test

function.
5: repeat
6: repeat
7: Set y = xk + (2r1 − 1)z, r1 ∈ [0, 1] {Exploration process}
8: Set ∆E = f(y)− f(xk)
9: if ∆E < 0 then

10: xs = y
11: Update the neighborhood radius z using Equation(4.1) {Expand the search

area}
12: else
13: Generate r2, r2 ∈ [0, 1]

14: if r2 ≤ e
−∆E

T then
15: xs = y { Accept the solution y with a probability e

−∆E
T }

16: Update the neighborhood radius d using Equation(4.2). {shrink the search
area}

17: end if
18: end if
19: Set xs as the initial solution for pattern search algorithm
20: for (j = 1; j < m2; j++) do
21: Apply the pattern search algorithm on the simulated annealing solution xs as

shown in Algorithm 2
22: end for{ Apply pattern search as a local search algorithm}
23: Set xp equal to the best trail solution from pattern search algorithm.
24: if xp < xs then
25: xk+1 = xp {Accept the pattern search solution as a new solution}
26: else
27: xk+1 = xs {decline the pattern search solution }
28: end if
29: k = k + 1
30: until (k ≤ m1)
31: T = λT
32: until T ≤ Tmin

33: Apply the Nelder-Mead method as shown in Algorithm 3 on the best fond solution so
far {Final Initialization process}

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 163

programmed in MATLAB, the results of the other comparative algorithms are taken from
their original papers. In the following subsections, the parameter setting of HSAPS algo-
rithm with more details and the properties of the applied test functions have been reported.
Also the performance analysis of the proposed algorithm is presented in details.

5.1 Parameter setting

Before discussing the experimental results, the parameters setting of HSAPS algorithm are
reported in Table 2 and they can be summarized as follows. We summarize the parameters

Table 2: Parameter setting.

Parameters Definition Values
Tmax Initial temperature 0.9
Tmin Minimum temperature min(0.01, 0.01Tmax)
λ Cooling ratio 0.9
z0 Initial radius for generating trail solutions (zmax+zmin)/2
zmin Minimum setting of z (U − L)/50
zmax Maximum setting of z (U − L)/2
µ Radius expansion constant 1.6
ν Radius shrinkage constant 0.65
∆0 Initial mesh size (Ui − Li)/3
σ Reduction factor of mesh size 0.01
m1 No of SA generated trail solution 2
m2 No of PS local search iterations d
Tol Termination tolerance 10−4

Nelite No of best solutions for final intensification 1

setting of HSAPS approach in the following groups.

• Initial solution
HSAPS starts with initial solution x0 generated randomly across the search space given
by each test function, where
[L,U] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n}

• Cooling Schedule
The initial temperature T is set high enough to accept all neighbors during the initial
phase of the algorithm. We set the initial temperature value Tmax = 0.9 and the
cooling ratio λ equal to 0.9. The SA outer loop is terminated when the temperature
reaches to its minimum value Tmin, which is setting to Tmin = min(0.01, 0.01Tmax).

• Trail solution number
The number of generated trail solutions depends on the value of m1 parameter. In-
creasing the number of m1 means increasing the number of trail solutions and the
value of the evaluation function. The experimental tests show that the best value of
the generated trail solutions is equal to m1 = 2.

• Neighborhood radius parameters
The main role of the parameter z is to control the exploration and exploitation processes
in the SA algorithm. In order to control the expansion and the shrinkage of the
neighborhood zone, the used parameters µ and ν in Equations 4.1 and 4.2 are set

164 A. F. ALI AND M. A. TAWHID

Table 3: The properties of the Integer programming test functions.

Function Dimension (d) Bound Optimal
FI1 5 [-100 100] 0
FI2 5 [-100 100] 0
FI3 5 [-100 100] -737
FI4 2 [-100 100] 0
FI5 4 [-100 100] 0
FI6 2 [-100 100] -6
FI7 2 [-100 100] -3833.12

equal to 1.6 and 0.65, respectively and the maximum value of the radius zmax is set to
(U − L)/2, while the minimum value of the radius zmin is set to (U − L)/50.

• PS parameters
The initial mesh size is set to (U−L)/3, and when the exploratory move is unsuccessful,
the mesh size is reduced by using reduction factor σ, which is set to 0.01. The iteration
number of the pattern search is equal to d.

• Intensification parameters
In the final stage of the algorithm, the Nelder-Mead method is applied in order to
refine the best found solution so far. We set the number of the best found solutions
list Nelite to 1.

• Stopping condition parameters
Reaching a final temperature is the main stopping criterion in the proposed HSAPS
algorithm, where T ≤ Tmin, but there are 2 other termination criteria which HSAPS
is applied. The first one is the maximum number of the obtained function evaluation
is equal to 20,000, while the second is the difference between the function values of the
current solution f(x) and the global optimal value at the global optimal solution f(x∗)
is less than Tol = 10−4.

5.2 Integer programming problems

HSAPS is tested on 7 benchmark integer programming problems (FI1 − FI7) in order to
verify its efficiency with integer programming problems. The properties of the benchmark
functions (function number, dimension of the problem, problem bound and the global opti-
mal of each problem) are listed in Table 3. The problems that were used are:

