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where y is a point in Γ(x) := {c ∈ C : ⟨F (x), x − c⟩ = g(x)} for x ∈ Rn. The other is the
dual gap function G(x) given by

G(x) := max{⟨F (c), x− c⟩ : c ∈ C} = ⟨F (y), x− y⟩,

where y is a point in Λ(x) := {c ∈ C : ⟨F (c), x− c⟩ = G(x)} for x ∈ Rn.

Next we review some concepts relevant to C and F which will be used in the paper.
The normal cone to C at x ∈ C is defined and denoted by

NC(x) := {ξ ∈ Rn : ⟨ξ, c− x⟩ ≤ 0 for all c ∈ C}.

The tangent cone to C at x ∈ C is defined from NC(x) by polarity, which is denoted as:

TC(x) := [NC(x)]
◦ := {v ∈ Rn : ⟨s, v⟩ ≤ 0 for all s ∈ NC(x)}.

The tangent cone can also be expressed by d◦C(x; ·),

TC(x) = {v ∈ Rn : d◦C(x; v) = 0},

see [2], where dC is the distance function associated with C:

dC(x) := min{∥x− c∥ : c ∈ C} for x ∈ Rn,

and

d◦C(x; v) = lim sup
y → x
λ ↓ 0

dC(y + λv)− dC(y)

λ
,

see [2]. Since C is convex, v ∈ TC(x) if and only if d◦C(x; v) = d′C(x; v) = 0, where d′C(x; ·)
is the directional derivative of dC at x [2, Proposition 2.2.7].

A mapping F : Rn → Rn is said to be pseudomonotone on C if for all x, y ∈ C,

⟨F (x), y − x⟩ ≥ 0 ⇒ ⟨F (y), y − x⟩ ≥ 0.

The mapping F is said to be pseudomonotone+ on C if it is pseudomonotone on C and, for
all x, y ∈ C there holds

⟨F (x), y − x⟩ ≥ 0, ⟨F (y), y − x⟩ = 0 ⇒ F (y) = F (x).

Based on these basic definitions, we introduce the notion of weakly sharp solutions of the
VIP and its dual problem. Recall that Burke and Ferris have extended the concept of sharp
minimum solution to the notion of a nonunique solution set, see [1]. They have proposed
that S is weakly sharp to minimize the function f : Rn → R ∪ {−∞,+∞} on S if there
exists α > 0 such that

f(x) ≥ f(x) + αdS(x) for all x ∈ S and x ∈ S.

If f is differentiable and convex, S and S are assumed to be nonempty closed and convex,
then they have proved that S is weakly sharp if and only if the gradient ∇f of f satisfies

−∇f(x) ∈ int
∩
x∈S

[TS(x) ∩NS(x)]
◦ for all x ∈ S.
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Since the VIP doesn’t have an objective function, Patriksson [13, pp. 108] extended the
definition of weakly sharp solutions to VIP by replacing ∇f with F , that is, C∗ is weakly
sharp if and only if

−F (x∗) ∈ int
∩

x∈C∗

[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗. (1.1)

Our aim in this paper is to characterize the weak sharpness of C∗ and C∗ by considering
the error bound of g + G on C. Recently, Marcotte and Zhu [11] have stated the weak
sharpness of C∗ in terms of error bound of G on C under the condition that F is continuous
and pseudomonotone+ on a compact set C. Then Zhang et al. [17] have extended their result
just under the condition that F is continuous and pseudomonotone on C. In addition, Wu
and Wu [15] have studied this same result under some new conditions of G, i.e., G is Gâteaux
differentiable and locally Lipschitz on C∗. Similarly, Hu and Song have also analyzed this
result by considering the Gâteaux differentiability of G in [8]. It is noted that most of these
results have been obtained based on properties of G while g is seldom used. Moreover, there
have been many papers discussing properties of G, e.g., [16] and [17]. However, for a fixed
point x ∈ Rn, g(x) is usually easier to be calculated since this is a linear program. We will
characterize the weak sharpness of C∗ and C∗ by considering some properties of g and g+G
instead of those of G in this paper.

We begin this work by stating relations between the Gâteaux differentiability of g and
that of G on C∗ and C∗ in section 2. We then discuss the sufficiency for the Lipschitz
property of G and study relations between the locally Lipschitz properties of g and g + G
in section 3. As a result, we get an understanding of the weak sharpness of C∗ and C∗ as
well as the error bound of g +G in section 4.

