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set. We also examine robust containment [13] of a convex semialgebraic set in a reverse
convex semialgebraic set in the face of data uncertainty of the SOS-convex polynomials that
define the convex semialgebraic set.

Our study was motivated by the desire to obtain numerically checkable sums of squares
set containment characterizations involving semialgebraic sets, described by SOS-convex
polynomial inequalities [1, 16, 22]. We make use of a hyperplane separation theorem and
exploit algebraic properties of SOS-convexity to derive such sums of squares characteriza-
tions. For recent work on SOS-convex polynomials and convex optimization, see [16, 17].

Our contributions to convex analysis and geometry [9] are outlined below.

(i) In Section 2, using conjugate convex analysis, we present numerically checkable sum
of squares characterizations of containment of a convex semialgebraic set in a reverse
convex semialgebraic set. The significance of these characterizations is that they hold
without any qualifications. In particular, when the semialgebraic sets are described by
convex quadratic functions, we obtain a simple semidefinite characterization for the
containment. Importantly, the sum of squares conditions characterizing the set con-
tainment can be numerically checked via semidefinite programming because whether a
polynomial is a sum of squares of polynomials or not can be verified by solving related
semidefinite programs [22].

(ii) In Section 3, we also extend some of our set containment characterizations to robust
set containment characterizations where a given convex semialgebraic set is affected by
data uncertainty of the SOS-convex polynomials. In this case, we present character-
izations for containment of the robust counterpart [4] of the uncertain semialgebraic
set in a reverse convex semialgebraic set for various classes of commonly used data un-
certainty. Such robust set containment characterizations for uncertain polyhedral sets
were given in [13] and their applications to data classification problems were described
in [19].

2 Semialgebraic Set Containment Characterizations

In this section, we derive set containment characterizations of semialgebraic sets as a con-
sequence of results of the preceding section. It should be noted that set containment char-
acterizations for general (not necessarily semialgebraic) convex sets and reverse-convex sets
are known (see [6, 7, 12, 26, 27]). However, those characterizations are often hard to check
numerically. The sum of squares characterizations of the set containment, presented in this
Section, can be checked by solving semidefinite linear programs.

We begin by fixing notation and preliminaries of convex sets, functions and polynomials.
Throughout this paper, Rn denotes the Euclidean space with dimension n. The inner prod-
uct in Rn is defined by ⟨x, y⟩ := xT y for all x, y ∈ Rn. The nonnegative orthant of Rn is
denoted by Rn

+ and is defined by Rn
+ := {(x1, . . . , xn) ∈ Rn : xi ≧ 0}. We say A is convex

whenever µa1 + (1 − µ)a2 ∈ A for all µ ∈ [0, 1], a1, a2 ∈ A. A function f : Rn → R is said
to be convex if for all µ ∈ [0, 1],

f((1− µ)x+ µy) ≦ (1− µ)f(x) + µf(y)

for all x, y ∈ Rn. The positive semi-definiteness of an n× n matrix B, denoted by B ⪰ 0, is
defined by ⟨x,Bx⟩ ≧ 0, for each x ∈ Rn.
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A semialgebraic subset of Rn is a set, satisfying a Boolean combination of polynomial
equations and inequalities with real coefficients [5]. We say that a real polynomial f is sum
of squares if there exist real polynomials fj , j = 1, . . . , r, such that f =

∑r
j=1 f

2
j . The

set consisting of all sum of squares real polynomials is denoted by Σ2. Moreover, the set
consisting of all sum of squares real polynomials with degree at most d is denoted by Σ2

d.
The following useful result of convex polynomial systems was given in [2] and will play

an important role later in the paper.

Lemma 2.1 ([2]). Let f0, f1, . . . , fm be convex polynomials on Rn. Let C := {x ∈ Rn :
fi(x) ≦ 0, i = 1, . . . ,m}. Suppose that infx∈C f0(x) > −∞. Then, argminx∈C f0(x) ̸= ∅.

We now recall the notion of SOS-convexity for polynomials.