Test problem 1 ([42]). This problem is defined by

FI1(x) = ∥x∥1 = |x1|+ . . .+ |xn|

Test problem 2 ([42]). This problem is defined by

FI2 = xTx =
[
x1 · · · xn

] x1

...
xn

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 165

Test problem 3 ([13]). This problem is defined by

FI3 =
[
15 27 36 18 12

]
x

+xT

35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10 −20 31

x,

Test problem 4 ([13]). This problem is defined by

FI4(x) = (9x2
1 + 2x2

2 − 11)2 + (3x1 + 4x2
2 − 7)2

Test problem 5 ([13]). This problem is defined by

FI5(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4

+10(x1 − x4)
4

Test problem 6 ([40]). This problem is defined by

FI6(x) = 2x2
1 + 3x2

2 + 4x1x2 − 6x1 − 3x2

Test problem 7 ([13]). This problem is defined by

FI7(x) = −3803.84− 138.08x1 − 232.92x2 + 123.08x2
1

+203.64x2
2 + 182.25x1x2

5.3 The efficiency of the proposed HSAPS algorithm with integer program-
ming problems

The first experimental test is applied to verify the power of the proposed HSAPS with integer
programming problems. We compare the standard simulated annealing algorithm with the
proposed HSAPS algorithm without applying the final intensification process (Nelder-Mead
method). We set the same parameter values for both algorithms in order to make a fair
comparison. The functions FI3, FI5 and FI6 have been selected (picked randomly) to
show the efficiency of the proposed algorithm by plotting the values of function values
versus the number of iterations as shown in Figure 2. In Figure 2, the solid line refers
to the proposed HSAPS results, while the dotted line refers to the standard simulated
annealing results after 50 iterations. The graphs in Figure 2 show that the function values
rapidly decrease as the number of iterations increase for HSAPS results than those of the
standard simulated annealing algorithm. We can conclude from the graphs in Figure 2 that
the combination between the standard simulated annealing algorithm with pattern search
method can improve the performance of the standard simulated annealing algorithm and
accelerate its convergence.

5.4 The general performance of the HSAPS algorithm with integer program-
ming problems

The second experimental test is applied to investigate the general performance of the pro-
posed algorithm with the integer programming problems by plotting the values of function
values versus the number of iterations as shown in Figure 3 for four test functions FI1, FI2,

166 A. F. ALI AND M. A. TAWHID

Figure 2: The efficiency of the proposed HSAPS algorithm with integer programming prob-
lems

Figure 3: The general performance of HSAPS algorithm with integer programming problems

FI4 and FI7. The results in Figure 3 are the results of the proposed algorithm without
applying the Nelder-Mead method in the final stage of the algorithm. The graphs in Figure
3 show that the function values of the proposed DSFFA rapidly decrease as the number of
iterations increase. We note that the hybridization between the simulated annealing algo-
rithm and the pattern search method can accelerate the search and help the algorithm to
obtain the optimal or near optimal solution in reasonable time.

5.5 The efficiency of applying the Nelder-Mead method in the proposed HSAPS
algorithm with integer programming problems

The Nelder-Mead method is applied in the final stage of the proposed HSAPS algorithm
in order to accelerate the convergence of the proposed algorithm and to avoid running the
algorithm with more iterations without any improvement or slow convergence in the obtained
results. The results in Table 4 show the mean evaluation function values of the proposed

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 167

Table 4: The efficiency of invoking the Nelder-Mead method in the final stage of HSAPS for
FI1 − FI7 integer programming problems

Function HSAPS HSAPS
without NM with NM

FI1 548.23 210.86
FI2 590.48 199.12
FI3 2145.23 637.48
FI4 589.45 135.82
FI5 986.48 624.08
FI6 389.98 159.06
FI7 425.69 140.08

HSAPS without and with applying Nelder-Mead method, respectively. We report the best
results in boldface text. The results in Table 4 show that invoking the Nelder-Mead method
in the final stage can accelerate the search and help the algorithm to reach to the optimal or
near optimal solution faster than the proposed algorithm without applying the Nelder-Mead
method.

5.6 HSAPS and other algorithms

HSAPS is compared with other four benchmark algorithms (particle swarm optimization
with different variants) in order to show the efficiency of the proposed algorithm. Before
we discuss the comparison results of all algorithms, we present a brief description about the
comparative four algorithms [38] as follows.

• RWMPSOg. RWMPSOg is a Random Walk Memetic Particle Swarm Optimization
(with global variant), which combines the particle swarm optimization with random
walk with direction exploitation.

• RWMPSOl. RWMPSOl is a Random Walk Memetic Particle Swarm Optimization
(with local variant), which combines the particle swarm optimization with random walk
with direction exploitation.

• PSOg. PSOg is a standard particle swarm optimization with global variant without
local search method.

• PSOl. PSOl is a standard particle swarm optimization with local variant without local
search method.

5.6.1 Comparison between RWMPSOg, RWMPSOl, PSOg, PSOl and HSAPS
for integer programming problems.

In this subsection, we present the comparison results between our HSAPS algorithm and the
other algorithms in order to verify the efficiency of our proposed algorithm. The five com-
parative algorithms are tested on 7 benchmark functions, which are mentioned in Subsection
5.2. The results of the other comparative algorithms are taken from their original papers
[38]. The minimum (min), maximum (max), average (Mean), standard deviation (St.D) and
Success rate (%Suc) of the evaluation function values are reported over 50 runs and reported
in Table 5. The run is considered successful if the algorithm reached to the global minimum

168 A. F. ALI AND M. A. TAWHID

of the solution within an error of 10−4 before the 20,000 function evaluation value. The best
results between the comparative algorithms are reported with boldface text. The results
in Table 5 show that the proposed HSAPS algorithm is successful in all runs and obtains
the desired objective value of each function faster than the other algorithms in 6 of 7 test
functions.

5.7 Simulated annealing heuristic pattern search (SAHPS) method and HSAPS
for integer programming problems

In this subsection, we compare the HSAPS algorithm with another simulated annealing
based method, which is called simulated annealing pattern search method (SAHPS) [17].
Before reporting the comparison results between our HSAPS algorithm and SAHPS method,
we give a brief overview of SAHPS method as follows.

5.7.1 Simulated annealing heuristic pattern search (SAHPS)

SAHPS is a hybrid simulated annealing method proposed in [17] in order to solve multi-
model functions by combining the simulated annealing, heuristic pattern search (HPS) and
the Nelder-Mead method. The general structure of the SAHPS method looks like the gen-
eral structure of our HSAPS, however, they are working in different way. In SAHPS, the
SA trail solutions are generated along the direction sign between the current solution and
another exploring solution generated close to the current solution. The applied heuristic
pattern search (HPS) in SAHPS is a combination between the Approximate Descent Direc-
tion (ADD) method and the pattern search method. The HPS represents the intensification
part in the SAHPS method, however it is not applied in each iteration in the epoch length
(SA inner loop). It is applied only when the SA fails to obtain a good trail solution in the
epoch length. On the other side we applied the pattern search method as a local search
method at each iteration in the epoch length in order to accelerate the search and overcome
of the slow convergence of the simulated annealing method.

