



# NEW SMOOTHING FUNCTIONS FOR SOLVING A SYSTEM OF EQUALITIES AND INEQUALITIES

JEIN-SHAN CHEN\*, CHUN-HSU KO, YAN-DI LIU AND SHENG-PEN WANG<sup>†</sup>

Abstract: In this paper, we propose a family of new smoothing functions for solving a system of equalities and inequalities, which is a generalization of [13]. We then investigate an algorithm based on a new reformation  $\hat{H}$  with less dimensionality and show, as in [13], that it is globally and locally convergent under suitable assumptions. Numerical evidence shows the better performance of the algorithm in the sense that some unsolved examples in [13] can be solved by our proposed method. Moreover, the involved parameters in the family of new smoothing functions does not have influence in the algorithm, which is a new discovery to the literature.

Key words: smoothing function, system of equations and inequalities, convergence.

Mathematics Subject Classification: 26B05, 26B35, 65K05, 90C33.

# 1 Introduction and Motivation

The target problem of this paper is the following system of equalities and inequalities:

$$\begin{cases} f_I(x) \leq 0\\ f_E(x) = 0 \end{cases}$$
(1.1)

where  $I = \{1, 2, \dots, m\}$  and  $E = \{m + 1, m + 2, \dots, n\}$ . In other words, the function  $f_I : \mathbb{R}^n \to \mathbb{R}^m$  is given by

$$f_I(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix}$$

where  $f_i : \mathbb{R}^n \to \mathbb{R}$  for  $i = \{1, 2, \cdots, m\}$ ; and the function  $f_E : \mathbb{R}^n \to \mathbb{R}^{n-m}$  is given by

$$f_E(x) = \begin{bmatrix} f_{m+1}(x) \\ f_{m+2}(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

\*The author's work is supported by Ministry of Science and Technology, Taiwan.  $^{\dagger}\mathrm{Corresponding}$  author.

© 2016 Yokohama Publishers

where  $f_j : \mathbb{R}^n \to \mathbb{R}$  for  $j = \{m + 1, m + 2, \dots, n\}$ . For simplicity, throughout this paper, we denote  $f : \mathbb{R}^n \to \mathbb{R}^n$  as

$$f(x) := \begin{bmatrix} f_I(x) \\ f_E(x) \end{bmatrix} = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \\ f_{m+1}(x) \\ f_{m+2}(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

and assume that f is continuously differentiable. When E is empty set, the system (1.1) reduces to a system of inequalities; whereas it reduces to a system of equations when I is empty.

Problems in form of (1.1) arise in real applications, including data analysis, computeraided design problems, image reconstructions, and set separation problems, etc.. Many optimization methods have been proposed for solving the system (1.1), for instance, noninterior continuation method [14], smoothing-type algorithm [7, 13], Newton algorithm [8], and iteration methods [5, 9, 10, 12]. In this paper, we consider the similar smoothing-type algorithm studied in [7, 13] for solving the system (1.1). In particular, we propose a family of smoothing functions, investigate its properties, and report numerical performance of an algorithm in which this family of new smoothing functions is involved.

As seen in [7, 13], the main idea of smoothing-type algorithm for solving the system (1.1) is to reformulate system (1.1) as a system of smoothing equations via projection function, More specifically, for any  $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ , one defines

$$(x)_+ := \left[ \begin{array}{c} \max\{0, x_1\} \\ \vdots \\ \max\{0, x_n\} \end{array} \right].$$

Then, the system (1.1) is equivalent to the following system of equations:

$$\begin{cases} (f_I(x))_+ &= 0\\ f_E(x) &= 0. \end{cases}$$
(1.2)

Note that the function  $(f_I(x))_+$  in the reformulation (1.2) is nonsmooth, the classical Newton methods cannot be directly applied to solve (1.2). To conquer this, a smoothing algorithm was considered in [7, 13], in which the following smoothing function was employed:

$$\phi(\mu, t) = \begin{cases} t & \text{if } t \ge \mu, \\ \frac{(t+\mu)^2}{4\mu} & \text{if } -\mu < t < \mu, \\ 0 & \text{if } t \le -\mu, \end{cases}$$
(1.3)

where  $\mu > 0$ .

In this paper, we propose a family of new smoothing functions, which include the function  $\phi(\mu, t)$  given as in (1.3) as a special case, for solving the reformulation (1.2). More specifically,

we consider the family of smoothing functions as below:

$$\phi_p(\mu, t) = \begin{cases} t & \text{if } t \ge \frac{\mu}{p-1}, \\ \frac{\mu}{p-1} \left[ \frac{(p-1)(t+\mu)}{p\mu} \right]^p & \text{if } -\mu < t < \frac{\mu}{p-1}, \\ 0 & \text{if } t \le -\mu, \end{cases}$$
(1.4)

where  $\mu > 0$  and  $p \ge 2$ . Note that  $\phi_p$  reduces to the smoothing function studied in [13] when p = 2. The graphs of  $\phi_p$  with different values of p and various  $\mu$  are depicted as in Figures 1-3.

**Proposition 1.1.** Let  $\phi_p$  be defined as in (1.4). For any  $(\mu, t) \in \mathbb{R}_{++} \times \mathbb{R}$ , we have

- (a)  $\phi_p(.,.)$  is continuously differentiable at any  $(\mu, t) \in \mathbb{R}_{++} \times \mathbb{R}$ .
- (b)  $\phi_p(0,t) = (t)_+$ .
- (c)  $\frac{\partial \phi_p(\mu,t)}{\partial t} \ge 0$  for any  $(\mu,t) \in \mathbb{R}_{++} \times \mathbb{R}$ .
- (d)  $\lim_{p\to\infty} \phi_p(\mu, t) \to (t)_+.$

*Proof.* (a) First, we calculate  $\frac{\partial \phi_p(\mu,t)}{\partial t}$  and  $\frac{\partial \phi_p(\mu,t)}{\partial \mu}$  as below:

$$\frac{\partial \phi_p(\mu, t)}{\partial t} = \begin{cases} 1 & \text{if } t \ge \frac{\mu}{p-1}, \\ \left[\frac{(p-1)(t+\mu)}{p\mu}\right]^{p-1} & \text{if } -\mu < t < \frac{\mu}{p-1}, \\ 0 & \text{if } t \le -\mu, \end{cases}$$
$$\frac{\partial \phi_p(\mu, t)}{\partial \mu} = \begin{cases} 0 & \text{if } t \ge \frac{\mu}{p-1}, \\ \left[\frac{(p-1)(t+\mu)}{p\mu}\right]^{p-1} \frac{(t+\mu-pt)}{p\mu} & \text{if } -\mu < t < \frac{\mu}{p-1}, \\ 0 & \text{if } t \le -\mu, \end{cases}$$

Then, we see that  $\frac{\partial \phi_p(\mu,t)}{\partial t} \in C^1$  because

$$\lim_{t \to \frac{\mu}{p-1}} \frac{\partial \phi_p(\mu, t)}{\partial t} = \lim_{t \to \frac{\mu}{p-1}} \left[ \frac{(p-1)(\frac{\mu}{p-1} + \mu)}{p\mu} \right]^{p-1} = 1$$
$$\lim_{t \to -\mu} \frac{\partial \phi_p(\mu, t)}{\partial t} = \lim_{t \to -\mu} \left[ \frac{(p-1)(-\mu + \mu)}{p\mu} \right]^{p-1} = 0.$$

and  $\frac{\partial \phi_p(\mu,t)}{\partial \mu} \in C^1$  since

$$\lim_{t \to \frac{\mu}{p-1}} \frac{\partial \phi_p(\mu, t)}{\partial \mu} = \lim_{t \to \frac{\mu}{p-1}} \left[ \frac{(p-1)(\frac{\mu}{p-1} + \mu)}{p\mu} \right]^{p-1} \frac{(\frac{\mu}{p-1} + \mu - p\frac{\mu}{p-1})}{p\mu} = 0,$$
$$\lim_{t \to -\mu} \frac{\partial \phi_p(\mu, t)}{\partial \mu} = \lim_{t \to -\mu} \left[ \frac{(p-1)(-\mu + \mu)}{p\mu} \right]^{p-1} \frac{(-\mu + \mu - p(-\mu))}{p\mu} = 0.$$

The above verifications imply that  $\phi_p(.,.)$  is continuously differentiable. (b) From the definition of  $\phi_p(\mu, t)$ , it is clear that

$$\phi_p(0,t) = \begin{cases} t & \text{if } t \ge 0\\ 0 & \text{if } t \le 0 \end{cases} = (t)_+$$

which is the desired result.

(c) When  $-\mu < t < \frac{\mu}{p-1}$ , we have  $t + \mu > 0$ . Hence, from the expression of  $\frac{\partial \phi_p(\mu,t)}{\partial t}$ , it is obvious that  $\left[\frac{(p-1)(t+\mu)}{p\mu}\right]^{p-1} \ge 0$ , which says  $\frac{\partial \phi_p(\mu,t)}{\partial t} \ge 0$ . (d) Part(d) is clear from the definition.

The properties of  $\phi_p$  in Proposition 1.1 can be verified via the graphs. In particular, in Figures 1-2, we see that when  $\mu \to 0$ ,  $\phi_p(\mu, t)$  goes to  $(t)_+$  which verifies Proposition 1.1(b).



Figure 1: Graphs of  $\phi_p(\mu, t)$  with p = 2 and  $\mu = 0.1, 0.5, 1, 2$ .



Figure 2: Graphs of  $\phi_p(\mu, t)$  with p = 10 and  $\mu = 0.1, 0.5, 1, 2$ .

Figure 3 says that for fixed  $\mu > 0$ ,  $\phi_p(\mu, t)$  approaches to  $(t)_+$  as  $p \to \infty$ . This also verifies Proposition 1.1(d).



Figure 3: Graphs of  $\phi_p(\mu, t)$  with p = 2, 3, 10, 20 and  $\mu = 0.2$ .

Next, we will form another reformulation for problem (1.1). To this end, we define

$$F(z) := \begin{bmatrix} f_I(x) - s \\ f_E(x) \\ \Phi_p(\mu, s) \end{bmatrix} \quad \text{with} \quad \Phi_p(\mu, s) := \begin{bmatrix} \phi_p(\mu, s_1) \\ \vdots \\ \phi_p(\mu, s_m) \end{bmatrix} \quad \text{and} \quad z = (\mu, x, s) \quad (1.5)$$

where  $\Phi_p$  is a mapping from  $\mathbb{R}^{1+m} \to \mathbb{R}^m$ . Then, in light of Proposition 1.1(b), we see that

$$F(z) = 0$$
 and  $\mu = 0 \iff s = f_I(x), s_+ = 0, f_E(x) = 0.$ 

This, together with Proposition 1.1(a), indicates that one can solve system (1.1) by applying Newton-type methods to solve F(z) = 0 by letting  $\mu \downarrow 0$ . Furthermore, by introducing an extra parameter p, we define a function  $H : \mathbb{R}^{1+n+m} \to \mathbb{R}^{1+n+m}$  by

$$H(z) := \begin{bmatrix} \mu \\ f_I(x) - s + \mu x_I \\ f_E(x) + \mu x_E \\ \Phi_p(\mu, s) + \mu s \end{bmatrix}$$
(1.6)

where  $x_I = (x_1, x_2, \dots, x_m)$ ,  $x_E = (x_{m+1}, x_{m+2}, \dots, x_n)$ ,  $s \in \mathbb{R}^m$ ,  $x := (x_I, x_E) \in \mathbb{R}^n$  and functions  $\phi_p$  and  $\Phi_p$  are defined as in(1.4) and (1.5), respectively. Thereby, it is obvious that if H(z) = 0, then  $\mu = 0$  and x solves the system (1.1). It is not difficult to see that, for any  $z \in \mathbb{R}_{++} \times \mathbb{R}^n \times \mathbb{R}^m$ , the function H is continuously differentiable. Let H' denote the Jacobian of the function H. Then, for any  $z \in \mathbb{R}_{++} \times \mathbb{R}^n \times \mathbb{R}^m$ , we have



$$A = \begin{bmatrix} \frac{\partial f_1(x_1)}{\partial x_1} + \mu & \cdots & 0 \\ \vdots & \ddots & \vdots & 0_{m \times (n-m)} \\ 0 & \cdots & \frac{\partial f_m(x_m)}{\partial x_m} + \mu \end{bmatrix}_{m \times n}$$

and

$$B = \begin{bmatrix} \frac{\partial f_{m+1}(x_{m+1})}{\partial x_{m+1}} + \mu & \cdots & 0\\ 0_{(n-m)\times m} & \vdots & \ddots & \vdots\\ 0 & \cdots & \frac{\partial f_n(x_n)}{\partial x_n} + \mu \end{bmatrix}_{(n-m)\times n}$$

With the above, we can simplify the matrix H'(z) as

$$H'(z) = \begin{bmatrix} 1 & 0_n & 0_m \\ x_I & f'_I(x) + \mu U & -I_m \\ x_E & f'_E(x) + \mu V & 0_{(n-m)\times m} \\ s + \Phi'_\mu(\mu, s) & 0_{m\times n} & \Phi'_s(\mu, s) + \mu I_m \end{bmatrix}$$
(1.7)

where

$$U := \begin{bmatrix} I_m & 0_{m \times (n-m)} \end{bmatrix}, \qquad V := \begin{bmatrix} 0_{(n-m) \times m} & I_{n-m} \end{bmatrix},$$
$$s + \Phi'_{\mu}(\mu, s) = \begin{bmatrix} s_1 + \frac{\partial}{\partial \mu} \phi'(\mu, s_1) \\ \vdots \\ s_m + \frac{\partial}{\partial \mu} \phi'(\mu, s_m) \end{bmatrix}_{m \times 1},$$
$$\Phi'_s(\mu, s) + \mu I_m = \begin{bmatrix} \frac{\partial}{\partial s} \phi'(\mu, s_1) + \mu & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{\partial}{\partial s} \phi'(\mu, s_m) + \mu \end{bmatrix}_{m \times m}$$

Here, we use  $0_I$  to denote the *I*-dimensional zero vector and  $0_{l \times q}$  to denote the  $l \times q$  zero matrix for any positive integers l and q. Thus, we might apply some Newton-type methods to solve the system of smooth equations H(z) = 0 at each iteration by letting  $\mu > 0$  and  $H(z) \rightarrow 0$  so that a solution of (1.1) can be found. This is the main idea of smoothing approach for solving system (1.1).