Definition 2.2 (SOS-convexity). A real polynomial f on Rn is SOS-convex whenever, for
all x, y ∈ Rn, and for all λ ∈ [0, 1],

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)

is a sum of squares polynomial in R[x; y]. Equivalently, f is SOS-convex whenever, for all
x, y ∈ Rn,

f(y)− f(x)− ⟨∇f(x), y − x⟩

is a sum of squares polynomial in R[x; y].

The notion was introduced in [1] and further studied recently in [14, 16, 17]. Note
that a SOS-convex polynomial is convex and that convex quadratic and separable convex
polynomials are SOS-convex polynomials. However, the converse is not true. Thus, there
exists a convex polynomial which is not SOS-convex [1]. The degree of a polynomial g is
denoted by degg.

Theorem 2.3 (Containment of a convex set in a reverse convex set). Let fj, j = 1, . . . , p, be
SOS-convex polynomials and let gi, i = 1, . . . ,m, be SOS-convex polynomials. Assume that
K := {x ∈ Rn : gi(x) ≦ 0, i = 1, . . . ,m} ≠ ∅. Let I = {1, 2, . . . ,m} and let J = {1, 2, . . . , p}.
Let d = max{degf1, . . . , degfp, degg1, . . . , deggm}. Then the following statements are equiv-
alent:

(i) {x ∈ Rn : gi(x) ≦ 0, i ∈ I} ⊂ {x ∈ Rn : fj(x) > 0, j ∈ J};

(ii) (∀j ∈ J)(∃(λj , δj) ∈ Rm
+ × R+\{0}) fj +

∑m
i=1 λ

j
igi − δj ∈ Σ2

d.

Proof. [(ii) ⇒ (i)] Suppose that for each j ∈ J , there exist δj > 0, λj
i ≧ 0, i ∈ I, and

σj ∈ Σ2
d such that

fj +
m∑
i=1

λj
igi − δj = σj .

So, if gi(x) ≦ 0, i ∈ I, then for any x ∈ Rn,

fj(x) = −
m∑
i=1

λj
igi(x) + δj + σj(x) > 0.

Thus (i) holds.
[(i) ⇒ (ii)] Assume that (i) holds. Let j ∈ J be fixed. Then infx∈K fj(x) ≧ 0. Thus
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by Lemma 2.1, there exists x∗ ∈ K such that fj(x
∗) = infx∈K fj(x). Let βj = fj(x

∗) =
infx∈K fj(x). Then it follows from (i) that βj > 0. Consider the following set

Cj = {(yj , z) ∈ R× Rm | ∃x ∈ Rm s.t. fj(x) ≦ yj , gi(x) ≦ zi, i = 1, . . . ,m}.

Then we can check that Cj is a closed and convex subset of Rm+1. Since βj = infx∈K fj(x) >

0, 0 ̸= (β
j

2 , 0, . . . , 0) /∈ Cj . By the strong separation theorem [28, Theorem 1.1.3], there exist
(µj , v1, . . . , vm) ̸= 0, α ∈ R, δ0 > 0 such that for all (yj , z) ∈ Cj , j = 1, . . . , p,⟨(βj

2
, 0, . . . , 0

)
, (µj , v1, . . . , vm)

⟩
≦ α < α+ δ0 ≦ ⟨(yj , z1, . . . , zm), (µj , v1, . . . , vm)⟩.

Since Cj + Rm+1 ⊂ Cj , then µj ≧ 0, j = 1, . . . , p, vi ≧ 0, i = 1, . . . ,m and

βj

2
µj ≦ α < α+ δ0 ≦ µjyj +

m∑
i=1

vizi. (2.1)

Since K ̸= ∅, there exists x̂ ∈ Rn such that gi(x̂) ≦ 0, i ∈ I, and so, if µj = 0, it follows from

(2.1) that 0 ≦ α < 0. This is a contradiction. So, µj > 0, j ∈ J . Let λj
i = vi

µj
, i ∈ I. Since

(fj(x), g1(x), . . . , gm(x)) ∈ Cj , for any x ∈ Rn, from (2.1), f(x) +
∑m

i=1 λigi(x) − βj

2 > 0.