5.7.2 Comparison between simulated annealing heuristic pattern search (SAHPS)
method and HSAPS for integer programming problems

In Table 6, we give the comparison results between the SAHPS method and the proposed
HSAPS. The results of the SAHPS method are taken after running the code of the method.
The comparative results between the SAHPS method and the HSAPS algorithm are re-
ported in Table 6. The average (Mean), standard deviation (St.D) and rate of success (Suc)
are reported over 30 runs in Table 6. The best mean evaluation values between the two
algorithms are reported with boldface text. The results in Table 6 show that the results of
HSAPS algorithm are better than the results of the SAHPS method in all functions. The
overall results in Table 6 show that the HSAPS algorithm is faster and more efficient than
the SAHPS method.

5.8 HSAPS and the branch and bound method

Another investigated experiment has been applied in this paper to verify how the proposed
algorithm is powerful by comparing the HSAPS algorithm against the branch and bound
(BB) method [4], [5], [28], [31]. Before we discuss the comparative results between the
proposed algorithm and the BB method, we present the BB method and the main steps of
its algorithm as follows.

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 169

Table 5: Experimental results (min, max, mean, standard deviation and rate of success) of
function evaluation for FI1 − FI7 test problems

Function Algorithm Min Max Mean St.D Suc
FI1 RWMPSOg 17,160 74,699 27,176.3 8657 50

RWMPSOl 24,870 35,265 30,923.9 2405 50
PSOg 14,000 261,100 29,435.3 42,039 34
PSOl 27,400 35,800 31,252 1818 50
HSAPS 182 231 210.86 9.34 50

FI2 RWMPSOg 252 912 578.5 136.5 50
RWMPSOl 369 1931 773.9 285.5 50
PSOg 400 1000 606.4 119 50
PSOl 450 1470 830.2 206 50
HSAPS 169 230 199.12 11.7 50

FI3 RWMPSOg 361 41,593 6490.6 6913 50
RWMPSOl 5003 15,833 9292.6 2444 50
PSOg 2150 187,000 12,681 35,067 50
PSOl 4650 22,650 11,320 3803 50
HSAPS 545 709 637.48 47.06 50

FI4 RWMPSOg 76 468 215 97.9 50
RWMPSOl 73 620 218.7 115.3 50
PSOg 100 620 369.6 113.2 50
PSOl 120 920 390 134.6 50
HSAPS 127 213 135.82 11.84 50

FI5 RWMPSOg 687 2439 1521.8 360.7 50
RWMPSOl 675 3863 2102.9 689.5 50
PSOg 680 3440 1499 513.1 43
PSOl 800 3880 2472.4 637.5 50
HSAPS 519 681 624.08 624.08 44.58

FI6 RWMPSOg 40 238 110.9 48.6 50
RWMPSOl 40 235 112 48.7 50
PSOg 80 350 204.8 62 50
PSOl 70 520 256 107.5 50
HSAPS 138 185 159.06 12.90 50

FI7 RWMPSOg 72 620 242.7 132.2 50
RWMPSOl 70 573 248.9 134.4 50
PSOg 100 660 421.2 130.4 50
PSOl 100 820 466 165 50
HSAPS 112 169 140.08 15.06 50

170 A. F. ALI AND M. A. TAWHID

Table 6: Experimental results (mean, standard deviation and rate of success) of function
evaluation between SAHPS and HSAPS for FI1 − FI7 test problems

Function Algorithm Mean St.D Suc
FI1 SAHPS 578.13 50.23 30

HSAPS 206 7.033 30
FI2 SAHPS 468.25 40.15 30

HSAPS 200.6 10.39 30
FI3 SAHPS 848.23 25.48 30

HSAPS 648.23 45.35 30
FI4 SAHPS 300.98 15.68 30

HSAPS 134.53 7.23 30
FI5 BB 754 10.30.1 30

HSAPS 616.1 42.59 30
FI6 SAHPS 434.66 78.69 30

HSAPS 162.16 21.48 30
FI7 SAHPS 309.96 58.69 30

HSAPS 145.06 12.58 30

5.8.1 Branch and bound method

The branch and bound method (BB) is one of the most widely used method for solving
optimization problems. The main idea of BB method is the feasible region of the problem
is partitioned subsequently into several sub regions, this operation is called branching. The
lower and upper bounds value of the function can be determined over these partitions, this
operation is called bounding. The main steps of BB method are mentioned in Algorithm 6,
and we can summarize the BB algorithm in the following steps.

Algorithm 6 The branch and bound algorithm

1: Set the feasible region M0, M0 ⊃ S
2: Set i = 0
3: repeat
4: Set i = i+ 1
5: Partition the feasible region M0 into many subsets Mi
6: For each subset Mi, determine lower bound β, where β = min β(Mi)
7: For each subset Mi, determine upper bound α, where α = min α(Mi)
8: if (α = β)||(α− β ≤ ϵ) then
9: Stop

10: else
11: Select some of the subset Mi and partition them
12: end if
13: Determine new bound on the new partition elements
14: until (i ≤ m)

Step 1. The algorithm starts with a relaxed feasible region M0 ⊃ S, where S is the
feasible region of the problem. This feasible region M0 is partitioned into finitely many
subsets Mi.