190

Alternatively, one may have another smoothing reformulation for system (1.1) without introducing the extra variable s. More specifically, we can define  $\widehat{H} : \mathbb{R}^{1+n} \to \mathbb{R}^{1+n}$  as

$$\widehat{H}(\mu, x) := \begin{bmatrix} \mu \\ f_E(x) + \mu x_E \\ \Phi_p(\mu, f_I(x)) + \mu x_I \end{bmatrix}$$
(1.8)

The Jacobian of  $\hat{H}(\mu, x)$  is similar to H'(z) and indeed is a bit tedious, so we omit its presentation here. The reformulation of  $\hat{H}(\mu, x) = 0$  has less dimension than H(z) = 0, whereas the expression of  $\hat{H}'(\mu, x)$  is more tedious than H'(z). Both smoothing approaches can lead to the solution to system (1.1). The numerical results based on H(z) = 0 and  $\hat{H}(\mu, x) = 0$  are compared in this paper. Moreover, we also investigate how the parameter paffect the numerical performance when different  $\phi_p$  is employed. Proposing the new family of smoothing functions as well as the above two aspects of numerical points are the main motivation and contribution of this paper.

### 2 A smoothing-type algorithm

In this section, we consider a non-monotone smoothing-type algorithm whose similar framework has been discussed in [7, 13]. In particular, we correct a flaw in Step 5 in [13] and show that only this modification can really make the algorithm well-defined. Moreover, for  $\hat{H}(\mu, x)$ , a new reformulation of H(z) with lower dimensionality, we will use the function  $\psi(\cdot) := ||H(z)||^2$  or  $\psi(\cdot) := ||\hat{H}(\mu, x)||^2$  alternatively. Below are the details of the algorithm.

Algorithm 2.1. (A Nonmonotone Smoothing-Type Algorithm)

Step 0 Choose  $\delta \in (0,1), \sigma \in (0,1/2), \beta > 0$ . Take  $\tau \in (0,1)$  such that  $\tau\beta < 1$ . Let  $\mu_0 = \beta$  and  $(x^0, s^0) \in \mathbb{R}^{n+m}$  be an arbitrary vector. Set  $z^0 := (\mu_0, x^0, s^0)$ . Take  $e^0 := (1, 0, \cdots, 0) \in \mathbb{R}^{1+n+m}, R_0 := ||H(z^0)||^2 = \psi(z^0)$  and  $Q_0 = 1$ . Choose  $\eta_{\min}$  and  $\eta_{\max}$  such that  $0 \le \eta_{\min} \le \eta_{\max} < 1$ . Set  $\theta(z^0) := \tau \min\{1, \psi(z^0)\}$  and k := 0.

**Step 1** If  $||H(z^k)|| = 0$ , stop.

**Step 2** Compute  $\triangle z^k := (\triangle \mu_k, \triangle x^k, \triangle s^k) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m$  by using

$$H' \triangle z^k = -H(z^k) + \beta \theta(z^k) e^0 \tag{2.1}$$

**Step 3** Let  $\alpha_k$  be the maximum of the values  $1, \delta, \delta^2, \cdots$  such that

$$\psi(z^k + \alpha_k \triangle z^k) \le [1 - 2\sigma(1 - \tau\beta)\alpha_k] R_k$$
(2.2)

**Step 4** Set  $z^{k+1} := z^k + \alpha_k \triangle z^k$ . If  $||H(z^{k+1})|| = 0$ , stop.

**Step 5** Choose  $\eta_k \in [\eta_{\min}, \eta_{\max}]$ . Set

$$Q_{k+1} := \eta_k Q_k + 1$$
  

$$\theta(z^{k+1}) := \min\{\tau, \tau \psi(z^{k+1}), \theta(z^k)\}$$
  

$$R_{k+1} := \frac{(\eta_k Q_k R_k + \psi(z^{k+1}))}{Q_{k+1}}$$
  
(2.3)

and k := k + 1. Go to Step 2

In Algorithm 2.1, a nonmonotone line search technique is adopted. It is easy to see that  $R_{k+1}$  is a convex combination of  $R_k$  and  $\psi(z^{k+1})$ . Since  $R_0 = \psi(z^0)$ , it follows that  $R_k$  is a convex combination of the function values  $\psi(z^0), \psi(z^1), \dots, \psi(z^k)$ . The choice of  $\eta_k$  controls the degree of nonmonotonicity. If  $\eta_k = 0$  for every k, then the line search is the usual monotone Armijo line search. The scheme of Algorithm 2.1 is not exactly the same as the one in [13]. In particular,  $\theta(z^{k+1}) := \min\{\tau, \tau \psi(z^{k+1}), \theta(z^k)\}$  which is different from  $\theta(z^{k+1}) := \min\{\tau, \tau \psi(z^k), \theta(z^k)\}$  given in [13]. Only this modification can really make the algorithm well-defined as shown in the following Theorem 2.3. For convenience, we denote

$$f^{'}(x) := \left[ egin{array}{c} f_{I}^{'}(x) \ f_{E}^{'}(x) \end{array} 
ight]$$

and make the following assumption.

Assumption 2.1.  $f'(x) + \mu I_n$  is invertible for any  $x \in \mathbb{R}^n$  and  $\mu \in \mathbb{R}_{++}$ .

Some basic properties of Algorithm 2.1 are stated in the following lemma. Since the proof arguments are almost the same as those in [13], they are thus omitted.

**Lemma 2.1.** Let the sequence  $\{R_k\}$  and  $\{z^k\}$  be generated by Algorithm 2.1. Then, the following hold.

- (a) The sequence  $\{R_k\}$  is monotonically decreasing.
- (b) The function  $\psi(z^k) \leq R_k$  for all  $k \in \mathscr{J}$ .
- (c) The sequence  $\theta(z^k)$  is monotonically decreasing.
- (d)  $\beta \theta(z^k) \leq \mu_k \text{ for all } k \in \mathscr{J}.$
- (e)  $\mu_k > 0$  for all  $k \in \mathscr{J}$  and the sequence  $\{\mu_k\}$  is monotonically decreasing.

**Lemma 2.2.** Suppose  $A \in \mathbb{R}^{n \times n}$  which is partitioned as  $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$  where  $A_{11}$  and  $A_{22}$  are square matrices. If  $A_{12}$  or  $A_{21}$  is zero matrix, then  $\det(A) = \det(A_{11}) \cdot \det(A_{22})$ .

*Proof.* This a well known result in matrix analysis, which is a special case of Fischer's ineqiality [2, 6]. Please refer to [11, Theorem 7.3] for a proof.

**Theorem 2.3.** Suppose that f is a continuously differentiable function and Assumption 2.1 is satisfied. Then Algorithm 2.1 is well defined.

*Proof.* Applying Lemmas 2.1-2.2 and mimicking the arguments as in [13], it is easy to achieve the desired result. However, we point it out again that  $\theta(z^{k+1})$  in step 5 is different from the one in [13]. Only this modification can really make the algorithm well-defined.

#### 3 Convergence analysis

In this section, we analyze the convergence of the algorithm proposed in previous section. To this end, the following assumption is needed which was introduced in [7].

**Assumption 3.1.** For an arbitrary sequence  $\{(\mu_k, x^k)\}$  with  $\lim_{k \to \infty} ||x|| = +\infty$  and the sequence  $\{\mu_k\} \subset \mathbb{R}_+$  bounded, then either

- (i) there is at least an index  $i_0$  such that  $\limsup_{k \to \infty} \{f_{i_0}(x^k) + \mu_k x_{i_0}^k\} = +\infty$ ; or
- (ii) there is at least an index  $i_0$  such that  $\limsup_{k \to \infty} \{\mu_k(f_{i_0}(x^k) + \mu_k x_{i_0}^k)\} = -\infty.$

It can be seen that many functions satisfy Assumption 3.1, see [7]. The global convergence of Algorithm 2.1 is stated as follows. In fact, with Proposition 1.1, the main idea for the proof is almost the same as that in [13, Theorem 4.1], only a few technical parts are different. Thus, we omit the details.

**Theorem 3.1.** Suppose that f is a continuously differentiable function and Assumptions 2.1 and 3.1 are satisfied. Then, the sequence  $\{z^k\}$  generated by Algorithm 2.1 is bounded. Moreover, any accumulation point of  $x^k$  is a solution to (1.1).

Next, we analyse the convergence rate for Algorithm 2.1. Before presenting the result, we introduce some concepts that will used in the subsequent analysis as well as a technical lemma.

A locally Lipschitz function  $F : \mathbb{R}^n \to \mathbb{R}^m$ , which has the generalized Jacobian  $\partial F(x)$ , is said to be semismooth (or strongly semismooth) at  $x \in \mathbb{R}^n$  if F is directionally differentiable at x and

$$F(x+h) - F(x) - Vh = o(||h||)$$
 (or  $= O(||h||^2)$ 

holds for any  $V \in \partial F(x+h)$ . It is well known that convex functions, smooth functions, and piecewise linear functions are examples of semismooth functions. The composition of (strongly) semismooth functions is still a (strongly) semismooth function. It can be verified that the function  $\phi_p$  defined by (1.4) is strongly semismooth on  $\mathbb{R}^2$ . Thus, f being continuously differentiable implies that the function H defined by (1.6) and  $\hat{H}$  defined by (1.8) are semismooth (or strongly semismooth if f' is Lipschitz continuous on  $\mathbb{R}^n$ .

**Lemma 3.2.** For any  $\alpha, \beta \in \mathbb{R}_{++}$ ,  $\alpha = O(\beta)$  represents that  $\frac{\alpha}{\beta}$  is uniformly bounded, and  $\alpha = o(\beta)$  denotes  $\frac{\alpha}{\beta} \to 0$  as  $\beta \to 0$ . Then, we have

- (a)  $O(\beta) \pm O(\beta) = O(\beta);$
- (b)  $o(\beta) \pm o(\beta) = o(\beta);$
- (c) If  $c \neq 0$  then  $O(c\beta) = O(\beta)$ ,  $o(c\beta) = o(\beta)$ ;
- (d)  $O(o(\beta)) = o(\beta), o(O(\beta)) = o(\beta);$
- (e)  $O(\beta_1)O(\beta_2) = O(\beta_1\beta_2), O(\beta_1)o(\beta_2) = o(\beta_1\beta_2), o(\beta_1)O(\beta_2) = o(\beta_1\beta_2).$

(f) If  $\alpha = O(\beta_1)$  and  $\beta_1 = o(\beta_2)$ , then  $\alpha = o(\beta_2)$ .

*Proof.* For parts (a)-(e), please refer to [1] for a proof. Part (f) can be verified straightforwardly.  $\Box$ 

With Proposition 1.1 and Lemma 3.2, mimicking the arguments as in [13, Theorem 5.1] gives the following theorem.

**Theorem 3.3.** Suppose that f is a continuously differentiable function and Assumptions 2.1 and 3.1 are satisfied. Let  $z^* = (\mu_*, x^*, s^*)$  be an accumulation point of  $\{z^k\}$  generated by Algorithm 2.1. If all  $V \in \partial H(z^*)$  are nonsingular, then the following hold.

- (a)  $\alpha_k \equiv 1$  for all  $z^k$  sufficiently close to  $z^*$ ;
- (b) the whole sequence  $\{z^k\}$  converges to  $z^*$ ;
- (c)  $||z^{k+1} z^*|| = o(||z^k z^*||)$  (or  $||z^{k+1} z^*|| = O(||z^k z^*||^2))$  provided f' is Lipschitz continuous on  $\mathbb{R}^n$ );
- (d)  $\mu_{k+1} = o(\mu_k)$  (or  $\mu_{k+1} = O(\mu_k^2)$  if f' is Lipschitz continuous on  $\mathbb{R}^n$ ).