Since fj +
∑m

i=1 λ
j
igi −

βj

2 is bounded bellow and SOS-convex, it follows from Lemma 2.1
that there exists x̄ ∈ Rn such that

fj(x̄) +

m∑
i=1

λj
igi(x̄)−

βj

2
= inf

x∈Rn

{
fj(x) +

m∑
i=1

λj
igi(x)−

βj

2

}
.

Let hj(x) = fj(x) +
∑m

i=1 λ
j
igi(x)− (f(x̄) +

∑m
i=1 λ

j
igi(x̄)), j ∈ J . Thus hj is a SOS-convex

polynomial, hj(x̄) = 0 and ∇hj(x̄) = 0. It then follows by the definition of SOS-convexity
that hj is a sum of squares polynomial. For each x ∈ Rn,

fj(x) +
m∑
i=1

λj
igi(x)−

βj

2
= hj(x) + fj(x̄) +

m∑
i=1

λj
igi(x̄)−

βj

2
.

Let δj = βj

2 and σj(x) = hj(x) + fj(x̄) +
∑m

i=1 λ
j
igi(x̄) − δj . Then for each x ∈ Rn,

fj(x) +
∑m

i=1 λ
j
igi(x) − δj = σj(x). Since hj is a sum of squares polynomial and fj(x̄) +∑m

i=1 λ
j
igi(x̄) − δj > 0, σj(x) is a sum of squares polynomial with degree at most d. Thus

(ii) holds.

Now we give an example illustrating Theorem 2.3.

Example 2.4. Consider the following convex semialgebraic sets A := {(x, y) ∈ R2 | x2 +
y2−1 ≦ 0} and B := {(x, y) ∈ R2 | −x−y+2 > 0, x−y+2 > 0, x+y+2 > 0,−x+y+2 > 0}.
Clearly, we see from the diagram below that A ⊂ B. On the other hand, the following sum
of squares conditions also hold.

−x− y + 2 + 1 · (x2 + y2 − 1)− 1
2 = (x− 1

2 )
2 + (y − 1

2 )
2 ∈ Σ2

2,
x− y + 2 + 1 · (x2 + y2 − 1)− 1

2 = (x+ 1
2 )

2 + (y − 1
2 )

2 ∈ Σ2
2,

x+ y + 2 + 1 · (x2 + y2 − 1)− 1
2 = (x+ 1

2 )
2 + (y + 1

2 )
2 ∈ Σ2

2,
−x+ y + 2 + 1 · (x2 + y2 − 1)− 1

2 = (x− 1
2 )

2 + (y + 1
2 )

2 ∈ Σ2
2.

Hence, Theorem 2.3 is verified.
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Figure 2.1: Containment of the convex semialgebraic set A in another convex semialgebraic set B.

Using Theorem 2.3, we can obtain the following generalized Farkas’ lemma which holds
without any qualifications.

Theorem 2.5 (Containment of a convex set in a closed reverse convex set I). Let fj,
j = 1, . . . , p, be SOS-convex polynomials and let gi, i = 1, . . . ,m, be SOS-convex polynomials.
Assume that K := {x ∈ Rn : gi(x) ≦ 0, i = 1, . . . ,m} ̸= ∅. Let I = {1, 2, . . . ,m} and
let J = {1, 2, . . . , p}. Let d = max{degf1, . . . , degfp, degg1, . . . ,deggm}. Then following
statements are equivalent:

(i) {x ∈ Rn : gi(x) ≦ 0, i ∈ I} ⊂ {x ∈ Rn : fj(x) ≧ 0, j ∈ J};

(ii) (∀j ∈ J)(∀ϵj ∈ R+\{0})(∃λj ∈ Rm
+ ) fj +

∑m
i=1 λ

j
igi + ϵj ∈ Σ2

d.

Proof. [(ii) ⇒ (i)] Suppose that for each j ∈ J , for any ϵj > 0, there exist λj
i ≧ 0, i ∈ I

such that

fj +
m∑
i=1

λj
igi + ϵj ∈ Σ2

d.

So, if gi(x) ≦ 0, i ∈ I, then for any x ∈ Rn and for any ϵj > 0,

0 ≦ fj(x) +
m∑
i=1

λj
igi(x) + ϵj ≦ fj(x) + ϵj .