2 Gâteaux Differentiability of Two Gap Functions

In this section, we characterize the Gâteaux differentiability of the two gap functions g
and G on C∗ and C∗ and discuss their relations under certain conditions. Wu and Wu
[16] have proposed several sufficient conditions for the Gâteaux differentiability of G at
x∗ ∈ C∗. By [5, pp. 23, Proposition 5.3], if G is Gâteaux differentiable at x∗ ∈ C∗,
then ∂G(x∗) = {∇G(x∗)}, where ∇G(x∗) is the gradient of G at x∗. Our first purpose
in this section is to discuss relations between the Gâteaux differentiabilities of g and G.
It is noted that the inequality g(x) ≥ G(x) for all x ∈ Rn ensures the nonemptiness of
the subdifferential of g at x∗ ∈ C∗. In this case, we show that for x∗ ∈ C∗ the Gâteaux
differentiability of g at x∗ implies that of G at x∗. Similarly, under some condition, the
Gâteaux differentiability of G at some x∗ ∈ C∗ is sufficient for that of g at x∗. Moreover,
the Gâteaux differentiability of g +G is also presented.

We begin with the following result which is useful for presenting the weak sharpness of
C∗ and C∗ after.

Proposition 2.1. Let g(x) ≥ G(x) for all x ∈ Rn. Suppose that g is Gâteaux differentiable
at x∗ ∈ C∗. Then G is Gâteaux differentiable at x∗,

{∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} = {F (x∗)}.

Proof. Let x∗ ∈ C∗. Then by [15, Proposition 2.1] we have 0 = g(x∗) ≥ G(x∗). Since G is
nonnegative on C, we obtain G(x∗) = 0 and hence x∗ ∈ C∗. Therefore for all x ∈ Rn we
have

g(x)− g(x∗) ≥ G(x)−G(x∗) ≥ ⟨F (x∗), x− x∗⟩,
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which implies that F (x∗) ∈ ∂g(x∗).
Let ξ ∈ ∂g(x∗). Then for all v ∈ Rn and t > 0,

g(x∗ + tv)− g(x∗) ≥ t⟨ξ, v⟩.

Since g is Gâteaux differentiable at x∗, ⟨∇g(x∗), v⟩ ≥ ⟨ξ, v⟩. This implies that ξ = ∇g(x∗).
So {F (x∗)} = ∂g(x∗) = {∇g(x∗)}.

By assumption, we have

⟨F (x∗), v⟩ = ⟨∇g(x∗), v⟩ = lim
t→0

g(x∗ + tv)− g(x∗)

t

≥ lim
t→0

G(x∗ + tv)−G(x∗)

t
≥ ⟨F (x∗), v⟩,

so

lim
t→0

G(x∗ + tv)−G(x∗)

t
= ⟨F (x∗), v⟩.

This implies that G is Gâteaux differentiable at x∗ with ∇G(x∗) = F (x∗). Hence the proof
is complete.

We note that Proposition 2.1 may fail if the inequality g(x) ≥ G(x) holds only for x ∈ C
not for all x ∈ Rn.

Example 2.2. Let C = [0, 1] and

F (x) =

{
x for x ∈ C;

−x for x ̸∈ C.

Then C∗ = {0},

g(x) =


−x2 for x < 0;

x2 for x ∈ C;

−x2 + x for x > 1,

and

G(x) =


0 for x < 0;
1
4x

2 for 0 ≤ x ≤ 2;

x− 1 for x > 2.

It is clear that g(x) ≥ G(x) holds for each x ∈ C = [0, 1] but not for x ∈ (−∞, 0)∪ (1,+∞).
In this case, for x∗ ∈ C∗, there exists no ξ ∈ R such that

⟨ξ, x− x∗⟩ ≤ g(x)− g(x∗) for each x ∈ R,

which implies that ∂g(x∗) is empty. This shows that the condition g(x) ≥ G(x) for all x ∈ C
is not sufficient for ∂g(x∗) to be nonempty.