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 171

Table 7: Experimental results (mean, standard deviation and rate of success) of function
evaluation between BB and HSAPS for FI1 − FI7 test problems

Function Algorithm Mean St.D Suc
FI1 BB 1167.83 659.8 30

HSAPS 206 7.033 30
FI2 BB 139.7 102.6 30

HSAPS 200.6 10.39 30
FI3 BB 4185.5 32.8 30

HSAPS 648.23 45.35 30
FI4 BB 316.9 125.4 30

HSAPS 134.53 7.23 30
FI5 BB 2754 1030.1 30

HSAPS 616.1 42.59 30
FI6 BB 211 15 30

HSAPS 162.16 21.48 30
FI7 BB 358.6 14.7 30

HSAPS 145.06 12.58 30

Step 2. For each subset Mi, the lower bound β and the upper bound α have been
determined, where
β(Mi) ≤ inff(Mi

∩
S) ≤ α(Mi), f is the objective function.

Step 3. The algorithm is terminated, if the bounds are equal or very close, i.e α = β
(or α− β ≤ ϵ), ϵ is a predefined positive constant.

Step 4. Otherwise, if the bounds are not equal or very close, some of the subsets Mi

are selected and partitioned in order to obtain a more refined partition of M0.

Step 5. The procedure is repeated until termination criteria are satisfied.

5.8.2 Comparison between the BB method and HSAPS for integer program-
ming problems

In Table 7, we give the comparison results between the BB method and the proposed HSAPS.
The results of the BB method are taken from [27]. In [27], the BB algorithm transforms the
initial integer problem programming problem to a continues one. For the bounding, the BB
uses the sequential quadratic programming method to solve the generated sub problems.
While for branching, depth first traversal with backtracking was used. The comparative
results between the BB algorithm and the proposed algorithm are reported in Table 7. The
average (Mean), standard deviation (St.D) and rate of success (Suc) are reported over 30
runs in Table 7. The best mean evaluation values between the two algorithms are reported
with boldface text. The results in Table 7 show that the proposed algorithm results are
better than the results of the BB method in 6 of 7 functions. The overall results in Table 7
show that the proposed algorithm is faster and more efficient than the BB method.

The final conclusion after applying the proposed algorithm on the integer programming
problems and comparing it with different 5 algorithms, that the proposed HSAPS algorithm
is a promising algorithm and can obtain the optimal or near optimal solution of the integer
programming functions faster than the other comparative algorithms.

172 A. F. ALI AND M. A. TAWHID

5.9 Minimax problems

Test problems for other optimization problems have been selected in order to investigate
the efficiency of the proposed algorithm. These functions contain 10 benchmark minimax
functions, their properties are reported in Table 8 and the form of each function is listed as
follows.

Test problem 1 ([50]). This problem is defined by

min FM1(x),

FM1(x) = max fi(x), i = 1, 2, 3,

f1(x) = x2
1 + x4

2,

f2(x) = (2− x1)2 + (2− x2)
2,

f3(x) = 2exp(−x1 + x2)

Test problem 2 ([50]). This problem is defined by

min FM2(x),

FM2(x) = max fi(x), i = 1, 2, 3,

f1(x) = x4
1 + x2

2,

f2(x) = (2− x1)2 + (2− x2)
2,

f3(x) = 2exp(−x1 + x2)

Test problem 3 ([50]). This problem is a nonlinear programming problem and trans-
formed to minimax problem according to Equations 2.4, 2.5, and it is defined by

FM3(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

g2(x) = −x2
1 − x2

2 − x3
3 − x2

4 − x1 + x2 − x3 + x4 + 8,

g3(x) = −x2
1 − 2x2

2 − x2
3 − 2x4 + x1 + x4 + 10,

g4(x) = −x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5

Test problem 4 ([50]). This problem is a nonlinear programming problem and it is
defined by

min FM4(x),

FM4(x) = maxfi(x) i = 1, . . . , 5

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 +

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

f2(x) = f1(x) + 10(2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127),

f3(x) = f1(x) + 10(7x1 + 3x2 + 10x2
3 + x4 − x5 − 282),

f4(x) = f1(x) + 10(23x1 + x2
2 + 6x2

6 − 8x7 − 196),

f5(x) = f1(x) + 10(4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7

Test problem 5 ([44]). This problem is defined by

min FM5(x),

FM5(x) = max fi(x), i = 1, 2,

f1(x) = |x1 + 2x2 − 7|,
f2(x) = |2x1 + x2 − 5|

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 173

Test problem 6 ([44]). This problem is defined by

min FM6(x),

FM6(x) = max fi(x),

fi(x) = |xi|, i = 1, . . . , 10,

Test problem 7 ([30]). This problem is defined by

min FM7(x),

FM7(x) = max fi(x), i = 1, 2,

f1(x) = (x1 −
√
(x2

1 + x2
2)cos

√
x2
1 + x2

2)
2 + 0.005(x2

1 + x2
2)

2,

f2(x) = (x2 −
√
(x2

1 + x2
2)sin

√
x2
1 + x2

2)
2 + 0.005(x2

1 + x2
2)

2

Test problem 8 ([30]). This problem is defined by

min FM8(x),

FM8(x) = max fi(x), i = 1, . . . , 4,

f1(x) =
(
x1 − (x4 + 1)4

)2
+
(
x2 −

(
x1 − (x4 + 1)4

)4)2

+

2x2
3 + x2

4 − 5
(
x1 − (x4 + 1)4

)
− 5

(
x2 −

(
x1−

(x4 + 1)4
)4)− 21x3 + 7x4,

f2(x) = f1(x) + 10
[(
x1 − (x4 + 1)4

)2
+

(
x2 −

(
x1 −

(x4 + 1)4
)4)2

+ x2
3 + x2

4 +
(
x1 − (x4 + 1)4

)
−(

x2 −
(
x1 − (x4 + 1)4

)4)
+ x3 − x4 − 8

]
,

f3(x) = f1(x) + 10
[(
x1 − (x4 + 1)4

)2
+ 2

(
x2 −

(
x1 −

(x4 + 1)4
)4)2

+ x2
3 + 2x2

4 −
(
x1 − (x4 + 1)4

)
−

x4 − 10
]
,

f4(x) = f1(x) + 10
[(
x1 − (x4 + 1)4

)2
+

(
x2 −

(
x1 −

(x4 + 1)4
)4)2

+ x2
3 + 2

(
x1 − (x4 + 1)4

)
−(

x2 −
(
x1 − (x4 + 1)4

)4)− x4 − 5
]
,

(5.1)

Test problem 9 ([30]). This problem is a nonlinear programming problem and trans-

174 A. F. ALI AND M. A. TAWHID

Table 8: Minimax test functions properties.