# 4 Numerical Results

In this section, we present our test problems and report numerical results. In this paper, the function f is assumed to be a mapping from  $\mathbb{R}^n$  to  $\mathbb{R}^n$ , which means the dimension of x is exactly the same as the total number of inequalities and equalities. In reality, this may not be the case. In other words, there may have a system like this:

$$\begin{cases} f_I(x) \leq 0, & I = \{1, 2, \cdots, m\} \\ f_E(x) = 0, & E = \{m, m+1, \cdots, l\} \end{cases}$$

$$(4.1)$$

This says f could be a mapping from  $\mathbb{R}^n$  to  $\mathbb{R}^l$ . When  $l \neq n$ , the scheme in Algorithm 2.1 cannot be applied to the system (4.1) because the dimension of x is not equal to the total number of inequalities and equalities. To make system (4.1) solvable under the proposed algorithm, as remarked in [13, Sec. 6], some additional inequality or variable needs to be added. For example,

(i) if l < n, we may add a trivial inequality like

$$\sum_{i=1}^{n} x_i^2 \le M$$

where M is sufficiently large, into system (4.1) so that Algorithm 2.1 can be applied.

(ii) if l > n and  $m \ge 1$ , we may add a variable  $x_{n+1}$  into the inequalities so that

$$f_i(x) \le 0 \quad \to \quad f_i(x) + x_{n+1}^2 \le 0.$$

194

(iii) if l > n and m = 0, we may add a trivial inequality like

$$\sum_{i=1}^{n+2} x_i^2 \le M$$

where M is sufficiently large, into system (4.1) so that Algorithm 2.1 can be applied.

In real implementation, the H(z) given as in (1.6) is replaced by

$$H(z) := \begin{bmatrix} \mu \\ f_I(x) - s + c\mu x_I \\ f_E(x) + c\mu x_E \\ \Phi_p(\mu, s) + c\mu s \end{bmatrix}$$
(4.2)

where c is a given constant. Likewise, the  $\widehat{H}(\mu, x)$  given as in (1.8) is replaced by

$$\widehat{H}(\mu, x) := \begin{bmatrix} \mu \\ f_E(x) + c\mu x_E \\ \Phi_p(\mu, f_I(x)) + c\mu x_I \end{bmatrix}.$$
(4.3)

Adding such a constant c is helpful when coding the algorithm because  $\mu$  approaches to zero eventually. The theoretical results will not be affected in any case. In practice, in order to obtain an interior solution  $x^*$  for inequalities  $(f_I(x^*) < 0)$ , the following system

$$\begin{cases} f_I(x) + \varepsilon e \le 0\\ f_E(x) = 0 \end{cases}$$

is considered, where  $\varepsilon$  is a small number and e is the vector of all ones. Now, we list the test problems which are employed from [7, 13].

Example 4.1. Consider 
$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}$$
 with  $x \in \mathbb{R}^2$  where  

$$\begin{aligned}
f_1(x) &= x_1^2 + x_2^2 - 1 + \varepsilon \le 0, \\
f_2(x) &= -x_1^2 - x_2^2 + (0.999)^2 + \varepsilon \le 0.
\end{aligned}$$
Example 4.2. Consider  $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \\ f_4(x) \\ f_5(x) \\ f_6(x) \end{bmatrix}$  with  $x \in \mathbb{R}^2$  where  

$$\begin{aligned}
f_1(x) &= \sin(x_1) + \varepsilon \le 0, \\
f_2(x) &= -\cos(x_2) + \varepsilon \le 0, \\
f_3(x) &= x_1 - 3\pi + \varepsilon \le 0, \\
f_4(x) &= x_2 - \frac{\pi}{2} - 2 + \varepsilon \le 0, \\
f_5(x) &= -x_1 - \pi + \varepsilon \le 0, \\
f_6(x) &= -x_2 - \frac{\pi}{2} + \varepsilon \le 0.
\end{aligned}$$

**Example 4.3.** Consider  $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}$  with  $x \in \mathbb{R}^2$  where  $f_1(x) = \sin(x_1) + \varepsilon < 0,$  $f_2(x) = -\cos(x_2) + \varepsilon \le 0.$ **Example 4.4.** Consider  $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \\ f_4(x) \\ f_4(x) \\ f_4(x) \end{bmatrix}$  with  $x \in \mathbb{R}^5$  where  $f_1(x) = x_1 + x_3 - 1.6 + \varepsilon \le 0,$  $f_2(x) = 1.333x_2 + x_4 - 3 + \varepsilon \le 0,$  $f_3(x) = -x_3 - x_4 + x_5 + \varepsilon \le 0,$  $f_4(x) = x_1^2 + x_3^2 - 1.25 = 0,$  $f_5(x) = x_2^{1.5} + 1.5x_4 - 3 = 0.$ **Example 4.5.** Consider  $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{bmatrix}$  with  $x \in \mathbb{R}^3$  where  $f_1(x) = x_1 + x_2 e^{0.8x_3} + e^{1.6} + \varepsilon \le 0,$  $f_2(x) = x_1^2 + x_2^2 + x_3^2 - 5.2675 + \varepsilon \le 0,$  $f_3(x) = x_1 + x_2 + x_3 - 0.2605 = 0.$ **Example 4.6.** Consider  $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_2(x) \end{bmatrix}$  with  $x \in \mathbb{R}^2$  where  $f_1(x) = 0.8 - e^{x_1 + x_2} + \varepsilon \le 0,$  $f_2(x) = 1.21e^{x_1} + e^{x_2} - 2.2 = 0.$  $f_3(x) = x_1^2 + x_2^2 + x_2 - 0.1135 = 0.$ **Example 4.7.** Consider  $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}$  with  $x \in \mathbb{R}^2$  where  $f_1(x) = x_1 - 0.7\sin(x_1) - 0.2\cos(x_2) = 0$  $f_2(x) = x_2 - 0.7\cos(x_1) + 0.2\sin(x_2) = 0$ 

Moreover, in light of the aforementioned discussions, there have corresponding modified problems for Example 4.2', Example 4.6', and Example 4.7', which are stated as below. The other examples are kept unchanged. In other words, Example 4.1 and Example 4.1' are the same , so are Example 4.3 and Example 4.3', Example 4.4 and Example 4.4', Example 4.5 and Example 4.5'.

$$\begin{aligned} \text{Example 4.2'. Consider } f(x) &= \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \\ f_4(x) \\ f_5(x) \\ f_6(x) \end{bmatrix} \text{ with } x \in \mathbb{R}^6 \text{ where } \\ \\ \begin{array}{rcl} f_1(x) &= \sin(x_1) + \varepsilon \leq 0 \\ f_2(x) &= -\cos(x_2) + \varepsilon \leq 0 \\ f_2(x) &= x_1 - 3\pi + x_3^2 + \varepsilon \leq 0 \\ f_3(x) &= x_1 - 3\pi + x_3^2 + \varepsilon \leq 0 \\ f_4(x) &= x_2 - \frac{\pi}{2} - 2 + x_4^2 + \varepsilon \leq 0 \\ f_5(x) &= -x_1 - \pi + x_5^2 + \varepsilon \leq 0 \\ f_6(x) &= -x_2 - \frac{\pi}{2} + x_6^2 + \varepsilon \leq 0 \\ \end{array} \end{aligned}$$

$$\begin{aligned} \text{Example 4.6'. Consider } f(x) &= \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{bmatrix} \text{ with } x \in \mathbb{R}^3 \text{ where } \\ \\ f_1(x) &= 0.8 - e^{x_1 + x_2} + x_3^2 + \varepsilon \leq 0, \\ f_2(x) &= 1.21e^{x_1} + e^{x_2} - 2.2 = 0, \\ f_3(x) &= x_1^2 + x_2^2 + x_2 - 0.1135 = 0. \\ \end{aligned}$$

$$\begin{aligned} \text{Example 4.7'. Consider } f(x) &= \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{bmatrix} \text{ with } x \in \mathbb{R}^3 \text{ where } \\ \\ f_1(x) &= x_1^2 + x_2^2 + x_2^2 - 10000 + \varepsilon \leq 0, \\ f_2(x) &= x_1 - 0.7\sin(x_1) - 0.2\cos(x_2) = 0, \\ f_3(x) &= x_2 - 0.7\cos(x_1) + 0.2\sin(x_2) = 0. \end{aligned}$$

The numerical implementations are coded in Matlab. In the numerical reports,  $x^0$  is the stating point, NI is the total number of iterations, NF denotes the number of function evaluations for  $H(z^k)$  or  $\hat{H}(\mu_k, x^k)$ , and SOL means the solution obtained from the algorithm. The parameters used in the algorithm are set as

$$\varepsilon = 0.00001, \quad \delta = 0.3, \quad \sigma = 0.001, \quad \beta = 1.0, \quad \mu_0 = 1.0, \quad Q_0 = 1.0.$$

In Table 1 and Table 2, we adapt the same  $x^0$ , c,  $\tau$ ,  $\eta$  used as in [13] for p = 2. Basically, in Table 1 and Table 2, the bottom half data for the modified problems are the same as those in [13], respectively. Below are our numerical observations and conclusions.

- From Table 1 and Table 2, we see that, when employing formulation H(z) = 0, solving the modified problems is more successful than solving the original problems.
- Table 3 indicates that the numerical results are the same for original problems and modified problems, when  $\hat{H}(\mu, x) = 0$  is employed. Hence, in Tables 4-11, we focus on the modified problems when formulation H(z) = 0 is employed, whereas we only test original problems whenever the implementations are based on  $\hat{H}(\mu, x) = 0$ .

- From Table 5 (p = 2), we see that the algorithm based on  $\widehat{H}(\mu, x) = 0$  can solve more problems than the one in [13] does. In view of the lower dimensionality of  $\widehat{H}(\mu, x) = 0$  and this performance, we can confirm the merit of this new reformulation.
- In Table 4 and Table 5, the initial point and other parameters are the same as those in [13]. In Tables 6-7, we fix the initial point  $x^0$  for all test problems. In Table 8 and Table 9, even  $x^0$ , c,  $\tau$  and  $\eta$  are all fixed for all test problems. In Table 10 and Table 11,  $x^0$  is fixed for all test problems and parts of c,  $\tau$  and  $\eta$  are fixed. In general, we observe that the numerical performance based on the formulation  $\hat{H}(\mu, x) = 0$  is better than the one based on H(z) = 0.
- Moreover, the changing of parameter p seems have no influence on the numerical performance no matter  $\hat{H}(\mu, x) = 0$  or H(z) = 0 is adapted. This indicates that the smoothing approach may not be affected when p is perturbed. This phenomenon is different from the one for other approaches observed in [3, 4] and is a new discovery to the literature. We guess that the main reason comes from  $\mu$  dominating the algorithm in the smoothing approach even various p is perturbed. This conjecture still needs further verification and investigation.

In summary, the main contribution of this paper is to propose a new family of smoothing functions and correct a flaw in an algorithm studied in [13], which is used to guarantee its convergence. We believe that the proposed new smoothing functions can be also employed in other contexts where the projection function is involved. The related numerical performance can be investigated accordingly. We leave them as future research topics.

**Acknowledgements**. We are gratefully indebted to anonymous referees for their valuable suggestions that help us to improve the presentation of the paper.

#### References

- R.G. BARTLE, The Elements of Real Analysis, Second Edition John Wiley, New Jersey, 1976.
- [2] R. BHATIA, Matrix Analysis, Springer-Verlag, New York, 1997.
- [3] J-S. CHEN AND S-H. PAN, A family of NCP-functions and a descent method for the nonlinear complementarity problem, *Comput. Optim. Appl.* 40 (2008) 389-404.
- [4] J-S. CHEN, S-H. PAN AND C-Y. YANG, Numerical comparison of two effective methods for mixed complementarity problems, J. Comput. Appl. Math. 234 (2010) 667-683.
- [5] J.W. DANIEL, Newton's method for nonlinear inequalities, Numer. Math. 21 (1973) 381-387.
- [6] R. A. HORN AND C.R. JOHNSON, *Matrix Analysis*, Cambridge University Press, Cambridge, 1986.
- [7] Z-H. HUANG, Y. ZHANG AND W. WU, A smoothing-type algorithm for solving stsyem of inequalities, J. Comput. Appl. Math. 220 (2008) 355-363.
- [8] S.L. HU, Z-H. HUANG AND P. WANG, A non-monotone smoothing Newton algorithm for solving nonlinear complementarity problems, *Optim. Method. Softw.* 24 (2009) 447-460.