Letting ϵj → 0, then we have fj(x) ≧ 0. Thus (i) holds.
[(i) ⇒ (ii)] Assume that (i) holds. Then for each j ∈ J and for any ϵj > 0,

{x ∈ Rn : gi(x) ≦ 0, i ∈ I} ⊂ {x ∈ Rn : fj(x) + ϵj > 0, j ∈ J}.



34 V. JEYAKUMAR, G.M. LEE AND J.H. LEE

By Theorem 2.3, for each j ∈ J and for any ϵj > 0, there exist δj > 0, λj
i ≧ 0 and σj ∈ Σ2

d

such that fj + ϵj +
∑m

i=1 λ
j
igi − δj = σj . Since σj ∈ Σ2

d and δj = (
√

δj)
2,

fj +

m∑
i=1

λj
igi + ϵj ∈ Σ2

d.

So, (ii) holds.

Now we consider the quadratic case of Theorem 2.3, where the characterization is given
in terms of linear matrix inequalities:

Corollary 2.6 (Containment of intersection of ellipsoids). Let A1, . . . , Am be symmetric and
positive semidefinite n×n matrices, a1, . . . , am ∈ Rn and α1, . . . , αm ∈ R. Let B1, . . . , Bp be
symmetric and positive semidefinite n×n matrices, b1, . . . , bp ∈ Rn and β1, . . . , βp ∈ R. Let
I = {1, 2, . . . ,m} and let J = {1, 2, . . . , p}. Assume that K := {x : 1

2 ⟨x,Aix⟩+ ⟨ai, x⟩+αi ≦
0, i = 1, . . . ,m} ̸= ∅. Then the following statements are equivalent:
(i) {x ∈ Rn : 1

2
⟨x,Aix⟩+ ⟨ai, x⟩+ αi ≦ 0, i ∈ I} ⊂ {x ∈ Rn : 1

2
⟨x,Bjx⟩+ ⟨bj , x⟩+ βj > 0, j ∈ J};

(ii) (∀j ∈ J)(∃(λj , δj) ∈ Rm
+ × R+\{0})

(
Bj +

∑m
i=1 λ

j
iAi bj +

∑m
i=1 λ

j
iai

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)
⪰ 0.

Proof. [(ii) ⇒ (i)] Suppose that (ii) holds. Let j ∈ J. Then there exist λj
i ≧ 0 and δj ≧ 0

such that (
Bj +

∑m
i=1 λ

j
iAi bj +

∑m
i=1 λ

j
iai

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)
⪰ 0.

Then for all (x, θ) ∈ Rn × R,(
x
θ

)T (
Bj +

∑m
i=1 λ

j
iAi bj +

∑m
i=1 λ

j
iai

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)(
x
θ

)
≧ 0.

In particular, for all x ∈ Rn,(
x
1

)T (
Bj +

∑m
i=1 λ

j
iAi bj +

∑m
i=1 λ

j
iai)

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)(
x
1

)
≧ 0.

Expanding this inequality yields

1

2
⟨x,Bjx⟩+ ⟨bj , x⟩+ βj +

m∑
i=1

λj
i

(1
2
⟨x,Aix⟩+ ⟨ai, x⟩+ αi

)
− δj ≧ 0.

If x ∈ K, then we have 1
2 ⟨x,Bjx⟩+ ⟨bj , x⟩+ βj > 0. So, (i) holds.

[(i) ⇒ (ii)] Assume that (i) holds. Let gi(x) =
1
2 ⟨x,Aix⟩ + ⟨ai, x⟩ + αi, i ∈ I, and fj(x) =

1
2 ⟨x,Bjx⟩ + ⟨bj , x⟩ + βj , j ∈ J . Since Ai and Bj are symmetric and positive semidefinite,
gi and fj are convex, and hence by Theorem 5.3 in [1], gi and fj are SOS-convex. Using
Theorem 2.3, we see that (i) is equivalent to the condition that, for each j = 1, . . . , p,

(∃δj > 0, λj
i ≧ 0) fj +

m∑
i=1

λj
igi − δj ∈ Σ2

2.