Remark 2.3. For x∗ ∈ C∗, Λ(x∗) is the solution set to maximize f(x) = ⟨F (x), x∗ − x⟩
subject to x ∈ C. Thus with the condition g(x) ≥ G(x) for all x ∈ Rn in Proposition
2.1, the solution set C∗ can be obtained by Λ(x∗) if g is Gâteaux differentiable at x∗, see
[16, Theorem 2.3]. In this case, F is constant on Λ(x∗) and x∗ ∈ C∗ = Γ(x∗) ∩ Λ(x∗).
Furthermore, if each x∗ ∈ C∗ and each y∗ ∈ Γ(x∗) satisfy

{v ∈ Rn : ⟨F (x∗), v⟩ ≥ 0} = {v ∈ Rn : ⟨F (y∗), v⟩ ≥ 0},

then Λ(x∗) = C∗ = C∗ = Γ(x∗) from [15, Proposition 3.1] and hence F is constant on Γ(x∗).
So the solution sets to VIP and DVIP can be determined either by Λ(x∗) or by Γ(x∗).
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Next we present an equivalent statement of the Gâteaux differentiability of g.

Proposition 2.4. Let x∗ ∈ C∗. Suppose that g(x) ≥ G(x) for all x ∈ Rn. Then the
following are equivalent:

(i) g is Gâteaux differentiable at x∗.

(ii) F is constant on Γ(x∗) ∩ Λ(x∗) and
g′(x∗; v) = sup {⟨F (x), v⟩ : x ∈ C∗} for all v ∈ Rn.

Proof. Since (i) ⇒ (ii) is direct from Proposition 2.1 and Remark 2.3, it suffices to prove
(ii) ⇒ (i).

By assumption, we have C∗ ⊆ C∗. Therefore, C∗ ⊆ Λ(x∗) and C∗ ⊆ Γ(x∗) by [15,
Proposition 2.3]. This implies that C∗ ⊆ Λ(x∗)∩Γ(x∗) and F is constant on C∗ from (ii). By
the expression of g′(x∗; v) in (ii), g is Gâteaux differentiable at x∗ with ∇g(x∗) = F (x∗).

Similar to Proposition 2.1, the Gâteaux differentiability of G implies that of g under
certain condition.

Proposition 2.5. Let g(x) ≤ G(x) for all x ∈ Rn. Suppose that G is Gâteaux differentiable
at x∗ ∈ C∗ and ∂g(x∗) ̸= ∅. Then g is Gâteaux differentiable at x∗,

{∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} = {F (x∗)}

and F is constant on C∗.

Proof. Since g(x) ≤ G(x) for all x ∈ Rn, by [15, Proposition 2.1], we have C∗ ⊆ C∗. Ap-
plying [16, Theorem 2.3], the Gâteaux differentiability of G at x∗ implies that ∂G(x∗) =
{∇G(x∗)} = {F (x∗)} and F is constant on C∗.

Let ξ ∈ ∂g(x∗). Then for all v ∈ Rn and t > 0,

⟨ξ, tv⟩ ≤ g(x∗ + tv)− g(x∗) ≤ G(x∗ + tv)−G(x∗),

from which we obtain that

⟨ξ, v⟩ ≤ lim
t→0

g(x∗ + tv)− g(x∗)

t
≤ G′(x∗; v) = ⟨F (x∗), v⟩.

This implies that ξ = F (x∗). Thus g is Gâteaux differentiable at x∗ and

{∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} = {F (x∗)}.

Remark 2.6. Propositions 2.1 and 2.5 state the relationships between the Gâteaux differ-
entiability of g and that of G on C∗ and C∗ and present sufficient conditions for F to be
constant on C∗. Based on Proposition 2.1, the Gâteaux differentiability of g at x∗ ∈ C∗ also
implies that F (c) = F (x∗) for all c ∈ Λ(x∗).

Note that Proposition 2.1 implies that g + G is Gâteaux differentiable at x∗ ∈ C∗ and
∇(g+G)(x∗) = 2F (x∗). The following proposition presents weaker conditions for this result.

Proposition 2.7. Let g(x) ≥ G(x) for all x ∈ Rn. Suppose that g+G is Gâteaux differen-
tiable at x∗ ∈ C∗. Then

∂(g +G)(x∗) = {∇(g +G)(x∗)} = {2F (x∗)}.
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Proof. Let x∗ ∈ C∗. Then, by assumption and definition, we have

g(x∗) = G(x∗) = 0, C∗ ⊆ C∗, and g(x) ≥ G(x) ≥ ⟨F (x∗), x− x∗⟩ for all x ∈ Rn,

from which we obtain that

(g +G)(x)− (g +G)(x∗) ≥ ⟨2F (x∗), x− x∗⟩ for all x ∈ Rn.