- [9] D.Q. MAYNE, E. POLAK AND A.J. HEUNIS, Solving nonlinear inequalities in a finite number of iterations, J. Optimiz. Theory. App. 33 (1981) 207-221.
- [10] M. SAHBA, On the solution of nonlinear inequalities in a finite number of iterations, Numer. Math. 46 (1985) 229-236.
- [11] J.M. SCHOTT, Matrix Analysis for Statistics, 2nd edition, John Wiley, New Jersey, 2005.
- [12] H-X. YING, Z-H. HUANG AND L. QI, The convergence of a Levenberg-Marquard method for the l<sub>2</sub>-norm solution of nonlinear inequalities, *Numer. Func. Anal. Opt.* 29 (2008) 687-716.
- [13] Y. ZHANG AND Z-H. HUANG, A nonmonotone smoothing-type algorithm for solving a system of equalities and inequalities, J. Comput. Appl. Math. 233 (2010) 2312-2321.
- [14] J. ZHU AND B. HAO, A new non-interior continuation method for solving a system of equalities and inequalities, J. Appl. Math., (2014) Article Number 592540.

Manuscript received 3 December 2014 revised 12 December 2014 accepted for publication 15 December 2014

JEIN-SHAN CHEN Department of Mathematics National Taiwan Normal University Taipei 11677, Taiwan E-mail address: jschen@math.ntnu.edu.tw

CHUN-HSU KO Department of Electrical Engineering I-Shou University Kaohsiung 840, Taiwan E-mail address: chko@isu.edu.tw

YAN-DI LIU Department of Mathematics National Taiwan Normal University Taipei 11677, Taiwan E-mail address: 60140026S@ntnu.edu.tw

SHENG-PEN WANG Department of Industrial and Business Management Chang Gung University Taoyuan 333, Taiwan E-mail address: wangsp@mail.cgu.edu.tw

|         | rable r. rum          | crica | perior | mane   | 0 1110 | p - p - p     | - 2, stop citton, 0.001.                      |
|---------|-----------------------|-------|--------|--------|--------|---------------|-----------------------------------------------|
| Problem | $x^0$                 | c     | au     | $\eta$ | NI     | $\mathbf{NF}$ | SOL                                           |
| Ex 4.1  | (0, 5)                | 100   | 0.006  | 0.01   | 8      | 12            | (-0.6188, 0.7853)                             |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5   | 0.2    | 0.01   | Fail   | Fail          | Fail                                          |
| Ex 4.3  | (0, 0)                | 0.5   | 0.2    | 0.01   | 3      | 4             | (-0.01516, 0.7207)                            |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5     | 0.02   | 0.8    | 4      | 5             | (0.5557, 1.324, 0.9703, 0.984, 1.156)         |
| Ex 4.5  | (-1, -1, 1)           | 0.5   | 0.2    | 0.8    | 5      | 6             | (-0.8301, -0.8662, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5   | 0.02   | 0.8    | 7      | 8             | (0.2743, -0.4975, 1.5e+006)                   |
| Ex 4.7  | (0, 1, 0)             | 0.5   | 0.006  | 0.8    | 9      | 15            | (0.5268, 0.5084, -100)                        |
| Ex 4.1' | (0, 5)                | 100   | 0.006  | 0.01   | 8      | 12            | (-0.6188, 0.7853)                             |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5   | 0.2    | 0.01   | 6      | 9             | (-0.009654, 1.428, 2.846, 1.28, 1.639, 1.666) |
| Ex 4.3  | (0, 0)                | 0.5   | 0.2    | 0.01   | 3      | 4             | (-0.01516, 0.7207)                            |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5     | 0.02   | 0.8    | 4      | 5             | (0.5557, 1.324, 0.9703, 0.984, 1.156)         |
| Ex 4.5  | (-1, -1, 1)           | 0.5   | 0.2    | 0.8    | 5      | 6             | (-0.8301, -0.8662, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5   | 0.02   | 0.8    | 5      | 7             | (-0.09533, 0.09533, 0.3321)                   |
| Ex 4.7  | (0, 1, 0)             | 0.5   | 0.006  | 0.8    | 9      | 15            | (0.5268, 0.5084, -100)                        |

Table 1: Numerical performance when p = 2, stop criterion: 0.001

Note: Based on H(z) = 0 given as in (4.2).

Table 2: Numerical performance when p = 2, stop criterion: 1e - 006.

| Problem | $x^0$                 | c   | $\tau$ | $\eta$ | NI   | NF   | SOL                                           |
|---------|-----------------------|-----|--------|--------|------|------|-----------------------------------------------|
| Ex 4.1  | (0, 5)                | 100 | 0.006  | 0.01   | Fail | Fail | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01   | Fail | Fail | Fail                                          |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01   | 4    | 5    | (-0.01516, 0.7206)                            |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5   | 0.02   | 0.8    | 5    | 6    | (0.5563, 1.326, 0.9698, 0.9822, 1.155)        |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2    | 0.8    | 6    | 7    | (-0.8299, -0.8663, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8    | 7    | 8    | (0.2743, -0.4975, 1.5e+006)                   |
| Ex 4.7  | (0, 1, 0)             | 0.5 | 0.006  | 0.8    | 10   | 16   | (0.5265,  0.5079,  100)                       |
| Ex 4.1' | (0, 5)                | 100 | 0.006  | 0.01   | Fail | Fail | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01   | 7    | 10   | (-0.009276, 1.429, 2.846, 1.279, 1.64, 1.667) |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01   | 4    | 5    | (-0.01516, 0.7206)                            |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5   | 0.02   | 0.8    | 5    | 6    | (0.5563, 1.326, 0.9698, 0.9822, 1.155)        |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2    | 0.8    | 6    | 7    | (-0.8299, -0.8663, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8    | 6    | 8    | (-0.09533, 0.09533, 0.332)                    |
| Ex 4.7  | (0, 1, 0)             | 0.5 | 0.006  | 0.8    | 10   | 16   | (0.5265, 0.5079, -100)                        |

Note: Based on H(z) = 0 given as in (4.2).

Table 3: Numerical performance when p = 2, stop criterion: 0.001.

| Problem | $x^0$                 | c   | au    | $\eta$ | NI | $\mathbf{NF}$ | $\operatorname{SOL}$                        |
|---------|-----------------------|-----|-------|--------|----|---------------|---------------------------------------------|
| Ex 4.1  | (0, 5)                | 100 | 0.006 | 0.01   | 10 | 15            | (0.5942, -0.8031)                           |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2   | 0.01   | 3  | 4             | (-0.01407, 7.663e-006, 0, 0, 0, 0)          |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2   | 0.01   | 3  | 4             | (-0.01407, 7.663e-006)                      |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5   | 0.02  | 0.8    | 3  | 4             | (0.5489, 2.066, 0.9741, 0.0204, 9.748e-007) |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2   | 0.8    | 24 | 39            | (0.5031, -1.7, 1.458)                       |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02  | 0.8    | 3  | 4             | (-0.09533, 0.09533, 0.08515)                |
| Ex 4.7  | (0, 1, 0)             | 0.5 | 0.006 | 0.8    | 3  | 4             | (0.5271,  0.508,  0)                        |
| Ex 4.1' | (0, 5)                | 100 | 0.006 | 0.01   | 10 | 15            | (0.5942, -0.8031)                           |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2   | 0.01   | 3  | 4             | (-0.01407, 7.663e-006, 0, 0, 0, 0)          |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2   | 0.01   | 3  | 4             | (-0.01407, 7.663e-006)                      |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5   | 0.02  | 0.8    | 3  | 4             | (0.5489, 2.066, 0.9741, 0.0204, 9.748e-007) |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2   | 0.8    | 24 | 39            | (0.5031, -1.7, 1.458)                       |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02  | 0.8    | 3  | 4             | (-0.09533, 0.09533, 0.1698)                 |
| Ex 4.7' | (0, 1, 0)             | 0.5 | 0.006 | 0.8    | 3  | 4             | (0.5271,  0.508,  0)                        |

Note: Based on  $\widehat{H}(\mu, x) = 0$  given as in (4.3).