As fj +
∑m

i=1 λ
j
igi − δj is a quadratic function and fj +

∑m
i=1 λ

j
igi − δj ≧ 0 is equivalent to

the semi-definite inequality(
Bj +

∑m
i=1 λ

j
iAi bj +

∑m
i=1 λ

j
iai

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)
⪰ 0,

and hence the conclusion follows.
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It is worth noting that the sum of squares set containment characterizations, given in
Theorem 2.3 and Corollary 2.6, can be verified numerically because whether a polynomial
is a sum of squares of polynomials or not can be verified by solving related semidefinite
programs [22].

Under Slater’s condition, we see that set containment characterization derived in The-
orem 2.5 can be simplified to obtain an easily checkable set containment characterization
result below, where the condition does not have to be checked for every ϵ > 0.

Corollary 2.7 (Containment of a convex set in a reverse convex set under Slater’s condition
II). Let fj, j = 1, . . . , p, be SOS-convex polynomials and let gi, i = 1, . . . ,m, be SOS-convex
polynomials. Assume that there exists x0 ∈ Rn such that gi(x0) < 0, i = 1, . . . ,m. Let d =
max{degf1, . . . , degfp,degg1, . . . , deggm}. Let I = {1, 2, . . . ,m} and let J = {1, 2, . . . , p}.
Then the following statements are equivalent:

(i) {x ∈ Rn : gi(x) ≦ 0, i ∈ I} ⊂ {x ∈ Rn : fj(x) ≧ 0, j ∈ J};

(ii) (∀j ∈ J) (∃λj ∈ Rm
+ ) fj +

∑m
i=1 λ

j
igi ∈ Σ2

d.

Proof. [(i) ⇒ (ii)] Assume that (i) holds. Let j ∈ J. Then letting f = fj , it follows from

Theorem 2.5 that there exist λj,n
i ≧ 0, i ∈ I such that

fj +
m∑
i=1

λj,n
i gi +

1

n
∈ Σ2

d. (2.2)

If the sequence {λj,n
i } is bounded for each i ∈ {1, . . . ,m}, then without loss of generality,

the sequence { λj,n
i } converges to λj

i for each i ∈ I, and hence from (2.2) for any x ∈ Rn,

fj(x) +

m∑
i=1

λj
igi(x) ≧ 0.

If the sequence {λj,n
i } is not bounded for some i0 ∈ I, then we may assume that

limn→∞{λj,n
i0

} = +∞, and hence, by (2.2) and the assumption, we get that

0 ≦ fj(x0) +
m∑
i=1

λj,n
i gi(x0) +

1

n
≦ fj(x0) + λj

i0
gi(x0) +

1

n
→ −∞ as n → ∞,

which is a contradiction. Hence, we may assume that for each j ∈ J , there exist λj
i ≧ 0,

i ∈ I such that fj(x) +
∑m

i=1 λ
j
igi(x) ≧ 0 for any x ∈ Rn. Since fj +

∑m
i=1 λ

j
igi is convex, it

follows from Lemma 2.1, that there exist xj ∈ Rn, j ∈ J such that

fj(x) +
m∑
i=1

λj
igi(x) ≧ fj(x

j) +
m∑
i=1

λj
igi(x

j) for any x ∈ Rn.

Let hj(x) = fj(x) +
∑m

i=1 λ
j
igi(x)− fj(x

j)−
∑m

i=1 λ
j
igi(x

j). Then hj is SOS-convex. Since
hj(x

j) = 0 and ∇hj(x
j) = 0, by the definition of SOS-convexity, hj is a sum of squares

polynomial. Since fj(x
j)+

∑m
i=1 λ

j
igi(x

j) ≧ 0, fj+
∑m

i=1 λ
j
igi is a sum of squares polynomial.

This completes the proof as [(ii) ⇒ (i)] follows easily.