This implies that 2F (x∗) ∈ ∂(g +G)(x∗).
Let ξ ∈ ∂(g +G)(x∗). Then for any v ∈ Rn and t > 0 we have

(g +G)(x∗ + tv)− (g +G)(x∗) ≥ t⟨ξ, v⟩.

If g +G is Gâteaux differentiable at x∗, then

⟨∇(g +G)(x∗), v⟩ = lim
t→0

(g +G)(x∗ + tv)− (g +G)(x∗)

t
≥ ⟨ξ, v⟩.

This implies that ξ = ∇(g +G)(x∗) since v is arbitrary. Thus

{2F (x∗)} ⊆ ∂(g +G)(x∗) ⊆ {∇(g +G)(x∗)},

which implies ∂(g +G)(x∗) = {∇(g +G)(x∗)} = {2F (x∗)}.

3 Locally Lipschitz Property of g and G

Like the Gâteaux differentiability of g and G, the locally Lipschitz property of these two
gap functions are also very important for characterizing the weak sharpness of both C∗ and
C∗. In this section, we propose sufficient conditions for this property of g and G. Moreover,
the relations between the locally Lipschitz properties of g and g+G are also presented. The
following proposition presents one sufficient condition for G to be Lipschitz.

Proposition 3.1. Let F be bounded on C. Then G is Lipschitz.

Proof. Let y, z ∈ Rn. For c ∈ Λ(y), we have

G(y)−G(z) ≤ ⟨F (c), y − c⟩ − ⟨F (c), z − c⟩
= ⟨F (c), y − z⟩ ≤ ∥F (c)∥∥y − z∥ ≤ M∥y − z∥,

where M = sup{∥F (x)∥ : x ∈ C}. This implies that G is Lipschitz.

Since G is convex, its locally Lipschitz property can immediately be obtained by the
following proposition.

Proposition 3.2 ([3, Corollary 2.35]). If X is finite dimensional, then any convex function
f : X → R∞ is locally Lipschitz in the set int domf .

So if G is bounded above on some set S and intS is nonempty, then G is locally Lipschitz
in intS. Based on this idea, we characterize the locally Lipschitz property of G and discuss
relations between this property of g and that of g +G since they are important for stating
the weak sharpness of C∗.

Proposition 3.3. Let x∗ ∈ C∗. Suppose that there exists δ > 0 such that g(x) ≥ G(x) for
all x ∈ B(x∗, δ). Then the following hold:
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(i) If g is bounded in a neighbourhood of x∗, then G is Lipschitz near x∗.

(ii) g +G is Lipschitz near x∗ if and only if g is Lipschitz near x∗.

Proof. (i) Since g is bounded near x∗, there exist 0 < δ1 < δ and L ≥ 0 such that

∥g(x)∥ ≤ L for all x ∈ B(x∗, δ1),

which implies that ⟨F (x∗), x − x∗⟩ ≤ G(x) ≤ L for all x ∈ B(x∗, δ1). Then by Proposition
3.2, G is Lipschitz near x∗.

(ii) Since the sufficiency is direct from (i), it remains to show the necessity. If g +G is
Lipschitz near x∗, then there exist 0 < δ1 < δ and L ≥ 0 such that

2⟨F (x∗), x− x∗⟩ ≤ 2G(x) ≤ (g +G)(x) ≤ L for all x ∈ B(x∗, δ1).

So, by Proposition 3.2, G is Lipschitz near x∗. Hence g = (g + G) − G is Lipschitz near
x∗.

4 Weak Sharpness of C∗ and C∗

In [15, Theorem 5.1], Wu and Wu have proved that C∗ is weakly sharp if and only if there
exists µ > 0 such that dC∗(x) ≤ µG(x) for each x ∈ C under the conditions that G is
Gâteaux differentiable and locally Lipschitz on C∗ and for each x∗ ∈ C∗ ∪ C∗ and each
y∗ ∈ Λ(x∗) there hold

{v ∈ Rn : ⟨F (x∗), v⟩ ≥ 0} = {v ∈ Rn : ⟨F (y∗), v⟩ ≥ 0}

and
⟨F (x∗), x∗ − y∗⟩ = 0 and ⟨F (y∗), x∗ − y∗⟩ = 0 ⇒ F (x∗) = F (y∗).