|                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                 | 1                                                                                                                                                     | p = 2, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stop cr                                                                                                                                                        | iterion                                                                                                                                        | 1e - 006.                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem                                                                                                                                                                                                                        | $x^0$                                                                                                                                                         | c                                                                                                                                                               | au                                                                                                                                                    | $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NI                                                                                                                                                             | NF                                                                                                                                             | SOL                                                                                                                                                                                                                                                                                                                                           |
| Ex 4.1'                                                                                                                                                                                                                        | (0, 5)                                                                                                                                                        | 100                                                                                                                                                             | 0.006                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fail                                                                                                                                                           | Fail                                                                                                                                           | Fail                                                                                                                                                                                                                                                                                                                                          |
| Ex 4.2                                                                                                                                                                                                                         | (0, 0, 0, 0, 0, 0, 0)                                                                                                                                         | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                              | 10                                                                                                                                             | (-0.009276, 1.429, 2.846, 1.279, 1.64, 1.667)                                                                                                                                                                                                                                                                                                 |
| Ex 4.3                                                                                                                                                                                                                         | (0, 0)                                                                                                                                                        | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                              | 5                                                                                                                                              | (-0.01516, 0.7206)                                                                                                                                                                                                                                                                                                                            |
| Ex 4.4                                                                                                                                                                                                                         | (0.5, 2, 1, 0, 0)                                                                                                                                             | 5                                                                                                                                                               | 0.02                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                              | 6                                                                                                                                              | (0.5563, 1.326, 0.9698, 0.9822, 1.155)                                                                                                                                                                                                                                                                                                        |
| Ex 4.5                                                                                                                                                                                                                         | (-1, -1, 1)                                                                                                                                                   | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                              | 7                                                                                                                                              | (-0.8299, -0.8663, 1.957)                                                                                                                                                                                                                                                                                                                     |
| Ex 4.6                                                                                                                                                                                                                         | (0, 0, 0)                                                                                                                                                     | 0.5                                                                                                                                                             | 0.02                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                              | 8                                                                                                                                              | (-0.09533, 0.09533, 0.332)                                                                                                                                                                                                                                                                                                                    |
| Ex 4.7'                                                                                                                                                                                                                        | (0, 1, 0)                                                                                                                                                     | 0.5                                                                                                                                                             | 0.006                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                             | 16                                                                                                                                             | (0.5265, 0.5079, -100)                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                 | p                                                                                                                                                     | = 1.5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stop c                                                                                                                                                         | riterior                                                                                                                                       | n: $1e - 006$ .                                                                                                                                                                                                                                                                                                                               |
| Problem                                                                                                                                                                                                                        | $x^0$                                                                                                                                                         | c                                                                                                                                                               | au                                                                                                                                                    | $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NI                                                                                                                                                             | NF                                                                                                                                             | SOL                                                                                                                                                                                                                                                                                                                                           |
| Ex 4.1'                                                                                                                                                                                                                        | (0, 5)                                                                                                                                                        | 100                                                                                                                                                             | 0.006                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fail                                                                                                                                                           | Fail                                                                                                                                           | Fail                                                                                                                                                                                                                                                                                                                                          |
| Ex 4.2                                                                                                                                                                                                                         | (0, 0, 0, 0, 0, 0, 0)                                                                                                                                         | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                              | 10                                                                                                                                             | (-0.03532, 1.428, 2.849, 1.278, 1.63, 1.666)                                                                                                                                                                                                                                                                                                  |
| Ex 4.3                                                                                                                                                                                                                         | (0, 0)                                                                                                                                                        | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                              | 5                                                                                                                                              | (-0.0189, 0.7217)                                                                                                                                                                                                                                                                                                                             |
| Ex 4.4                                                                                                                                                                                                                         | (0.5,2,1,0,0)                                                                                                                                                 | 5                                                                                                                                                               | 0.02                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                              | 6                                                                                                                                              | (0.5546, 1.329, 0.9708, 0.979, 1.135)                                                                                                                                                                                                                                                                                                         |
| Ex 4.5                                                                                                                                                                                                                         | (-1, -1, 1)                                                                                                                                                   | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                              | 7                                                                                                                                              | (-0.8288, -0.8673, 1.957)                                                                                                                                                                                                                                                                                                                     |
| Ex 4.6                                                                                                                                                                                                                         | (0, 0, 0)                                                                                                                                                     | 0.5                                                                                                                                                             | 0.02                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                              | 8                                                                                                                                              | (-0.09533, 0.09533, 0.3509)                                                                                                                                                                                                                                                                                                                   |
| Ex 4.7'                                                                                                                                                                                                                        | (0, 1, 0)                                                                                                                                                     | 0.5                                                                                                                                                             | 0.006                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                             | 16                                                                                                                                             | (0.5265, 0.5079, -100)                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                 | 1                                                                                                                                                     | p = 3, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stop cr                                                                                                                                                        | iterion                                                                                                                                        | : 1e - 006.                                                                                                                                                                                                                                                                                                                                   |
| Problem                                                                                                                                                                                                                        | $x^0$                                                                                                                                                         | c                                                                                                                                                               | au                                                                                                                                                    | $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NI                                                                                                                                                             | NF                                                                                                                                             | SOL                                                                                                                                                                                                                                                                                                                                           |
| Ex 4.1'                                                                                                                                                                                                                        | (0, 5)                                                                                                                                                        | 100                                                                                                                                                             | 0.006                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fail                                                                                                                                                           | Fail                                                                                                                                           | Fail                                                                                                                                                                                                                                                                                                                                          |
| Ex 4.2                                                                                                                                                                                                                         | (0, 0, 0, 0, 0, 0, 0)                                                                                                                                         | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                              | 10                                                                                                                                             | (-0.007125, 1.43, 2.848, 1.281, 1.641, 1.667)                                                                                                                                                                                                                                                                                                 |
| Ex 4.3                                                                                                                                                                                                                         | (0, 0)                                                                                                                                                        | 0.5                                                                                                                                                             | 0.2                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                              | Б                                                                                                                                              | (0.01001 0.70)                                                                                                                                                                                                                                                                                                                                |
| Ex 4.4                                                                                                                                                                                                                         | (0.5, 2, 1, 0, 0)                                                                                                                                             | ٣                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                | 0                                                                                                                                              | (-0.01001, 0.72)                                                                                                                                                                                                                                                                                                                              |
| Ex 4.5                                                                                                                                                                                                                         |                                                                                                                                                               | Э                                                                                                                                                               | 0.02                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                              | $\frac{5}{7}$                                                                                                                                  | (-0.01061, 0.72)<br>(0.5589, 1.33, 0.9683, 0.9771, 1.17)                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                | (-1, -1, 1)                                                                                                                                                   | $\frac{5}{0.5}$                                                                                                                                                 | $\begin{array}{c} 0.02 \\ 0.2 \end{array}$                                                                                                            | $\begin{array}{c} 0.8 \\ 0.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6<br>6                                                                                                                                                         | 5<br>7<br>7                                                                                                                                    | (-0.01061, 0.72)<br>(0.5589, 1.33, 0.9683, 0.9771, 1.17)<br>(-0.8313, -0.8648, 1.957)                                                                                                                                                                                                                                                         |
| Ex 4.6                                                                                                                                                                                                                         | (-1, -1, 1)<br>(0, 0, 0)                                                                                                                                      |                                                                                                                                                                 | $0.02 \\ 0.2 \\ 0.02$                                                                                                                                 | $0.8 \\ 0.8 \\ 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>6<br>6                                                                                                                                                    | 5<br>7<br>7<br>7                                                                                                                               | (-0.01061, 0.72)<br>(0.5589, 1.33, 0.9683, 0.9771, 1.17)<br>(-0.8313, -0.8648, 1.957)<br>(-0.09533, 0.09533, 0.4472)                                                                                                                                                                                                                          |
| Ex 4.6'<br>Ex 4.7'                                                                                                                                                                                                             | (-1, -1, 1) (0, 0, 0) (0, 1, 0)                                                                                                                               | $     \begin{array}{c}       5 \\       0.5 \\       0.5 \\       0.5 \\     \end{array}   $                                                                    | $0.02 \\ 0.2 \\ 0.02 \\ 0.006$                                                                                                                        | $0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                | 5<br>7<br>7<br>7<br>16                                                                                                                         | (-0.01061, 0.72)<br>(0.5589, 1.33, 0.9683, 0.9771, 1.17)<br>(-0.8313, -0.8648, 1.957)<br>(-0.09533, 0.09533, 0.4472)<br>(0.5265, 0.5079, -100)                                                                                                                                                                                                |
| Ex 4.6'<br>Ex 4.7'                                                                                                                                                                                                             | (-1, -1, 1) (0, 0, 0) (0, 1, 0)                                                                                                                               | $     \begin{array}{c}       5 \\       0.5 \\       0.5 \\       0.5 \\     \end{array}   $                                                                    | $0.02 \\ 0.2 \\ 0.02 \\ 0.006 $                                                                                                                       | $ \begin{array}{c} 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline p = 8, s \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>6<br>6<br>10<br>stop cr                                                                                                                                   | 7<br>7<br>7<br>16<br>iterion:                                                                                                                  | $\begin{array}{c} (-0.01061,  0.72) \\ (0.5589,  1.33,  0.9683,  0.9771,  1.17) \\ (-0.8313,  -0.8648,  1.957) \\ (-0.09533,  0.09533,  0.4472) \\ (0.5265,  0.5079,  -100) \\ \hline \vdots \ 1e - 006. \end{array}$                                                                                                                         |
| Ex 4.6'<br>Ex 4.7'<br>Problem                                                                                                                                                                                                  | $(-1, -1, 1) (0, 0, 0) (0, 1, 0) x^0$                                                                                                                         |                                                                                                                                                                 | $ \begin{array}{c} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \\ \hline \tau \end{array} $                                                                          | $0.8$ $0.8$ $0.8$ $0.8$ $0.8$ $p = 8, s$ $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>6<br>10<br>stop cr<br>NI                                                                                                                                  | 5<br>7<br>7<br>16<br>iterion:<br>NF                                                                                                            | (-0.01061, 0.72) $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ SOL                                                                                                                                                                                  |
| Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'                                                                                                                                                                                       | $(-1, -1, 1) (0, 0, 0) (0, 1, 0) x^{0} (0, 5)$                                                                                                                | $     \begin{array}{c}       5 \\       0.5 \\       0.5 \\       \hline       c \\       100     \end{array} $                                                 | $ \begin{array}{r} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \\ \hline \tau \\ 0.006 \end{array} $                                                                 | $0.8$ $0.8$ $0.8$ $0.8$ $0.8$ $0.8$ $\frac{\eta}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>6<br>10<br>stop cr<br><u>NI</u><br>Fail                                                                                                                   | $ \frac{3}{7} $ 7 7 16 iterion: $\frac{NF}{Fail}$                                                                                              | (-0.01061, 0.72) $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ $SOL$ Fail                                                                                                                                                                           |
| Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'                                                                                                                                                                            | $(-1, -1, 1) (0, 0, 0) (0, 1, 0) x^{0} (0, 5) (0, 0, 0, 0, 0, 0)$                                                                                             |                                                                                                                                                                 | $\begin{array}{c} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \end{array}$                                                                                           | $0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline p = 8, s \\ \hline \eta \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ $                                               | $ \begin{array}{c} 6\\ 6\\ 10\\ \hline \\ stop cr\\ \hline \\ NI\\ \hline \\ Fail\\ 7\\ \end{array} $                                                          | 5<br>7<br>7<br>16<br>iterion:<br>NF<br>Fail<br>10                                                                                              | (-0.01061, 0.72) $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ $SOL$ Fail $(-0.00355, 1.431, 2.849, 1.282, 1.643, 1.668)$                                                                                                                           |
| Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'                                                                                                                                                                 | $\begin{array}{c} (-1, -1, 1) \\ (0, 0, 0) \\ (0, 1, 0) \end{array}$ $\begin{array}{c} x^{0} \\ \hline \\ (0, 5) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0) \end{array}$ | $ \begin{array}{c} 5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \hline c \\ 100 \\ 0.5 \\ 0.5 \\ \end{array} $                                                                     | $\begin{array}{c} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \\ \hline \\ \hline \\ \tau \\ 0.006 \\ 0.2 \\ 0.2 \\ 0.2 \\ \end{array}$                              | $0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline p = 8, s \\ \hline \eta \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0$                                               | $ \begin{array}{c} 6\\ 6\\ 10\\ \hline \text{stop cr}\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 4\\ \end{array} $                                          | $ \begin{array}{r} 3\\ 7\\ 7\\ 16\\ \hline \text{iterion:}\\ \hline \text{NF}\\ \hline \text{Fail}\\ 10\\ 5\\ \end{array} $                    | $(-0.01061, 0.72)$ $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ $\boxed{SOL}$ $Fail$ $(-0.00355, 1.431, 2.849, 1.282, 1.643, 1.668)$ $(-0.001338, 0.7196)$                                                                                         |
| Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'                                                                                                                                                      | $(-1, -1, 1) \\ (0, 0, 0) \\ (0, 1, 0) \\ \hline x^0 \\ \hline (0, 5) \\ (0, 0, 0, 0, 0, 0, 0) \\ (0, 0) \\ (0.5, 2, 1, 0, 0) \\ \hline$                      | $     \begin{array}{c}       5 \\       0.5 \\       0.5 \\       \hline       c \\       100 \\       0.5 \\       0.5 \\       5 \\       5     \end{array} $ | $\begin{array}{c} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \\ \hline \\ \hline \\ \tau \\ 0.006 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.02 \\ \end{array}$                      | $0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \overline{\eta} \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ $ | $ \begin{array}{r} 6\\ 6\\ 10\\ \hline \text{stop cr}\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 4\\ 6\\ \hline \end{array} $                               | $ \begin{array}{r} 3 \\ 7 \\ 7 \\ 7 \\ 16 \\ \hline \\ \hline$ | $(-0.01061, 0.72)$ $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ $\boxed{SOL}$ $\boxed{Fail}$ $(-0.00355, 1.431, 2.849, 1.282, 1.643, 1.668)$ $(-0.001338, 0.7196)$ $(0.5622, 1.351, 0.9664, 0.9528, 1.18)$                                         |
| Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'                                                                                                                                           | $\begin{array}{c} (-1, -1, 1) \\ (0, 0, 0) \\ (0, 1, 0) \end{array}$                                                                                          | $ \begin{array}{c} 5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \hline c \\ 100 \\ 0.5 \\ 5 \\ 0.5 \\ \end{array} $                                                                | $\begin{array}{c} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \\ \hline \\ \hline \\ \tau \\ 0.006 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.02 \\ 0.2 \\ 0.2 \\ 0.2 \\ \end{array}$ | $\begin{array}{c} 0.8\\ 0.8\\ 0.8\\ 0.8\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 6\\ 6\\ 10\\ \hline \\ \text{stop cr}\\ \hline \\ \hline \\ \text{NI}\\ \hline \\ \hline \\ \\ \text{Fail}\\ \\ 7\\ 4\\ 6\\ 6\\ \end{array}$ | $ \begin{array}{r} 3\\7\\7\\7\\16\\\hline \hline \\ $          | (-0.01061, 0.72) $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ $SOL$ $Fail$ $(-0.00355, 1.431, 2.849, 1.282, 1.643, 1.668)$ $(-0.001338, 0.7196)$ $(0.5622, 1.351, 0.9664, 0.9528, 1.18)$ $(-0.8338, -0.8624, 1.957)$                               |
| $\begin{array}{c} {\rm Ex}\ 4.6'\\ {\rm Ex}\ 4.7'\\ \hline \\ \hline \\ \hline \\ \hline \\ {\rm Problem}\\ {\rm Ex}\ 4.1'\\ {\rm Ex}\ 4.2'\\ {\rm Ex}\ 4.3'\\ {\rm Ex}\ 4.4'\\ {\rm Ex}\ 4.5'\\ {\rm Ex}\ 4.6'\\ \end{array}$ | $\begin{array}{c} (-1, -1, 1) \\ (0, 0, 0) \\ (0, 1, 0) \end{array}$                                                                                          | $\begin{array}{c} 5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \end{array}$ $\begin{array}{c} c \\ 100 \\ 0.5 \\ 0.5 \\ 5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \end{array}$                     | $\begin{array}{c} 0.02 \\ 0.2 \\ 0.02 \\ 0.006 \\ \hline \\ \hline \\ \tau \\ 0.006 \\ 0.2 \\ 0.2 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$     | $\begin{array}{c} 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ \hline p=8, s\\ \hline \eta\\ 0.01\\ 0.01\\ 0.01\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 6\\ 6\\ 10\\ \hline \\ \text{stop cr}\\ \hline \\ \overline{\text{NI}}\\ \hline \\ \overline{\text{Fail}}\\ 7\\ 4\\ 6\\ 6\\ 5\\ \end{array}$ | $\begin{array}{c} 3\\7\\7\\7\\16\\\hline \text{iterion:}\\ \overline{\text{NF}}\\\overline{\text{Fail}}\\10\\5\\7\\7\\6\\\end{array}$          | (-0.01061, 0.72) $(0.5589, 1.33, 0.9683, 0.9771, 1.17)$ $(-0.8313, -0.8648, 1.957)$ $(-0.09533, 0.09533, 0.4472)$ $(0.5265, 0.5079, -100)$ $: 1e - 006.$ $SOL$ $Fail$ $(-0.00355, 1.431, 2.849, 1.282, 1.643, 1.668)$ $(-0.001338, 0.7196)$ $(0.5622, 1.351, 0.9664, 0.9528, 1.18)$ $(-0.8338, -0.8624, 1.957)$ $(-0.09533, 0.09533, 0.2985)$ |

Table 4: Numerical performance with different p for modified problems.