As a consequence of Theorem 2.5, we also obtain a set containment characterization
involving max SOS-convex functions, extending the recent non-negativity characterization
for max SOS-convex functions [16].
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Corollary 2.8 (Containment and max SOS-convex functions). Let plj, l = 1, . . . , p, j =
1, . . . , kl, be SOS-convex polynomials and let gi, i = 1, . . . ,m, be SOS-convex polynomials.
Assume that K = {x ∈ Rn : gi(x) ≦ 0, i = 1, . . . ,m} ̸= ∅. Let I = {1, 2, . . . ,m} and let
J = {1, 2, . . . , p}. Let d = max{deg p11, . . . ,deg plkl

, deg g1, . . . ,deg gm}. Then the following
statements are equivalent:

(i) {x ∈ Rn : gi(x) ≦ 0, i ∈ I} ⊂ {x ∈ Rn : maxj=1,...,kl
plj(x) ≧ 0, l ∈ J};

(ii) (∀l ∈ J)(∀ϵl > 0), (∃λl
i ≧ 0, µl

j ≧ 0,
∑kl

j=1 µ
l
j = 1, σl ∈ Σ2

d)
∑kl

j=1 µ
l
jp

l
j +

∑m
i=1 λ

l
igi +

ϵl = σl.

Proof. The inclusion in (i) is equivalent to the following statement that, for each l ∈ J ,

gi(x) ≦ 0, i ∈ I, plj(x) ≦ t, j = 1, . . . , kl ⇒ t ≧ 0.

So, by Theorem 2.5, (i) is equivalent to the condition that

∀ϵl > 0, (∃λl
i, µl

j ≧ 0, σl ∈ Σ2
d)
(
1−

kl∑
j=1

µl
j

)
t+

m∑
i=1

λl
igi(x) +

kl∑
j=1

µl
jp

l
j(x) + ϵl = σl(x, t)

for any (x, t) ∈ Rn+1. Here we can easily check that
∑kl

j=1 µ
l
j = 1. Thus letting t = 1, we

see that (i) is equivalent to (ii)

We note that Corollary 2.8 collapses to Theorem 2.2 of [16] whenever J = {1}.

3 Robust Set Containment Characterizations

In this section, we consider a robust set containment, where the robust counterpart of an
uncertain convex semialgebraic set is contained in another reverse convex semialgebraic set.

Consider the semialgebraic set

K := {x ∈ Rn : gi(x) ≦ 0, i = 1, . . . ,m}.

The set K in the face of data uncertainty in the functions gi, i = 1, 2, . . . ,m, can be captured
by the following parameterized set

K ′ := {x ∈ Rn : gi(x, vi) ≦ 0, i = 1, . . . ,m},

where v′is are uncertain parameters (or coefficients) and they belong to the specified convex
and compact uncertainty sets Vi ⊂ Rq and gi : Rn × Rqi → R, i = 1, . . . ,m. The robust
counterpart of K is given by

K̄ := {x ∈ Rn : gi(x, vi) ≦ 0, ∀vi ∈ Vi, i = 1, . . . ,m},

where the constraints are enforced for all possible uncertainties within Vi, for i = 1, 2, . . . ,m.
We establish characterizations for K̄ to be contained in another reverse convex semialgebraic
set. An example of a robust set containment is depicted in Figure 3.1 below. Related results
for polyhedral set containment can be found in [13].

Theorem 3.1 (Robust convex set containment). Let fj : Rn → R, j = 1, . . . , p, be SOS-
convex polynomials and let gi : Rn × Rqi → R, i = 1, . . . ,m, be functions such that for each
vi ∈ Rqi , gi(·, vi) is a SOS-convex polynomial and for each x ∈ Rn, gi(x, ·) is a concave
function. Let Vi ⊂ Rqi , i = 1, . . . ,m be compact and convex. Assume that K̄ := {x ∈ Rn :
gi(x, vi) ≦ 0, ∀vi ∈ Vi, i = 1, . . . ,m} ̸= ∅. Let I = {1, 2, . . . ,m} and let J = {1, 2, . . . , p}.
Then the following statements are equivalent:
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Figure 3.1: Given an uncertain convex semialgebraic set K = {x : ⟨ai, x⟩ ≤ bi, i = 1, . . . ,m}, its robust
counterpart K̄ = {x : ⟨ai, x⟩ ≤ bi, ∀ai ∈ Vi, i = 1, . . . ,m} ⊂ B = {x | ⟨cj , x⟩ > 0, j ∈ J}. In robust
counterpart K̄, the constraints of K are enforced for every possible value of ai within the prescribed set Vi.