In this section, we use similar proofs to show the weak sharpness of C∗ and C∗ in terms of
the error bound of g +G on C.

Following the definition of the weak sharpness of C∗ in (1.1), since

int
∩

x∈C∗

[TC(x) ∩NC∗(x)]◦ ⊆ int
∩

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]
◦,

we extend this definition as follows.

Definition 4.1. C∗ is said to be weakly sharp provided that

−F (x∗) ∈ int
∩

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]
◦ for each x∗ ∈ C∗.

This is equivalent to saying that for each x∗ ∈ C∗ there exists α > 0 such that

αB ⊆ F (x∗) +
∩

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]
◦,

where B denotes the closed unit ball in Rn. Similarly, C∗ is said to be weakly sharp provided
that

−F (x∗) ∈ int
∩

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]
◦ for each x∗ ∈ C∗.

The advantage of this extended definition is that the relationship between the weak sharpness
of C∗ and C∗ can immediately be obtained as the following proposition states.
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Proposition 4.2. (i) Let C∗ ⊆ C∗. If C∗ is weakly sharp, then C∗ is weakly sharp as
well.

(ii) Let C∗ ⊆ C∗. If C∗ is weakly sharp, then so is C∗.

Proof. The proof is straightforward, so it is omitted.

Next we present our main results which characterize the weak sharpness of C∗ and C∗
in terms of the error bound of g +G on C based on Definition 4.1.

Theorem 4.3. Let F be constant on C∗. Suppose that g(x) ≥ G(x) for all x ∈ Rn and that
g +G is Gâteaux differentiable and locally Lipschitz on C∗. If there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C,

then C∗ is weakly sharp. In particular, if C∗ = C∗, then the above sufficient condition is
also necessary.

Proof. By assumption, we have C∗ ⊆ C∗, so C∗ ∩ C∗ = C∗ and C∗ ∪ C∗ = C∗.
Suppose that there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C.

Since F is constant on C∗, it suffices to show that there holds

δB ⊆ F (x) + [TC(x) ∩NC∗∪C∗(x)]
◦ for each x ∈ C∗ with δ =

α

2
. (4.1)

It is obvious that (4.1) holds if TC(x) ∩NC∗∪C∗(x) = {0} for x ∈ C∗.
If 0 ̸= v ∈ TC(x) ∩NC∗∪C∗(x) for x ∈ C∗, then

⟨v, v⟩ > 0 and ⟨v, y − x⟩ ≤ 0 for each y ∈ C∗ ∪ C∗,

which implies that C∗ is separated from x+ v by the hyperplane

Hv = {x ∈ Rn : ⟨v, x− x⟩ = 0}.

Since v ∈ TC(x), according to [2, Theorem 2.4.5], there exist a sequence {vi} converging to v
and a positive sequence {ti} decreasing to 0 such that for each index i we have x+ tivi ∈ C.
Therefore,

dC∗(x+ tivi) ≥ dHv (x+ tivi) = ti
⟨v, vi⟩
∥v∥

.

By assumption, we have

(g +G)(x+ tivi)− (g +G)(x) ≥ αdC∗∩C∗(x+ tivi) = αdC∗(x+ tivi).

Since g + G is Gâteaux differentiable and locally Lipschitz on C∗, by Proposition 2.7, we
have

⟨2F (x), v⟩ = ⟨∇(g +G)(x), v⟩ = lim
i→∞

(g +G)(x+ tivi)− (g +G)(x)

ti
≥ α∥v∥.

Let w ∈ B. Then⟨α
2
w − F (x), v

⟩
=

α

2
⟨w, v⟩ − ⟨F (x), v⟩ ≤ α

2
∥v∥ − α

2
∥v∥ = 0.
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Hence α
2B − F (x) ⊆ [TC(x) ∩NC∗∪C∗(x)]

◦.
Next if C∗ is weakly sharp and C∗ = C∗, then by Definition 4.1 there exists δ > 0 such

that
δB ⊆ F (x∗) +

∩
x∈C∗

[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗

since F is constant on C∗. From the proof of [11, Theorem 4.1], this is equivalent to saying
that

⟨F (x∗), z⟩ ≥ δ∥z∥ for each z ∈ TC(x
∗) ∩NC∗(x∗) and each x∗ ∈ C∗.