Note: Based on H(z) = 0 given as in (4.2).

| m 11 | -    | - <b>N</b> | т • 1     | L C         | • 1        | 1° m 1    |                    | C   | ••• 1    | 1    | 1       |
|------|------|------------|-----------|-------------|------------|-----------|--------------------|-----|----------|------|---------|
| Tabi | e h. | - 13       | umerical  | Dertormance | with       | different | $\mathbf{n}$       | tor | original | nrot | neme    |
| ran  |      | - T.       | vunci ica | performance | VV 1 0 1 1 | uniterent | $\boldsymbol{\nu}$ | IOI | originar | proi | JICHIG. |
|      |      |            |           | 1           |            |           | 1                  |     | 0        | 1    |         |

|         |                       |     |       | p = 2,  | stop c | riterio  | n: $1e - 006$ .                              |
|---------|-----------------------|-----|-------|---------|--------|----------|----------------------------------------------|
| Problem | $x^0$                 | c   | au    | $\eta$  | NI     | NF       | SOL                                          |
| Ex 4.1  | (0, 5)                | 100 | 0.006 | 0.01    | 12     | 20       | (0.5821, -0.812)                             |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.01407, 7.663e-006, 0, 0, 0, 0)           |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.01407, 7.663e-006)                       |
| Ex 4.4  | (0.5, 2, 1, 0, 0)     | 5   | 0.02  | 0.8     | 4      | 5        | (0.549, 2.066, 0.974, 0.02039, 9.747e-007)   |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2   | 0.8     | 25     | 40       | (0.5029, -1.7, 1.458)                        |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02  | 0.8     | 4      | 5        | (-0.09533, 0.09533, 0.08515)                 |
| Ex 4.7  | (0, 1, 0)             | 0.5 | 0.006 | 0.8     | 4      | 5        | (0.5265, 0.5079, 0)                          |
|         |                       |     | 1     | p = 1.5 | , stop | criterio | pn: $1e - 006$ .                             |
| Problem | $x^0$                 | c   | au    | $\eta$  | NI     | NF       | SOL                                          |
| Ex 4.1  | (0, 5)                | 100 | 0.006 | 0.01    | 12     | 20       | (0.5821, -0.812)                             |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.01739, 0.002797, 0, 0, 0, 0)             |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.01739, 0.002797)                         |
| Ex 4.4  | (0.5,2,1,0,0)         | 5   | 0.02  | 0.8     | 4      | 5        | (0.547, 2.061, 0.9751, 0.02811, 0.000359)    |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2   | 0.8     | Fail   | Fail     | Fail                                         |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02  | 0.8     | 4      | 5        | (-0.09533, 0.09533, 0.1086)                  |
| Ex 4.7  | (0,1,0)               | 0.5 | 0.006 | 0.8     | 4      | 5        | (0.5265,0.5079,0)                            |
|         |                       |     |       | p=3,    | stop c | riterio  | n: $1e - 006$ .                              |
| Problem | $x^0$                 | c   | au    | $\eta$  | NI     | NF       | SOL                                          |
| Ex 4.1  | (0, 5)                | 100 | 0.006 | 0.01    | 12     | 20       | (0.5821, -0.812)                             |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.009902, 6.814e-011, 0, 0, 0, 0)          |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.009902, 6.814e-011)                      |
| Ex 4.4  | (0.5,2,1,0,0)         | 5   | 0.02  | 0.8     | 4      | 5        | (0.5513, 2.071, 0.9727, 0.01239, 8.581e-012) |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2   | 0.8     | Fail   | Fail     | Fail                                         |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02  | 0.8     | 4      | 5        | (-0.09533, 0.09533, 0.06131)                 |
| Ex 4.7  | (0, 1, 0)             | 0.5 | 0.006 | 0.8     | 4      | 5        | (0.5265, 0.5079, 0)                          |
|         |                       |     |       | p=8,    | stop c | riterio  | n: $1e - 006$ .                              |
| Problem | $x^0$                 | c   | au    | $\eta$  | NI     | NF       | SOL                                          |
| Ex 4.1  | (0, 5)                | 100 | 0.006 | 0.01    | 12     | 20       | (0.5821, -0.812)                             |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.002048, 6.022e-036, 0, 0, 0, 0)          |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2   | 0.01    | 4      | 5        | (-0.002048, 6.022e-036)                      |
| Ex 4.4  | (0.5,2,1,0,0)         | 5   | 0.02  | 0.8     | 4      | 5        | (0.557, 2.079, 0.9694, 0.001483, 7.47e-037)  |
| Ex 4.5  | (-1, -1, 1)           | 0.5 | 0.2   | 0.8     | Fail   | Fail     | Fail                                         |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02  | 0.8     | 4      | 5        | (-0.09533, 0.09533, 0.01803)                 |
| Ex 4.7  | (0, 1, 0)             | 0.5 | 0.006 | 0.8     | 4      | 5        | (0.5265,  0.5079,  0)                        |

Note: Based on  $\widehat{H}(\mu, x) = 0$  given as in (4.3).

|         |                       |     | p      | = 1.5,   | stop c   | riterior | 1e - 006.                                     |
|---------|-----------------------|-----|--------|----------|----------|----------|-----------------------------------------------|
| Problem | $x^0$                 | c   | $\tau$ | $\eta$   | NI       | NF       | SOL                                           |
| Ex 4.1  | (0, 0)                | 100 | 0.006  | 0.01     | Fail     | Fail     | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01     | 7        | 10       | (-0.03532, 1.428, 2.849, 1.278, 1.63, 1.666)  |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01     | 4        | 5        | (-0.0189, 0.7217)                             |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 5   | 0.02   | 0.8      | Fail     | Fail     | Fail                                          |
| Ex 4.5  | (0, 0, 0)             | 0.5 | 0.2    | 0.8      | 8        | 13       | (-0.8355, -0.8607, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8      | 6        | 8        | (-0.09533, 0.09533, 0.3509)                   |
| Ex 4.7  | (0, 0, 0)             | 5   | 0.02   | 0.8      | 17       | 21       | (0.5265, 0.5079, 100)                         |
|         |                       |     | 1      | p = 2, s | stop cri | iterion  | : 1e - 006.                                   |
| Problem | $x^0$                 | c   | $\tau$ | $\eta$   | NI       | NF       | SOL                                           |
| Ex 4.1' | (0, 0)                | 100 | 0.006  | 0.01     | Fail     | Fail     | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01     | 7        | 10       | (-0.009276, 1.429, 2.846, 1.279, 1.64, 1.667) |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01     | 4        | 5        | (-0.01516, 0.7206)                            |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 5   | 0.02   | 0.8      | Fail     | Fail     | Fail                                          |
| Ex 4.5  | (0, 0, 0)             | 0.5 | 0.2    | 0.8      | 8        | 13       | (-0.8356, -0.8606, 1.957)                     |
| Ex 4.6' | (0, 0, 0)             | 0.5 | 0.02   | 0.8      | 6        | 8        | (-0.09533, 0.09533, 0.332)                    |
| Ex 4.7  | (0, 0, 0)             | 5   | 0.02   | 0.8      | 17       | 21       | (0.5265, 0.5079, 100)                         |
|         |                       |     | 1      | p = 3, s | stop cr  | iterion  | 1e - 006.                                     |
| Problem | $x^0$                 | c   | $\tau$ | $\eta$   | NI       | NF       | SOL                                           |
| Ex 4.1  | (0, 0)                | 100 | 0.006  | 0.01     | Fail     | Fail     | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01     | 7        | 10       | (-0.007125, 1.43, 2.848, 1.281, 1.641, 1.667) |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01     | 4        | 5        | (-0.01061, 0.72)                              |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 5   | 0.02   | 0.8      | Fail     | Fail     | Fail                                          |
| Ex 4.5' | (0, 0, 0)             | 0.5 | 0.2    | 0.8      | 8        | 13       | (-0.8356, -0.8606, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8      | 6        | 7        | (-0.09533, 0.09533, 0.4472)                   |
| Ex 4.7  | (0, 0, 0)             | 5   | 0.02   | 0.8      | 17       | 21       | (0.5265, 0.5079, 100)                         |

Table 6: Numerical performance with different p for modified problems.

Note: Based on H(z) = 0 given as in (4.2),  $x^0$  is fixed.

Table 7: Numerical performance with different p for original problems.

|         |                       |     | p = 1  | .5,  stop | o crite | erion: | 1e - 006.                           |
|---------|-----------------------|-----|--------|-----------|---------|--------|-------------------------------------|
| Problem | $x^0$                 | c   | au     | $\eta$    | NI      | NF     | SOL                                 |
| Ex 4.1  | (0, 0)                | 100 | 0.006  | 0.01      | 6       | 8      | (9.084e-006, -0.999)                |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01      | 4       | 5      | (-0.01739, 0.002797, 0, 0, 0, 0)    |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01      | 4       | 5      | (-0.01739, 0.002797)                |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 5   | 0.02   | 0.8       | 6       | 8      | (1.118, 2.08, 0, 0, -0.003514)      |
| Ex 4.5  | (0, 0, 0)             | 0.5 | 0.2    | 0.8       | 7       | 11     | (0.5029, -1.7, 1.458)               |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8       | 4       | 5      | (-0.09533, 0.09533, 0.1086)         |
| Ex 4.7  | (0, 0, 0)             | 0.5 | 0.006  | 0.8       | 4       | 5      | (0.5265, 0.5079, 0)                 |
|         |                       |     | p = 2  | 2, stop   | criter  | rion:  | 1e - 006.                           |
| Problem | $x^0$                 | С   | $\tau$ | $\eta$    | NI      | NF     | SOL                                 |
| Ex 4.1  | (0, 0)                | 100 | 0.006  | 0.01      | 6       | 8      | (2.4e-008, -0.999)                  |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01      | 4       | 5      | (-0.01407, 7.663e-006, 0, 0, 0, 0)  |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01      | 4       | 5      | (-0.01407, 7.663e-006)              |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 5   | 0.02   | 0.8       | 6       | 8      | (1.118, 2.08, 0, 0, -0.003159)      |
| Ex 4.5  | (0, 0, 0)             | 0.5 | 0.2    | 0.8       | 7       | 11     | (0.5029, -1.7, 1.458)               |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8       | 4       | 5      | (-0.09533, 0.09533, 0.08515)        |
| Ex 4.7  | (0, 0, 0)             | 0.5 | 0.006  | 0.8       | 4       | 5      | (0.5265, 0.5079, 0)                 |
|         |                       |     | p = 3  | 3, stop   | criter  | rion:  | 1e - 006.                           |
| Problem | $x^0$                 | С   | $\tau$ | $\eta$    | NI      | NF     | SOL                                 |
| Ex 4.1  | (0, 0)                | 100 | 0.006  | 0.01      | 6       | 8      | (2.133e-013, -0.999)                |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5 | 0.2    | 0.01      | 4       | 5      | (-0.009902, 6.814e-011, 0, 0, 0, 0) |
| Ex 4.3  | (0, 0)                | 0.5 | 0.2    | 0.01      | 4       | 5      | (-0.009902, 6.814e-011)             |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 5   | 0.02   | 0.8       | 6       | 8      | (1.118, 2.08, 0, 0, -0.002428)      |
| Ex 4.5  | (0, 0, 0)             | 0.5 | 0.2    | 0.8       | 7       | 11     | (0.5029, -1.7, 1.458)               |
| Ex 4.6  | (0, 0, 0)             | 0.5 | 0.02   | 0.8       | 4       | 5      | (-0.09533,  0.09533,  0.06131)      |
| Ex 4.7  | (0, 0, 0)             | 0.5 | 0.006  | 0.8       | 4       | 5      | (0.5265, 0.5079, 0)                 |

Note: Based on  $\widehat{H}(\mu, x) = 0$  given as in (4.3),  $x^0$  is fixed.