Function Dimension (d) Desired error goal
FM1 2 1.95222245
FM2 2 2
FM3 4 -40.1
FM4 7 247
FM5 2 10−4

FM6 10 10−4

FM7 2 10−4

FM8 4 -40.1
FM9 7 680
FM10 4 0.1

formed to minimax problem according to Equations 2.4, 2.5, and it is defined by

min FM9(x),

FM9(x) = max fi(x), i = 1, . . . , 5,

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

f2(x) = −2x2
1 − 2x4

3 − x3 − 4x2
4 − 5x5 + 127,

f3(x) = −7x1 − 3x2 − 10x2
3 − x4 + x5 + 282,

f4(x) = −23x1 − x2
2 − 6x2

6 + 8x7 + 196,

f5(x) = −4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7

Test problem 10 ([30]). This problem is defined by

min FM10(x),

FM10(x) = max|fi(x)|, i = 1, . . . , 21,

fi(x) = x1exp(x3ti) + x2exp(x4ti)−
1

1 + ti
,

ti = −0.5 +
i− 1

20

5.10 The efficiency of the proposed HSAPS algorithm with minimax problems

We will start to investigate the efficiency of combining the simulated annealing algorithm
with the pattern search method to solve minimax problems. This test is applied without in-
voking the final intensification process (Nelder-Mead method). The parameter setting values
for both algorithms ware the same for both algorithms in order to make a fair comparison.
The functions FM2, FM3, FM4, FM7 and FM9 have been selected to show the efficiency
of the proposed algorithm by plotting the values of function values versus the number of
iterations as shown in Figure 4. In Figure 4, the solid line refers to the proposed HSAPS re-
sults, while the dotted line refers to the standard simulated annealing algorithm results after
50 iterations. Figure 4 shows that the function values are rapidly decreases as the number
of iterations increases for HSAPS results than those of the standard simulated annealing

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 175

Figure 4: The efficiency of the proposed HSAPS algorithm with minimax problems

algorithm. The results in Figure 4 show that the combination between the standard simu-
lated annealing algorithm and the pattern search method can improve the performance of
the standard simulated annealing algorithm and accelerate the convergence of the proposed
algorithm.

5.11 The general performance of the HSAPS algorithm with minimax prob-
lems

The proposed HSAPS have been investigated to verify of the general performance of it
with the minimax problems by plotting the values of function values versus the number of
iterations as shown in Figure 5 for five test functions FM1, FM5, FM6, FM8 and FM10.
The results in Figure 5 are the results of the proposed algorithm without applying the
Nelder-Mead method in the final stage of the algorithm after 50 iterations. The results in
Figure 5 show that the function values of the proposed HSAPS are rapidly decreases as the
number of iterations increases which verified that the hybridization between the simulated
annealing algorithm and the pattern search method can accelerate the search and helps the
algorithm to obtain the optimal or near optimal solution in few iterations only.

5.12 The efficiency of applying the Nelder-Mead method in the proposed
HSAPS algorithm with minimax problems

The final test which we have applied in order to investigate the general performance of the
proposed algorithm is to verify the importance of invoking the Nelder-Mead method in the
final stage as a final intensification process. The results in Table 9 show the mean evaluation
function values of the proposed HSAPS without and with applying Nelder-Mead method

176 A. F. ALI AND M. A. TAWHID

Figure 5: The general performance of HSAPS algorithm with minimax problems

respectively. The best results are reported in boldface text. The results in Table 9, show
that invoking the Nelder-Mead method in the final stage enhance the general performance of
the proposed algorithm and can accelerate the search to reach to the optimal or near optimal
solution faster than the proposed algorithm without applying the Nelder-Mead method.

5.13 HSAPS and other algorithms

HSAPS is compared with three benchmark algorithms in order to verify of the efficiency of
the proposed algorithm with minimax problems. Before discussing the comparison results
of all algorithms, we present a brief description about the comparative three algorithms as
follows.

• HPS2 [21]. HPS2 is a Heuristic Pattern Search algorithm, which is applied for solving
bound constrained minimax problems by combining the Hook and Jeeves (HJ) pattern
and exploratory moves with a randomly generated approximate descent direction.

• UPSOm [37]. UPSOm is a Unified Particle Swarm Optimization algorithm, which com-
bines the global and local variants of the standard PSO and incorporates a stochastic
parameter to imitate mutation in evolutionary algorithms.

• RWMPSOg [38]. RWMPSOg is a RandomWalk Memetic Particle Swarm Optimization
(with global variant), which combines the particle swarm optimization with random
walk with direction exploitation.

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 177

Table 9: The efficiency of invoking the Nelder-Mead method in the final stage of HSAPS for
FM1 − FM10 minimax problems

Function HSAPS HSAPS
without NM with NM

FM1 687.25 205.05
FM2 489.56 187.24
FM3 758.36 454.36
FM4 873.59 583.91
FM5 458.27 127.52
FM6 548.38 161.75
FM7 754.54 493.14
FM8 20,000 1754.45
FM9 724.85 597.22
FM10 874.25 486.15

5.13.1 Comparison between HPS2, UPSOm, RWMPSOg and HSAPS for min-
imax problems

In this subsection, we present the comparison results between our HSAPS algorithm and the
other mentioned algorithms in order to verify of the efficiency of the proposed algorithm.
The four comparative algorithms are tested on 10 benchmark functions, which are reported
in Subsection 5.9. The results of the comparative algorithms are taken from there original
papers [21]. The average (Avg), standard deviation (SD) and Success rate (%Suc) are
reported over 100 runs and reported in Table 10. The mark (-) for FM8 in HPS2 algorithm
and FM2, FM8 and FM9 in RWMPSOg algorithm in Table 10 means that the results
of these algorithms for that functions are not reported in its original papers. The run is
considered succussed if the algorithm reached the global minimum of the solution within an
error of 10−4 before the 20,000 function evaluation value. The results in Table 10, show that
the proposed HSAPS algorithm is succussed in all runs and obtains the objective value of
each function faster than the other algorithms, except for functions FM3, FM9 and FM10.