Since C∗ is closed and convex and C∗ = C∗, for each x ∈ C there exists unique c∗ ∈ C∗ such
that dC∗(x) = ∥x− c∗∥. It follows that

x− c∗ ∈ TC(c
∗) ∩NC∗(c∗).

Hence the point c∗ satisfies

(g +G)(x) ≥ 2G(x) ≥ 2⟨F (c∗), x− c∗⟩ ≥ 2δ∥x− c∗∥ = 2δdC∗(x).

Taking α = 2δ, we have

αdC∗∩C∗(x) = αdC∗(x) ≤ (g +G)(x) for each x ∈ C.

The proof is complete.

Remark 4.4. As mentioned above, Wu and Wu have characterized the weak sharpness of
C∗ in [15, Theorem 5.1] under the condition that G is Gâteaux differentiable and locally
Lipschitz on C∗. By presenting relations between g and G in Theorem 4.3, the same result
was proposed in terms of the error bound of g +G on C. Under the conditions of Theorem
4.3, the existence of positive µ satisfying dC∗∩C∗(x) ≤ µG(x) for all x ∈ C is also sufficient
for the weak sharpness of C∗ since G(x) ≤ g(x) for x ∈ Rn. In this case, (g + G)(x) ≤
2g(x) for all x ∈ Rn. So if the condition that g + G is Gâteaux differentiable and locally
Lipschitz on C∗ is replaced by a stronger one that g is Gâteaux differentiable and locally
Lipschitz on C∗, by Propositions 2.1 and 3.3, we find that dC∗∩C∗(x) ≤ µg(x) for each x ∈ C
with some µ > 0 is still a sufficient condition for the weak sharpness of C∗.

Similar proofs can be applied to the theorem below for discussing sufficient conditions
for the weak sharpness of C∗.

Theorem 4.5. Let ∂g(x∗) ̸= ∅ for each x∗ ∈ C∗. Suppose that g(x) ≤ G(x) for all x ∈ Rn

and that G is Gâteaux differentiable and g + G is locally Lipschitz on C∗. If there exists
α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C,

then C∗ is weakly sharp.

Proof. By assumption, we have C∗ ⊆ C∗, that is, C∗ ∩ C∗ = C∗.
Suppose that there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C.

We claim that

δB ⊆ F (x) + [TC(x) ∩NC∗∪C∗(x)]
◦ for each x ∈ C∗ with δ =

α

2
. (4.2)
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Obviously, (4.2) holds if TC(x) ∩NC∗∪C∗(x) = {0} for x ∈ C∗.
If 0 ̸= v ∈ TC(x) ∩NC∗∪C∗(x) for x ∈ C∗, then

⟨v, v⟩ > 0 and ⟨v, y − x⟩ ≤ 0 for all y ∈ C∗ ∪ C∗ = C∗.

Therefore, C∗ is separated from x+ v by the hyperplane

Hv = {x ∈ Rn : ⟨v, x− x⟩ = 0}.

Since v ∈ TC(x), there exist a sequence {vi} converging to v and a positive sequence {ti}
decreasing to 0 such that for each index i there holds x+ tivi ∈ C. Hence we have

(g +G)(x+ tivi)− (g +G)(x) ≥ αdC∗(x+ tivi) ≥ αdHv (x+ tivi) = αti
⟨v, vi⟩
∥v∥

.

By Proposition 2.5, the Gâteaux differentiability of G on C∗ implies that g is Gâteaux
differentiable on C∗ with ∇g(x∗) = ∇G(x∗) = F(x∗) for each x∗ ∈ C∗ and F is constant on
C∗, that is, we have

∇(g +G)(x∗) = 2F (x∗) for each x∗ ∈ C∗.

If g +G is locally Lipschitz on C∗, then

⟨2F (x), v⟩ = ⟨∇(g +G)(x), v⟩ = lim
i→∞

(g +G)(x+ tivi)− (g +G)(x)

ti
≥ α∥v∥.