|                                                                                                                                                                                                                                                                                                                                             | p                                                                                                                                                                                                                                                                                                   | = 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , stop                                                                                                                                                                               | criter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cion: 1                                                                                                                                                                                                                                       | e - 000                                                                                                                                                                                                                                 | 6, $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem                                                                                                                                                                                                                                                                                                                                     | $x^0$                                                                                                                                                                                                                                                                                               | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | au                                                                                                                                                                                   | $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                                                                                                                                                                                                                                            | NF                                                                                                                                                                                                                                      | SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ex 4.1                                                                                                                                                                                                                                                                                                                                      | (0, 0)                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fail                                                                                                                                                                                                                                          | Fail                                                                                                                                                                                                                                    | Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ex 4.2                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0, 0, 0, 0, 0)                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                      | (-0.03229, 1.57, 3.075, 1.414, 1.763, 1.772)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ex 4.3                                                                                                                                                                                                                                                                                                                                      | (0, 0)                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                       | (-0.003862, 0.7497)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ex 4.4                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0, 0, 0)                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fail                                                                                                                                                                                                                                          | Fail                                                                                                                                                                                                                                    | Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ex 4.5                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0)                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                      | (-0.8356, -0.8606, 1.957)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ex 4.6                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0)                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                       | (-0.09533, 0.09533, 0.4472)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ex 4.7'                                                                                                                                                                                                                                                                                                                                     | (0, 0, 0)                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                      | (0.5265, 0.5079, 100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                             | í í                                                                                                                                                                                                                                                                                                 | p=2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{stop}$                                                                                                                                                                | criteri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on: 1 <i>e</i>                                                                                                                                                                                                                                | -006                                                                                                                                                                                                                                    | , $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Problem                                                                                                                                                                                                                                                                                                                                     | $x^0$                                                                                                                                                                                                                                                                                               | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\tau$                                                                                                                                                                               | $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                                                                                                                                                                                                                                            | $\mathbf{NF}$                                                                                                                                                                                                                           | SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ex 4.1                                                                                                                                                                                                                                                                                                                                      | (0, 0)                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fail                                                                                                                                                                                                                                          | Fail                                                                                                                                                                                                                                    | Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ex 4.2                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0, 0, 0, 0, 0)                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                      | (-0.006013, 1.57, 3.071, 1.414, 1.77, 1.772)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ex 4.3                                                                                                                                                                                                                                                                                                                                      | (0, 0)                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                       | (-0.003179, 0.7516)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ex 4.4                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0, 0, 0)                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fail                                                                                                                                                                                                                                          | Fail                                                                                                                                                                                                                                    | Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ex 4.5                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0)                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                      | (-0.8356, -0.8606, 1.957)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ex 4.6                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0)                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                       | (-0.09533, 0.09533, 0.4472)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ex 4.7                                                                                                                                                                                                                                                                                                                                      | (0, 0, 0)                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                      | (0.5265,  0.5079,  100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                             | í                                                                                                                                                                                                                                                                                                   | p=3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{stop}$                                                                                                                                                                | criteri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on: 1 <i>e</i>                                                                                                                                                                                                                                | -006                                                                                                                                                                                                                                    | , $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Problem                                                                                                                                                                                                                                                                                                                                     | x <sup>0</sup>                                                                                                                                                                                                                                                                                      | p = 3,<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} \mathrm{stop} \\ \tau \end{array} $                                                                                                                               | criteri $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on: 1e<br>NI                                                                                                                                                                                                                                  | - 006<br>NF                                                                                                                                                                                                                             | , $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .<br>SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Problem<br>Ex 4.1'                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} x^{0} \\ \hline (0, 0) \end{array}$                                                                                                                                                                                                                                               | $p = 3,$ $\frac{c}{0.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\text{stop}}{\tau}$                                                                                                                                                           | criteri $\eta$ 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on: 1 <i>e</i><br>NI<br>Fail                                                                                                                                                                                                                  | - 006<br>NF<br>Fail                                                                                                                                                                                                                     | , $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .<br>SOL<br>Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Problem<br>Ex 4.1'<br>Ex 4.2'                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} x^{0} \\ \hline \\ (0, 0) \\ (0, 0, 0, 0, 0, 0) \end{array}$                                                                                                                                                                                                                      | p = 3, $c$ $0.5$ $0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \mathrm{stop} \\ \tau \\ 0.1 \\ 0.1 \end{array}$                                                                                                                   | $\frac{\text{criteri}}{\eta}$ 0.8 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on: 1e<br>NI<br>Fail<br>7                                                                                                                                                                                                                     | - 006<br>NF<br>Fail<br>11                                                                                                                                                                                                               | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ \hline & \text{SOL} \\ \hline & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                 |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r} x^{0} \\                                    $                                                                                                                                                                                                                                | p = 3,<br>c<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} {\rm stop} \\ \tau \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$                                                                                                               | $ \frac{\eta}{0.8} \\ 0.8 \\ 0.8 \\ 0.8 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on: 1 <i>e</i><br>NI<br>Fail<br>7<br>5                                                                                                                                                                                                        | - 006<br>NF<br>Fail<br>11<br>6                                                                                                                                                                                                          | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ \hline & \text{SOL} \\ \hline & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \end{array}$                                                                                                                                                                                                                                                                                                                                                      |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'                                                                                                                                                                                                                                                                                         | $\begin{array}{c} x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \end{array}$                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} {\rm stop} \\ \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$                                                                                                        | $ \begin{array}{r} \text{criteri} \\ \hline \eta \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail                                                                                                                                                                                                        | - 006<br>NF<br>Fail<br>11<br>6<br>Fail                                                                                                                                                                                                  | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ \hline & \text{SOL} \\ \hline & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \end{array}$                                                                                                                                                                                                                                                                                                                                     |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'                                                                                                                                                                                                                                                                              | $\begin{array}{c} x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \end{array}$                                                                                                                                                                   | $     \begin{array}{r} p = 3, \\ \hline c \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} {\rm stop} \\ \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$                                                                                                 | $ \begin{array}{r} \text{criteri} \\ \hline \eta \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail<br>8                                                                                                                                                                                                   | - 006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13                                                                                                                                                                                            | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ \hline & \text{SOL} \\ \hline & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \end{array}$                                                                                                                                                                                                                                                                                                  |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'                                                                                                                                                                                                                                                                   | $\begin{array}{c} x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \end{array}$                                                                                                                                                         | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$                                                                                   | $     \begin{array}{r} \text{criteri} \\ \hline \eta \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on: 1 <i>e</i><br>NI<br>Fail<br>7<br>5<br>Fail<br>8<br>6                                                                                                                                                                                      | - 006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13<br>7                                                                                                                                                                                       | $\begin{array}{c} ,\ c=0.5,\ \tau=0.1,\ \eta=0.8.\\ & \text{SOL}\\ \hline & \text{Fail}\\ (-0.005507,1.57,\ 3.071,1.414,1.771,1.772)\\ & (-0.002279,\ 0.7528)\\ & \text{Fail}\\ & (-0.8356,\ -0.8606,\ 1.957)\\ & (-0.09533,\ 0.09533,\ 0.4472) \end{array}$                                                                                                                                                                                                                                                                                              |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'                                                                                                                                                                                                                                                        | $\begin{array}{c} x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \end{array}$                                                                                                                               | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \overline{\tau} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$                                                                        | $     \begin{array}{r} \text{criteri} \\     \hline         \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\        $                                                                                                                                                                                                                                               | on: 1 <i>e</i><br>NI<br>Fail<br>7<br>5<br>Fail<br>8<br>6<br>17                                                                                                                                                                                | - 006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13<br>7<br>23                                                                                                                                                                                 | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \end{array}$                                                                                                                                                                                                                                            |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'                                                                                                                                                                                                                                                        | $\begin{array}{c} x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \end{array}$                                                                                                                            | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \overline{\tau} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ {\rm stop} \end{array}$                                                          | $ \begin{array}{c} \text{criteri} \\ \hline \eta \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \text{criteri} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail<br>8<br>6<br>17<br>on: 1e                                                                                                                                                                              | -006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13<br>7<br>23<br>-006                                                                                                                                                                          | $\begin{array}{c} , \ c=0.5, \ \tau=0.1, \ \eta=0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \\ \hline , \ c=0.5, \ \tau=0.1, \ \eta=0.8. \end{array}$                                                                                                                                                                                                     |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'<br>Problem                                                                                                                                                                                                                                             | $\begin{array}{c} x^{0} \\ \hline \\ (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ \hline \\ x^{0} \end{array}$                                                                                                                      | p = 3,  c  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 | $\begin{array}{c} {\rm stop} \\ \overline{\tau} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ {\rm stop} \\ \overline{\tau} \end{array}$                                       | $ \frac{\eta}{0.8} \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8$                           | $\begin{array}{c} \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 5\\ \hline \text{Fail}\\ 8\\ 6\\ 17\\ \hline \text{on: } 1e\\ \hline \text{NI} \end{array}$                                                                    | - 006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13<br>7<br>23<br>- 006<br>NF                                                                                                                                                                  | $\begin{array}{c} , \ c=0.5, \ \tau=0.1, \ \eta=0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \\ \hline , \ c=0.5, \ \tau=0.1, \ \eta=0.8. \\ & \text{SOL} \end{array}$                                                                                                                                                                                     |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'                                                                                                                                                                                                                                  | $\begin{array}{c} x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ \hline x^{0} \\ \hline x^{0} \\ \hline (0, 0) \end{array}$                                                                                           | p = 3,  c  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ {\rm stop} \\ \hline \tau \\ 0.1 \\ \end{array}$                                     | $ \begin{array}{c} \text{criteri}\\ \hline \eta\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ \hline \\ \hline \\ \eta\\ \hline \\ 0.8\\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on: 1e<br><u>NI</u><br>Fail<br>7<br>5<br>Fail<br>8<br>6<br>17<br>on: 1e<br><u>NI</u><br>Fail                                                                                                                                                  | - 006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13<br>7<br>23<br>- 006<br>NF<br>Fail                                                                                                                                                          | $\begin{array}{c} , \ c=0.5, \ \tau=0.1, \ \eta=0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \\ \hline & , \ c=0.5, \ \tau=0.1, \ \eta=0.8. \\ & \text{SOL} \\ \hline & \text{Fail} \end{array}$                                                                                                                                                           |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'                                                                                                                                                                                                                       | $\begin{array}{c} x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ \hline x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \end{array}$                                                                     | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline stop \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ \end{array}$                      | $riteri \eta 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 5\\ \hline \text{Fail}\\ 8\\ 6\\ 17\\ \hline \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ \end{array}$                                         | - 006<br>NF<br>Fail<br>11<br>6<br>Fail<br>13<br>7<br>23<br>- 006<br>NF<br>Fail<br>11                                                                                                                                                    | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \\ \hline , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ \hline & \text{Fail} \\ & (-0.002994, 1.57, \ 3.07, 1.414, 1.771, 1.772) \end{array}$                                                                                             |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'                                                                                                                                                                                                            | $\begin{array}{c} x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ \hline x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0) \\ \hline \end{array}$                                                 | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \end{array}$                       | $ \begin{array}{r} \text{criteri} \\ \hline \eta \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline 0.8 \\ 0.8 \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 5\\ \hline \text{Fail}\\ 8\\ 6\\ 17\\ \hline \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 5 \end{array}$                                       | $\begin{array}{r} -\ 006 \\ \hline \text{NF} \\ \hline \text{Fail} \\ 11 \\ 6 \\ \hline \text{Fail} \\ 13 \\ 7 \\ 23 \\ \hline -\ 006 \\ \hline \text{NF} \\ \hline \text{Fail} \\ 11 \\ 6 \\ \end{array}$                              | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \\ \hline , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ \hline & \text{Fail} \\ (-0.002994, 1.57, \ 3.07, 1.414, 1.771, 1.772) \\ & (-0.0007597, \ 0.7535) \end{array}$                                                                   |
| Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'<br>Ex 4.5'<br>Ex 4.6'<br>Ex 4.7'<br>Problem<br>Ex 4.1'<br>Ex 4.2'<br>Ex 4.3'<br>Ex 4.4'                                                                                                                                                                                                 | $\begin{array}{c} x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ \hline x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ \hline \end{array}$                                        | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline stop \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \end{array}$               | $     \begin{array}{r} \text{criteri} \\                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 5\\ \hline \text{Fail}\\ 8\\ 6\\ 17\\ \hline \text{on: } 1e\\ \hline \text{NI}\\ \hline \text{Fail}\\ 7\\ 5\\ \hline \text{Fail}\\ 7\\ 5\\ \hline \end{array}$ | $\begin{array}{c} -\ 006 \\ \hline NF \\ Fail \\ 11 \\ 6 \\ Fail \\ 13 \\ 7 \\ 23 \\ \hline -\ 006 \\ \hline NF \\ Fail \\ 11 \\ 6 \\ Fail \\ \end{array}$                                                                              | $\begin{array}{c} , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57, \ 3.071, 1.414, 1.771, 1.772) \\ & (-0.002279, \ 0.7528) \\ & \text{Fail} \\ & (-0.8356, \ -0.8606, \ 1.957) \\ & (-0.09533, \ 0.09533, \ 0.4472) \\ & (0.5265, \ 0.5079, \ 100) \\ \hline & (0.5265, \ 0.5079, \ 100) \\ \hline & , \ c = 0.5, \ \tau = 0.1, \ \eta = 0.8. \\ & \text{SOL} \\ \hline & \text{Fail} \\ & (-0.002994, 1.57, \ 3.07, 1.414, 1.771, 1.772) \\ & (-0.0007597, \ 0.7535) \\ & \text{Fail} \\ \end{array}$     |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                       | $\begin{array}{c} x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ \hline (0, 0, 0) \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ \hline (0, 0, 0, 0) \\ \hline \end{array}$          | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline stop \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline \end{array}$ | $     \begin{array}{r} \text{criteri} \\             \hline \eta \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             0.8 \\             criteri \\             \hline             \eta \\           $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail<br>8<br>6<br>17<br>on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail<br>8                                                                                                                                         | $\begin{array}{c} -\ 006 \\ \hline NF \\ Fail \\ 11 \\ 6 \\ Fail \\ 13 \\ 7 \\ 23 \\ \hline -\ 006 \\ \hline NF \\ Fail \\ 11 \\ 6 \\ Fail \\ 13 \\ \end{array}$                                                                        | $\begin{array}{c} , c = 0.5,  \tau = 0.1,  \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57,  3.071, 1.414, 1.771, 1.772) \\ & (-0.002279,  0.7528) \\ & \text{Fail} \\ & (-0.8356,  -0.8606,  1.957) \\ & (-0.09533,  0.09533,  0.4472) \\ & (0.5265,  0.5079,  100) \\ \hline ,  c = 0.5,  \tau = 0.1,  \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ & (-0.002994, 1.57,  3.07, 1.414, 1.771, 1.772) \\ & (-0.0007597,  0.7535) \\ & \text{Fail} \\ & (-0.8356,  -0.8606,  1.957) \end{array}$                                       |
| $\begin{array}{c} \text{Problem} \\ \text{Ex 4.1'} \\ \text{Ex 4.2'} \\ \text{Ex 4.3'} \\ \text{Ex 4.4'} \\ \text{Ex 4.5'} \\ \text{Ex 4.6'} \\ \text{Ex 4.7'} \\ \end{array}$ $\begin{array}{c} \text{Problem} \\ \text{Ex 4.1'} \\ \text{Ex 4.2'} \\ \text{Ex 4.3'} \\ \text{Ex 4.4'} \\ \text{Ex 4.5'} \\ \text{Ex 4.6'} \\ \end{array}$ | $\begin{array}{c} x^{0} \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ \hline (0, 0, 0) \\ \hline x^{0} \\ \hline (0, 0) \\ (0, 0, 0, 0, 0, 0) \\ (0, 0, 0, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0) \\ (0, 0, 0) \\ \hline \end{array}$ | p = 3, $c$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm stop} \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline stop \\ \hline \tau \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \end{array}$ | $\begin{array}{c} \text{criteri} \\ \hline \eta \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline 0.8 \\ 0.8 \\ \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ $ | on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail<br>8<br>6<br>17<br>on: 1e<br>NI<br>Fail<br>7<br>5<br>Fail<br>8<br>5                                                                                                                                    | $\begin{array}{c} -\ 006 \\ \overline{\rm NF} \\ \overline{\rm Fail} \\ 11 \\ 6 \\ \overline{\rm Fail} \\ 13 \\ 7 \\ 23 \\ -\ 006 \\ \overline{\rm NF} \\ \overline{\rm Fail} \\ 11 \\ 6 \\ \overline{\rm Fail} \\ 13 \\ 6 \end{array}$ | $\begin{array}{c} , c = 0.5,  \tau = 0.1,  \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ (-0.005507, 1.57,  3.071, 1.414, 1.771, 1.772) \\ & (-0.002279,  0.7528) \\ & \text{Fail} \\ & (-0.8356,  -0.8606,  1.957) \\ & (-0.09533,  0.09533,  0.4472) \\ & (0.5265,  0.5079,  100) \\ \hline ,  c = 0.5,  \tau = 0.1,  \eta = 0.8. \\ & \text{SOL} \\ & \text{Fail} \\ & (-0.002994, 1.57,  3.07, 1.414, 1.771, 1.772) \\ & (-0.0007597,  0.7535) \\ & \text{Fail} \\ & (-0.8356,  -0.8606,  1.957) \\ & (-0.09533,  0.09533,  0.3771) \\ \end{array}$ |