5.14 Simulated annealing heuristic pattern search (SAHPS) method and HSAPS
for minimax problems

The SAHPS method, has been applied on the minimax problems in order to compare its
results against our proposed HSAPS algorithm. The results of the comparison are reported
in Table 11 as follows.

5.14.1 Comparison between the SAHPS method and HSAPS for minimax
problems

Another experiment has been done in order to compare our HSAPS algorithm and the
SAHPS method to solve minimax problems. The results of the comparison are reported
in Table 11. The average (Mean), standard deviation (St.D) and rate of success (Suc)
are reported over 30 runs in Table 11. The best mean evaluation values between the two
algorithms are reported in boldface text. The results in Table 11 show that the HSAPS
algorithm results are better than the results of the SAHPS method in all functions. The

178 A. F. ALI AND M. A. TAWHID

Table 10: Evaluation function for the minimax problems FM1 − FM10

Algorithm Problem Avg SD %Suc
HPS2 FM1 1848.7 2619.4 99

FM2 635.8 114.3 94
FM3 141.2 28.4 37
FM4 8948.4 5365.4 7
FM5 772.0 60.8 100
FM6 1809.1 2750.3 94
FM7 4114.7 1150.2 100
FM8 - - -
FM9 283.0 123.9 64
FM10 324.1 173.1 100

UPSOm FM1 1993.8 853.7 100
FM2 1775.6 241.9 100
FM3 1670.4 530.6 100
FM4 12,801.5 5072.1 100
FM5 1701.6 184.9 100
FM6 18,294.5 2389.4 100
FM7 3435.5 1487.6 100
FM8 6618.50 2597.54 100
FM9 2128.5 597.4 100
FM10 3332.5 1775.4 100

RWMPSOg FM1 2415.3 1244.2 100
FM2 - - -
FM3 3991.3 2545.2 100
FM4 7021.3 1241.4 100
FM5 2947.8 257.0 100
FM6 18,520.1 776.9 100
FM7 1308.8 505.5 100
FM8 - - -
FM9 - - -
FM10 4404.0 3308.9 100

HSAPS FM1 215.05 7.53 100
FM2 195.14 10.04 100
FM3 472.32 99.87 100
FM4 581.91 7.95 100
FM5 120.72 20.16 100
FM6 157.93 127.86 100
FM7 485.74 116.53 100
FM8 1535.36 32.49 5
FM9 584.4 3.95 7
FM10 400.15 119.62 60

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 179

Table 11: Experimental results (mean, standard deviation and rate of success) of function
evaluation between SQP and HSAPS for FM1 − FM10 test problems

Function Algorithm Mean St.D Suc
FM1 SAHPS 313.93 23.48 30

HSAPS 205.05 11.83 30
FM2 SAHPS 319.47 15.48 30

HSAPS 187.24 17.04 30
FM3 SAHPS 472.54 20.18 30

HSAPS 454.36 102.96 30
FM4 SAHPS 1715.48 116.45 10

HSAPS 583.91 8.24 25
FM5 SAHPS 315.48 17.25 30

HSAPS 127.52 25.6 30
FM6 SAHPS 20,000 0.0 0.0

HSAPS 161.75 131.15 30
FM7 SAHPS 687.25 52.47 10

HSAPS 493.14 119.29 30
FM8 SAHPS 1147 95.48 10

HSAPS 1014.45 57.12 3
FM9 SAHPS 758.24 158.47 4

HSAPS 597.22 13.65 5
FM10 SAHPS 649.78 58.47 15

HSAPS 486.15 123.14 10

overall results in Table 11 show that the HSAPS algorithm is faster and more efficient than
the SAHPS method.

5.15 HSAPS and SQP method

The last test for our proposed algorithm is to compare the HSAPS with another famous
method which is called sequential quadratic programming method (SQP). In the following
subsection, we highlight the main steps of the SQP method and how it works.

5.15.1 Sequential quadratic programming (SQP)

The first references to SQP algorithms have been in Wilson’s PhD thesis in 1963 [49], he
proposed the Newton-SQP algorithm to solve unconstrained optimization. The development
of the secant or variable-metric algorithms led to the extension of these methods to solve
the constrained problem. The main steps of the SPQ method can be summarized as follows.

Step 1. The SQP algorithm starts with an initial solution x0, the Hessian matrix of
the objective function is initialized.

Step 2. At each iteration, the BFGS method has been used to calculate a positive
definite quasi-Newton approximation of the Hessian matrix , where the Hessian update
is calculated as follows

Hn+1 = Hn +
qnq

T
n

qTn sn
− HT

n Hn

sTnHnsn
, (5.2)

180 A. F. ALI AND M. A. TAWHID

Table 12: Experimental results (mean, standard deviation and rate of success) of function
evaluation between SQP and HSAPS for FM1 − FM10 test problems

Function Algorithm Mean St.D Suc
FM1 SQP 4044.5 8116.6 24

HSAPS 205.05 11.83 30
FM2 SQP 8035.7 9939.9 18

HSAPS 187.24 17.04 30
FM3 SQP 135.5 21.1 30

HSAPS 454.36 102.96 30
FM4 SQP 20,000 0.0 0.0

HSAPS 583.91 8.24 30
FM5 SQP 140.6 38.5 30

HSAPS 127.52 25.6 30
FM6 SQP 611.6 200.6 30

HSAPS 161.75 131.15 30
FM7 SQP 15,684.0 7302.0 10

HSAPS 493.14 119.29 30
FM8 SQP 20,000 0.0 0.0

HSAPS 1754.45 57.12 3
FM9 SQP 20,000 0.0 0.0

HSAPS 597.22 13.65 5
FM10 SQP 4886.5 8488.4 22

HSAPS 486.15 123.14 50

where sn = xn+1 − xn and qn = ∇f(xn+1)

Step 3. The QP problem is solved in z as follows

min q(z) = 1/2zTHz + cT z. (5.3)

Step 4. The new potential solution is calculating using the solution zn as follows

xn+1 = xn + αnzn (5.4)

where αn is a step length and determined through line search.