(i) {x ∈ Rn : gi(x, vi) ≦ 0, ∀vi ∈ Vi, i ∈ I} ⊂ {x ∈ Rn : fj(x) > 0, j ∈ J};

(ii) (∀j ∈ J) (∃λj
i ≧ 0, vji ∈ Vi δj > 0, σj ∈ Σ2) fj +

∑m
i=1 λ

j
igi(·, v

j
i )− δj = σj.

Proof. [(ii) ⇒ (i)] Suppose that (ii) holds. Let j ∈ J . Then by (ii), there exist λj
i ≧ 0, vji ∈

Vi, δj > 0, σj ∈ Σ2 such that

fj(x) +
m∑
i=1

λj
igi(x, v

j
i )− δj = σj .

Hence, for any x ∈ K̄ and each j ∈ J , fj(x) > 0. Thus (i) holds.
[(i) ⇒ (ii)] Assume that (i) holds. Let j ∈ J. By (i), we have

gi(x, vi) ≦ 0, ∀vi ∈ Vi, i ∈ I ⇒ fj(x) > 0, j ∈ J. (3.1)

Since fj is SOS-convex and it follows from (3.1) that infx∈K̄ fj(x) ≧ 0, by Lemma 2.1, there
exists x∗ ∈ K̄ such that fj(x

∗) = infx∈K̄ fj(x). Let βj = fj(x
∗). Then it follows from (3.1)

that βj > 0. Let g̃i(x) = maxvi∈Vi gi(x, vi), i ∈ I. Consider the following set

Cj = {(yj , z) ∈ R× Rm | ∃x ∈ Rn s.t. fj(x) ≦ yj , g̃i(x) ≦ zi, i ∈ I}.

Using the same line of arguments as in the proof of Theorem 2.3, we can prove that there
exist λj

i ≧ 0, i ∈ I such that

fj(x) +

m∑
i=1

λj
i g̃i(x)−

βj

2
> 0.
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So, we have

βj

2
≦ inf

x∈Rn

{
fj(x) +

m∑
i=1

λj
i g̃i(x)

}
= inf

x∈Rn

{
fj(x) +

m∑
i=1

λj
i max
vi∈Vi

gi(x, vi)
}

= inf
x∈Rn

max
vi∈Vi

{
fj(x) +

m∑
i=1

λj
igi(x, vi)

}
.

By min-max theorem ([25, Corollary 37.3.2]),
βj

2 ≦maxvi∈Vi infx∈Rn{fj(x)+
∑m

i=1 λ
j
igi(x, vi)}.

Hence there exist vji ∈ Vi, i ∈ I such that infx∈Rn{fj(x) +
∑m

i=1 λ
j
igi(x, v

j
i )} ≧ βj

2 . So,

fj(x) +
∑m

i=1 λ
j
igi(x, v

j
i ) ≧

βj

2 for any x ∈ Rn. Since fj(x) +
∑m

i=1 λ
j
igi(·, v

j
i ) is a bounded

below SOS-convex polynomial, it follows from Lemma 2.1 that x̄ ∈ Rn such that for any
x ∈ Rn,

fj(x̄) +
m∑
i=1

λj
igi(x̄, v

j
i ) ≦ fj(x) +

m∑
i=1

λj
igi(x, v

j
i ).

Let Ψj(x) = fj(x) +
∑m

i=1 λ
j
igi(x, v

j
i ) − (f(x̄) +

∑m
i=1 λ

j
igi(x̄, v

j
i )). Then Ψj is a SOS-

convex polynomial, that is, fj(x) +
∑m

i=1 λ
j
igi(x, v

j
i )− (f(x̄) +

∑m
i=1 λ

j
igi(x̄, v

j
i )) ∈ Σ2. Let

δj = fj(x̄) +
∑m

i=1 λ
j
igi(x̄, v

j
i ). Then δj ≧ βj

2 > 0. Hence fj +
∑m

i=1 λ
j
igi(·, v

j
i ) − δj ∈ Σ2.