Table 8: Numerical performance with different p for modified problems.

Note: Based on H(z) = 0 given as in (4.2),  $x^0$ , c,  $\tau$  and  $\eta$  are fixed.

|         |                       | p = 1. | 5, sto | p crit | erion: | 1e -          | 006, $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .        |
|---------|-----------------------|--------|--------|--------|--------|---------------|-------------------------------------------------------|
| Problem | $x^0$                 | c      | $\tau$ | $\eta$ | NI     | NF            | SOL                                                   |
| Ex 4.1  | (0, 0)                | 0.5    | 0.1    | 0.8    | 9      | 12            | (1, 0)                                                |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.004177, 0.003252, 0, 0, 0, 0)                     |
| Ex 4.3  | (0, 0)                | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.004177, 0.003252)                                 |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 0.5    | 0.1    | 0.8    | 4      | 6             | (1.118, 1.98, -2.397e - 017, 0.1421, 0.05133)         |
| Ex 4.5  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 7      | 11            | (0.5029, -1.7, 1.458)                                 |
| Ex 4.6  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (-0.09533,  0.09533,  0.07811)                        |
| Ex 4.7  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (0.5265, 0.5079, 0)                                   |
|         |                       | p = 2  | , stop | crite  | rion:  | 1e - 0        | 006, $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .        |
| Problem | $x^0$                 | С      | au     | $\eta$ | NI     | $\mathbf{NF}$ | SOL                                                   |
| Ex 4.1  | (0, 0)                | 0.5    | 0.1    | 0.8    | 4      | 6             | (0.04124, -0.9982)                                    |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.003477, 8.908e-006, 0, 0, 0, 0)                   |
| Ex 4.3  | (0, 0)                | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.003477, 8.908e-006)                               |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 0.5    | 0.1    | 0.8    | 4      | 6             | (1.118, 2.041, -1.386e - 017, 0.05605, 0.04704)       |
| Ex 4.5  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 7      | 11            | (0.5029, -1.7, 1.458)                                 |
| Ex 4.6  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (-0.09533,  0.09533,  0.0658)                         |
| Ex 4.7  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (0.5265, 0.5079, 0)                                   |
|         |                       | p = 3  | , stop | crite  | rion:  | 1e - 0        | 006, $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .        |
| Problem | $x^0$                 | c      | au     | $\eta$ | NI     | $\mathbf{NF}$ | SOL                                                   |
| Ex 4.1  | (0, 0)                | 0.5    | 0.1    | 0.8    | 4      | 6             | (0.02275, -0.9987)                                    |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.00251, 7.919e-011, 0, 0, 0, 0)                    |
| Ex 4.3  | (0, 0)                | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.00251, 7.919e-011)                                |
| Ex 4.4  | (0,  0,  0,  0,  0)   | 0.5    | 0.1    | 0.8    | 4      | 6             | (1.118, 2.074, 0, 0.00922, 0.006294)                  |
| Ex 4.5  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 7      | 11            | (0.5029, -1.7, 1.458)                                 |
| Ex 4.6  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (-0.09533,  0.09533,  0.05056)                        |
| Ex 4.7  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (0.5265, 0.5079, 0)                                   |
|         |                       | p = 8  | , stop | crite  | rion:  | 1e - 0        | 006, $c = 0.5$ , $\tau = 0.1$ , $\eta = 0.8$ .        |
| Problem | $x^0$                 | c      | au     | $\eta$ | NI     | NF            | SOL                                                   |
| Ex 4.1  | (0, 0)                | 0.5    | 0.1    | 0.8    | 4      | 6             | (0.007717, -0.999)                                    |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.00102, 6.997e-036, 0, 0, 0, 0)                    |
| Ex 4.3  | (0, 0)                | 0.5    | 0.1    | 0.8    | 3      | 4             | (-0.00102, 6.997e-036)                                |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 0.5    | 0.1    | 0.8    | 4      | 6             | (1.118, 2.08, 1.658e - 019, 1.452e - 006, -0.0008675) |
| Ex 4.5  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 7      | 11            | (0.5029, -1.7, 1.458)                                 |
| Ex 4.6  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (-0.09533, 0.09533, 0.016)                            |
| Ex 4.7  | (0, 0, 0)             | 0.5    | 0.1    | 0.8    | 4      | 5             | (0.5265, 0.5079, 0)                                   |

Table 9: Numerical performance with different p for original problems.

Note: Based on  $\hat{H}(\mu, x) = 0$  given as in (4.3),  $x^0 \ c, \tau$  and  $\eta$  are fixed.

|         |                       | p = 2 | , stop | criter | ion: 1e | e - 006 | $\theta, c = 1, \tau = 0.1, \eta = 0.8.$      |
|---------|-----------------------|-------|--------|--------|---------|---------|-----------------------------------------------|
| Problem | $x^0$                 | c     | au     | $\eta$ | NI      | NF      | SOL                                           |
| Ex 4.1' | (0, 0)                | 1     | 0.1    | 0.8    | Fail    | Fail    | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 1     | 0.1    | 0.8    | 8       | 13      | (-0.02205, 1.553, 3.071, 1.414, 1.761, 1.763) |
| Ex 4.3' | (0, 0)                | 1     | 0.1    | 0.8    | 6       | 7       | (-0.001481, 1.27)                             |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 1     | 0.1    | 0.8    | Fail    | Fail    | Fail                                          |
| Ex 4.5  | (0, 0, 0)             | 1     | 0.1    | 0.8    | 9       | 13      | (-0.8356, -0.8606, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 1     | 0.1    | 0.8    | 5       | 6       | (-0.09533, 0.09533, 0.2995)                   |
| Ex 4.7  | (0, 0, 0)             | 1     | 0.1    | 0.8    | 20      | 25      | (0.5265,  0.5079,  100)                       |
|         |                       | p = 2 | , stop | criter | ion: 1e | e - 006 | $h, c = 0.5, \tau = 0.1, \eta = 0.$           |
| Problem | $x^0$                 | c     | au     | $\eta$ | NI      | NF      | SOL                                           |
| Ex 4.1  | (0, 0)                | 0.5   | 0.1    | 0      | Fail    | Fail    | Fail                                          |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5   | 0.1    | 0      | 8       | 13      | (-0.0191, 1.558, 3.071, 1.414, 1.763, 1.765)  |
| Ex 4.3  | (0, 0)                | 0.5   | 0.1    | 0      | 5       | 6       | (-0.003179, 0.7516)                           |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 0.5   | 0.1    | 0      | Fail    | Fail    | Fail                                          |
| Ex 4.5  | (0, 0, 0)             | 0.5   | 0.1    | 0      | 8       | 13      | (-0.8356, -0.8606, 1.957)                     |
| Ex 4.6  | (0, 0, 0)             | 0.5   | 0.1    | 0      | 6       | 8       | (-0.09533, 0.09533, 0.3153)                   |
| Ex 4.7  | (0, 0, 0)             | 0.5   | 0.1    | 0      | Fail    | Fail    | Fail                                          |

Table 10: Numerical performance when p = 2 for modified problems.

Note: Based on H(z) = 0 given as in (4.2),  $x^0$  and  $\tau$  are fixed.

|         |                       | p = 2 | 2, stop | o crite | rion: 1 | e - 00 | 6, $c = 1$ , $\tau = 0.1$ , $\eta = 0.8$ .    |
|---------|-----------------------|-------|---------|---------|---------|--------|-----------------------------------------------|
| Problem | $x^0$                 | c     | au      | $\eta$  | NI      | NF     | $\operatorname{SOL}$                          |
| Ex 4.1  | (0, 0)                | 1     | 0.1     | 0.8     | 3       | 4      | (0.01673, -0.9989)                            |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 1     | 0.1     | 0.8     | 3       | 4      | (-0.003682, 4.453e-006, 0, 0, 0, 0)           |
| Ex 4.3  | (0, 0)                | 1     | 0.1     | 0.8     | 3       | 4      | (-0.003682, 4.453e-006)                       |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 1     | 0.1     | 0.8     | 5       | 6      | (1.118, 1.414, 0, 0.8795, 0.3904)             |
| Ex 4.5  | (0, 0, 0)             | 1     | 0.1     | 0.8     | Fail    | Fail   | Fail                                          |
| Ex 4.6  | (0, 0, 0)             | 1     | 0.1     | 0.8     | 4       | 5      | (-0.09533, 0.09533, 0.06535)                  |
| Ex 4.7  | (0, 0, 0)             | 1     | 0.1     | 0.8     | 4       | 5      | (0.5265, 0.5079, 0)                           |
|         |                       | p = 2 | 2, stop | o crite | rion: 1 | e - 00 | 6, $c = 0.5$ , $\tau = 0.1$ , $\eta = 0$ .    |
| Problem | $x^0$                 | c     | au      | $\eta$  | NI      | NF     | SOL                                           |
| Ex 4.1  | (0, 0)                | 0.5   | 0.1     | 0       | 4       | 6      | (0.04124, -0.9982)                            |
| Ex 4.2  | (0, 0, 0, 0, 0, 0, 0) | 0.5   | 0.1     | 0       | 3       | 4      | (-0.003477, 8.908e-006, 0, 0, 0, 0)           |
| Ex 4.3  | (0, 0)                | 0.5   | 0.1     | 0       | 3       | 4      | (-0.003477, 8.908e-006)                       |
| Ex 4.4  | (0, 0, 0, 0, 0)       | 0.5   | 0.1     | 0       | 4       | 6      | (1.118, 2.041, -1.386e-017, 0.05605, 0.04704) |
| Ex 4.5  | (0, 0, 0)             | 0.5   | 0.1     | 0       | 8       | 15     | (0.5029, -1.7, 1.458)                         |
| Ex 4.6  | (0, 0, 0)             | 0.5   | 0.1     | 0       | 4       | 5      | (-0.09533, 0.09533, 0.0658)                   |
| Ex 4.7  | (0, 0, 0)             | 0.5   | 0.1     | 0       | 4       | 5      | (0.5265, 0.5079, 0)                           |

Table 11: Numerical performance when p = 2 for original problems.

Note: Based on  $\widehat{H}(\mu,x)=0$  given as in (4.3),  $x^0$  and  $\tau$  are fixed.