For an extended theoretical aspects of the SQP algorithm refer to [10], [12].

The results of the two comparative algorithms are tested on 10 benchmark functions,
which are reported in Subsection 5.9. The results of the SQP algorithm are reported and
taken from its paper [27]. The average (Avg), standard deviation (SD) and Success rate
(%Suc) are reported over 30 runs and reported in Table 12. The run is considered succussed
if the algorithm reached the global minimum of the solution within an error of 10−4 before
the 20,000 function evaluation value. The results in Table 12, show that the proposed
HSAPS algorithm is outperform the SQP algorithm in all functions, except FM3. The
final conclusion from this comparison is that the proposed HSAPS is outperform the SQP
algorithm in most of tested minimax problems.

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 181

6 Conclusion

In this paper, a new hybrid algorithm has been proposed by combining the simulated an-
nealing algorithm with the pattern search and the Nelder Mead methods in order to solve
integer programming and minimmax problems. The proposed algorithm is called hybrid
simulated annealing and pattern search (HSAPS) algorithm. In the proposed algorithm, we
try to overcome the main drawback of the simulated annealing algorithm by accelerating
the search through invoking the pattern search and Nelder-Mead methods in the standard
simulated annealing algorithm. The pattern search method is working as a local search
method and it used to refine the simulated annealing solution at each iteration, while the
Nelder-Mead method is used in the final stage of the algorithm in order to refine the overall
best solution and to avoid running the algorithm more iteration without any improvement
in the search. The HSAPS algorithm has been intensely tested on 17 benchmark functions
7 integer programming problems and 10 minimax problems. The proposed algorithm is
compared against other 6 algorithms to investigate its performance solving integer program-
ming problems and 5 algorithms to test its performance for solving minimax problems. The
numerical results indicate that the proposed HSAPS algorithm is a promising algorithm and
suitable to find a global optimal solution or near optimal solution of the tested functions
with their different properties in reasonable time.

Acknowledgments

We are grateful to the anonymous reviewers for constructive feedback and insightful sugges-
tions which greatly improved this article.

References

[1] N. Bacanin and M. Tuba, Artificial bee colony (ABC) algorithm for constrained opti-
mization improved with genetic operators, Studies in Informatics and Control 21 (2012)
137–146.

[2] N. Bacanin, I. Brajevic and M. Tuba, Firefly algorithm applied to integer programming
problems, Recent Advances in Mathematics, 2013

[3] J.W. Bandler and C. Charalambous, Nonlinear programming using minimax techniques,
J. Optim. Theory Appl. 13 (1974) 607–619.

[4] B. Borchers and J.E. Mitchell, Using an Interior point method in a branch and bound
algorithm for integer programming, Technical Report, Rensselaer Polytechnic Institute,
July 1992.

[5] B. Borchers and J.E. Mitchell, An improved branch and bound algorithm for mixed
integer nonlinear programs, Computers & Operations Research 21 (1994) 359–367.

[6] M.F. Cardoso, R.L. Salcedo and S.F. de Azevedo ,The simplex-simulated annealing
approach to continuous non-linear optimization, Comput. Chem. Eng. 20 (1996) 1065–
1080.

[7] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo and D. Barbosa, A simulated annealing
approach to the solution of minlp problems, Comput. Chem. Eng. 21 (1997) 1349–1364.

182 A. F. ALI AND M. A. TAWHID

[8] D.Z. Du and P.M. Pardalose, Minimax and Applications, Kluwer Academic Publishers,
Dordrecht, 1995.

[9] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. Thesis, Politecnico di
Milano, Italy, 1992.

[10] R. Fletcher, Practical Method of Optimization, Vol.1 & 2, John Wiley and Sons, 1980.

[11] M.J. Flynn, Some computer organizations and their effectiveness, IEEE Transon Com-
puters C-21 (1972) 948–960.

[12] P. E. Gill, W. Murray and M.H. Wright, Practical Optimization, Academic Press, Lon-
don, 1981.

[13] A. Glankwahmdee, J.S. Liebman and G.L. Hogg, Unconstrained discrete nonlinear
programming, Engineering Optimization 4 (1979) 95–107.

[14] F. Glover, Future paths for integer programming and links to artificial intelligence,
Computers and Operations Research 13 (1986) 533–549.

[15] F. Glover, A template for scatter search and path relinking, in Artificial Evolution,
Lecture Notes in Computer Science, vol. 1363, 1998, Springer, pp. 1–51,

[16] A. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method
for nonlinear unconstrained global optimization, Optimization Methods and Software
17 (2002) 891–912.

[17] A. Hedar and M. Fukushima, Heuristic pattern search and its hybridization with simu-
lated annealing for nonlinear global optimization, Optimization Methods and Software
19 (2002) 891–912.

[18] F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, 9th ed., McGraw-
Hill, New York, 2005.

[19] J.H. Holland, —it Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor 1975.

[20] R. Hooke and T. A.Jeeves, Direct search , solution of numerical and statistical problems,
J. Assoc. Comput. Mach. (1961) 212–229.

[21] A.C.P. Isabel, E. Santo and E. Fernandes, Heuristics pattern search for bound con-
strained minimax problems, in Computational Science and its Applications, Lecture
Notes in Computer Science, Vol. 6784, ICCSA 2011, pp. 174–184.

[22] G.K. Jati and S. Suyanto, Evolutionary discrete firefly algorithm for travelling salesman
problem, in Adaptive and Intelligent Systems, Lecture Notes in Computer Science, Vol.
6943, Springer, 2011, pp. 393–403.