Let u ∈ B. Then⟨α
2
u− F (x), v

⟩
=

α

2
⟨u, v⟩ − ⟨F (x), v⟩ ≤ α

2
∥v∥ − α

2
∥v∥ = 0.

Thus α
2B − F (x) ⊆ [TC(x) ∩NC∗∩C∗(x)]

◦. This implies that (4.2) holds. And hence C∗ is
weakly sharp since F is constant on C∗.

Theorem 4.5 characterizes the weak sharpness of C∗ under the assumption that g(x) ≤
G(x) for all x ∈ Rn. In [15, Theorem 5.4], Wu andWu have stated two equivalent statements
for the weak sharpness of C∗. Motivated by their results, we note that

−F (x∗) ∈ int
∩

x∈C∗∩C∗

TC∗(x)

is also sufficient for the weak sharpness of C∗ since

int
∩

x∈C∗∩C∗

TC∗(x) = int
∩

x∈C∗∩C∗

[NC∗(x)]◦ ⊆ int
∩

x∈C∗∩C∗

[TC∗(x) ∩NC∗∪C∗(x)]
◦.

Then we use similar proof of [15, Theorem 5.4] to present this equivalence with the error
bounds of G and g +G on Rn.

Theorem 4.6. Let C∗ be closed and convex and F constant on C∗. Suppose that g(x) ≥
G(x) for all x ∈ Rn and that (g+G)(x) is Gâteaux differentiable on C∗. Then the following
are equivalent:

(i) −F (x∗) ∈ int
∩

x∈C∗∩C∗
TC∗(x) for each x∗ ∈ C∗.
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(ii) There exists α > 0 such that αdC∗∩C∗(x) ≤ G(x) for each x ∈ Rn.

(iii) There exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ Rn. (4.3)

Proof. By assumption, we have 0 ≤ G(x∗) ≤ g(x∗) = 0 for all x∗ ∈ C∗, so C∗ ⊆ C∗ and
C∗ ∩ C∗ = C∗.

(i) ⇒ (ii) : Let (i) hold. Then since F is assumed to be constant on C∗, there exists
α > 0 such that

αB ⊆ F (x∗) + TC∗(x∗) = F (x∗) + [NC∗(x∗)]◦ for each x∗ ∈ C∗.

This implies that for each x∗ ∈ C∗ and each u ∈ B we have

⟨αu− F (x∗), v⟩ ≤ 0 for each v ∈ NC∗(x∗).

Let u = v
∥v∥ for v ̸= 0. Then

⟨F (x∗), v⟩ ≥ α∥v∥ for each v ∈ NC∗(x∗).

Since C∗ is closed and convex, for each x ∈ Rn there exists a unique x ∈ C∗ such that

dC∗∩C∗(x) = dC∗(x) = ∥x− x∥,

which yields that x− x ∈ NC∗(x). Therefore,

G(x) ≥ ⟨F (x), x− x⟩ ≥ α∥x− x∥ = αdC∗∩C∗(x).

(ii) ⇒ (iii) is immediate from the inequality G(x) ≤ g(x) for all x ∈ Rn. It remains to
prove (iii) ⇒ (i).

Suppose that (4.3) holds for some α > 0. We claim that

δB ⊆ F (x∗) + TC∗(x∗) = F (x∗) + [NC∗(x∗)]◦ (4.4)

for each x∗ ∈ C∗ with δ = α
2 .

It is clear that (4.4) holds for x∗ ∈ C∗ if NC∗(x∗) = {0}. It remains to prove that (4.4)
holds for x∗ ∈ C∗ with NC∗(x∗) ̸= {0}.

Let 0 ̸= v ∈ NC∗(x∗). Then

⟨v, v⟩ > 0 and ⟨v, y∗ − x∗⟩ ≤ 0 for each y∗ ∈ C∗.

Thus C∗ is separated from x∗ + v by the hyperplane

Hv = {x ∈ Rn : ⟨v, x− x∗⟩ = 0}.

Therefore for each positive sequence {ti} decreasing to 0, x∗ + tiv lies in the open set
{x ∈ Rn : ⟨v, x− x∗⟩ > 0}. Hence

dC∗∩C∗(x
∗ + tiv) = dC∗(x∗ + tiv) ≥ dHv (x

∗ + tiv) = ti∥v∥.

From (4.3) we have

(g +G)(x∗ + tiv)− (g +G)(x∗) ≥ αdC∗∩C∗(x
∗ + tiv) ≥ αti∥v∥.
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Since (g +G)(x) is Gâteaux differentiable on C∗, by Proposition 2.7,

⟨2F (x∗), v⟩ = lim
i→∞

(g +G)(x∗ + tiv)− (g +G)(x∗)

ti
≥ α∥v∥.

Therefore for each u ∈ B we have⟨
1

2
αu− F (x∗), v

⟩
=

1

2
α⟨u, v⟩ − ⟨F (x∗), v⟩ ≤ α

2
∥v∥ − α

2
∥v∥ = 0,

from which we obtain that δB − F (x∗) ⊆ TC∗(x∗). This implies that (4.4) holds since F is
constant on C∗. The proof is complete.

In Theorem 4.6, we present the equivalence of three sufficient conditions for the weak
sharpness of C∗. We note that the equivalence (i) ⇔ (ii) in this theorem has been proved by
Wu and Wu in [15] in terms of some restrictions of the relevant mapping F and the Gâteaux
differentiability of G. By considering the Gâteaux differentiability of g+G instead, we state
that (i)− (iii) are equivalent under the assumption that g(x) ≥ G(x) for all x ∈ Rn. Then
we conclude this paper by a finite convergence theorem for solving VIP under the condition
that either C∗ is weakly sharp or g +G has an error bound on C.

Theorem 4.7. Let {xk} be a sequence in C such that dC∗(xk) converges to 0 and let F be
constant on C∗ and uniformly continuous in an open set containing {xk} and C∗. Suppose
that g(x) ≥ G(x) for all x ∈ Rn and that g+G is Gâteaux differentiable and locally Lipschitz
on C∗. If

(i) C∗ is weakly sharp, or

(ii) there exists α > 0 such that αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C,

then argmin{⟨F (xk), x⟩ : x ∈ C} ⊆ C∗ for sufficiently large k.

Proof. Let (i) hold. Then there exists α > 0 such that

−F (x∗) + αB ⊆
∩

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]
◦ for each x∗ ∈ C∗

since F is constant on C∗. Under the given conditions, we have C∗ = C∗ and since C∗ is
closed and convex, for each xk there exists a unique x∗

k ∈ C∗ such that dC∗(xk) = ∥xk−x∗
k∥.

Therefore the uniformly continuity of F in an open set containing {xk} and C∗ implies that

∥F (xk)− F (x∗)∥ = ∥F (xk)− F (x∗
k)∥ < α for sufficiently large k.

Thus −F (x∗) + F (x∗)− F (xk) ⊆ int
∩

x∈C∗ [TC(x) ∩NC∗(x)]◦, that is,

−F (xk) ∈ int
∩

x∈C∗

[TC(x) ∩NC∗(x)]◦.

By [15, Theorem 3.2], argmin{⟨F (xk), x⟩ : x ∈ C} ⊆ C∗ for sufficiently large k.
Now suppose that (ii) holds. Then, by Theorem 4.3, the weak sharpness of C∗ can be

proved. Hence we get the desired result.

Remark 4.8. Under the conditions of Theorem 4.7, (i), (ii) or (iii) in Theorem 4.6 implies
that both (i) and (ii) in Theorem 4.7 hold. Hence under the same conditions of Theorem
4.7, (i), (ii) and (iii) in Theorem 4.6 are all sufficient for the finite convergence algorithm
presented in Theorem 4.7.
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5 Conclusion

In this paper, weakly sharp solutions of variational inequalities in terms of primal and dual
gap functions are studied.

We discuss relations between the Gâteaux differentiabilities of g and G on C∗ and C∗,
respectively. We also present the sufficiency for locally Lipschitz property of g + G on C∗

under the assumption that g(x) ≥ G(x), where x is near x∗ ∈ C∗. Under conditions of the
constancy of F on C∗ and Gâteaux differentiability and locally Lipschitz property of g +G
on C∗, if g(x) ≥ G(x) for all x ∈ Rn, then the existence of the error bound of g+G implies
the weak sharpness of C∗. In this case, the error bound of G on C is also sufficient for this
weakly sharp result, as discussed in [15].
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