[23] R. Jovanovic and M. Tuba, An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover problem, Applied
Soft Computing 11 (2011) 5360–5366.

[24] R. Jovanovic, M. Tuba, Ant colony optimization algorithm with pheromone correc-
tion strategy for minimum connected dominating set problem, Computer Science and
Information Systems 10 (2013) 133–149.

HYBRID SIMULATED ANNEALING FOR SOLVING MINIMAX AND IP PROBLEMS 183

[25] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing,
Science 220 (1983) 671–680.

[26] J. Kennedy and R.C. Eberhart, Particle swarm optimization, in Proceedings of the
IEEE International Conference on Neural Networks, vol 4, 1995, pp. 194–1948.

[27] E.C. Laskari, K.E. Parsopoulos and M.N. Vrahatis, Particle swarm optimization for
integer programming, in Proceedings of the IEEE 2002 Congress on Evolutionary Com-
putation, Honolulu (HI), 2002, pp. 1582–1587.

[28] E.L. Lawler and D.W. Wood, Branch and bound methods: a survey, Operations Re-
search 14 (1966) 699–719.

[29] G. Liuzzi, S. Lucidi and M. Sciandrone, A derivative-free algorithm for linearly con-
strained finite minimax problems, SIAM J. Optim. 16 (2006) 1054–1075.

[30] L. Lukšan and J. Vlček, Test problems for nonsmooth unconstrained and linearly con-
strained optimization, Technical report 798, Institute of Computer Science, Academy
of Sciences of the Czech Republic, Prague, Czech Republic, 2000.

[31] V.M. Manquinho, J.P. Marques Silva, A.L. Oliveira ans K. A. Sakallah, Branch and
bound algorithms for highly constrained integer programs, Technical Report, Cadence
European Laboratories, Portugal, 1997.

[32] N. Mladenovic, Avariable neighborhood algorithm –a new metaheuristic for com-
binatorial optimization, in Abstracts of Papers Presented at Optimization Days,
Montréal,Canada, 1995, pp. 112.

[33] M. Mladenovic and P. Hansen, Variable neighborhood search, Computers and Opera-
tions Research 24 (1997) 1097—1100.

[34] J. A. Nelder and R. Mead, A simplex method for function minimization, Computer
Journal 7 (1965) 308–313.

[35] I.H. Osman and J.P. Kelly, Meta-Heuristics: Theory and Applications, Kluwer Aca-
demic Publishers, Boston, MA, 1996.

[36] G. L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds.), Handbooks in OR & MS,
volume 1. Elsevier, 1989.

[37] K.E. Parsopoulos and M.N. Vrahatis, Unified particle swarm optimization for tackling
operations research problems, in Proceeding of IEEE 2005 swarm Intelligence Sympo-
sium, Pasadena, USA, 2005, pp. 53–59.

[38] Y.G. Petalas, K.E. Parsopoulos and M.N. Vrahatis, Memetic particle swarm optimiza-
tion, Ann oper Res 156 (2007) 99–127.

[39] E. Polak, J.O. Royset and R.S. Womersley, Algorithms with adaptive smoothing for
finite minimax problems, J. Optim. Theory Appl. 119 (2003) 459–484.

[40] S.S. Rao, Engineering Optimization-Yheory and Practice, Wiley, New Delhi, 1994.

[41] C. C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics, Kluwer
Academic Publishers, Boston, MA, 2002.

184 A. F. ALI AND M. A. TAWHID

[42] G. Rudolph, An evolutionary algorithm for integer programming, in Parallel Problem
Solving from Nature, Davidor Y, Schwefel H-P, Männer R (eds.), vol. 3, 1994, pp.
139–148.

[43] Y. Saab and V. Rao, Combinatorial optimization by stochastic evolution, IEEE Trans-
actions on Computer-Aided Design 10 (1991) 525–535.

[44] H.P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.

[45] T. Stützle, Local search algorithms for combinatorial problems: Analysis, improve-
ments, and new applications, Ph.D. Thesis, Darmstadt University of Technology, 1998.

[46] D. Teodorovic and M. DellOrco. Bee colony optimization cooperative learning approach
to complex tranportation problems, in Advanced OR and AI Methods in Transportation:
Proceedings of 16th MiniEURO Conference and 10th Meeting of EWGT 2005, Poznan:
Publishing House of the Polish Operational and System Research, 2005, pp. 51–60.

[47] M. Tuba, N. Bacanin and N. Stanarevic, Adjusted artificial bee colony (ABC) algorithm
for engineering problems, WSEAS Transaction on Computers 11 (2012) 111–120.

[48] M. Tuba, M. Subotic and N. Stanarevic, Performance of a modified cuckoo search
algorithm for unconstrained optimization problems, WSEAS Transactions on Systems
11 (2012) 62–74.

[49] B. Wilson, A simplicial Algorithm for Concave Programming, PhD thesis, Harvard
University, 1963.

[50] S. Xu, Smoothing method for minimax problems, Computational Optimization and
Applications 20 (2001) 267–279.

[51] S. Zuhe, A. Neumaier and M.C. Eiermann, Solving minimax problems by interval meth-
ods, BIT 30 (1990) 742–751.

Manuscript received 27 February 2015
revised 12 July 2015

accepted for publication 13 July 2015

Ahmed F. Ali
Department of Computer Science, Faculty of Computers & Informatics
Suez Canal University, Ismailia, Egypt

Department of Mathematics and Statistics
Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada V2C 0C8
E-mail address: ahmed fouad@ci.suez.edu.eg

Mohamed A. Tawhid
Department of Mathematics and Statistics, Faculty of Science
Thompson Rivers University, Kamloops, BC, Canada V2C 0C8

Department of Mathematics and Computer Science
Faculty of Science, Alexandria University
Moharam Bey 21511, Alexandria, Egypt
E-mail address: Mtawhid@tru.ca