So, (ii) holds.

Remark 3.2. It is worth noting that in Theorem 3.1, the degree of SOS-convex polynomial
gi(·, vi) may be different when vi ∈ Vi is changing.

In passing note that if the uncertainty sets in Theorem 3.1 are singleton, i.e. Vi = {vi},
then Theorem 3.1 collapses to Theorem 2.3 of the previous Section.

Now, using the results of the previous section, in the following, we derive robust set
containment characterizations for special classes of commonly used uncertainty sets of robust
optimization [4, 13]. We first obtain a characterization for robust containment of intersection
of ellipsoids in another ellipsoid under spectral norm uncertainty. Recall that the spectral
norm of ∆ ∈ Sn, denoted by ∥∆∥spec, is the square root of the largest eigenvalue of the
matrix ∆T∆.

Corollary 3.3 (Robust containment of ellipsoids under spectral norm uncertainty). Let ai ∈
Rn and αi ∈ R, i = 1, . . . ,m. Let Bj, j = 1 . . . , p, be symmetric and positive semidefinite
n × n matrices, bj ∈ Rn and βj ∈ R, j = 1, . . . , p. Let Vi = {Ai

0 + Mi : Mi ∈ Sn, Mi ⪰
0, ∥Mi∥spec ≦ ρi}, i = 1, . . . ,m, where Ai

0 is symmetric and positive semidefinite n × n
matrices and ρi > 0, i = 1, . . . ,m. Assume that K̄ := {x : 1

2 ⟨x,Aix⟩ + ⟨ai, x⟩ + αi ≦
0, ∀Ai ∈ Vi, i = 1, . . . ,m} ̸= ∅. Let I = {1, 2, . . . ,m} and let J = {1, 2, . . . , p}. Then
following statements are equivalent:

(i) {x : 1
2 ⟨x,Aix⟩ + ⟨ai, x⟩ + αi ≦ 0, ∀Ai ∈ Vi, i ∈ I} ⊂ {x : 1

2 ⟨x,Bjx⟩ + ⟨bj , x⟩ + βj >
0, j ∈ J};

(ii) (∀j ∈ J) (∃λj
i ≧ 0, δj > 0, i = 1, 2, . . . ,m)(
Bj +

∑m
i=1 λ

j
i (A

i
0 + ρiIn) bj +

∑m
i=1 λ

j
iai

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)
⪰ 0.
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Proof. Let j ∈ J. Since maxAi∈Vi{ 1
2 ⟨x,Aix⟩ + ⟨ai, x⟩ + αi} = max∥Mi∥spec≦ρi

{ 1
2 ⟨x, (A

i
0 +

Mi)x⟩ + ⟨ai, x⟩ + αi} = 1
2 ⟨x, (A

i
0 + ρiIn)x⟩ + ⟨ai, x⟩ + αi, (i) is equivalent to the condition

that {
x :

1

2
⟨x, (Ai

0 + ρiIn)x⟩+ ⟨ai, x⟩+ αi ≦ 0, i ∈ I
}

⊂
{
x :

1

2
⟨x,Bjx⟩+ ⟨bj , x⟩+ βj > 0, j ∈ J

}
.

So, it follows from Corollary 2.6 that (i) is equivalent to the condition that there exist λj
i ≧ 0

and δj > 0 such that(
Bj +

∑m
i=1 λ

j
i (A

i
0 + ρiIn) bj +

∑m
i=1 λ

j
iai

(bj +
∑m

i=1 λ
j
iai)

T 2(βj +
∑m

i=1 λ
j
iαi − δj)

)
⪰ 0.

Corollary 3.4 (Robust containment under scenario uncertainty). Let fi(·, vi) be SOS-
convex polynomial for each vi ∈ Vi := {v1i , . . . , v

si
i } and each i ∈ {0, 1, 2, . . . , k}. Let

d = max{deg f0(·, v10), . . . , deg f0(·, v
s0
0 ), . . . , deg fk(·, v1k) , . . . , fk(·, vskk )}. Then the follow-

ing statements are equivalent:

(i) {x ∈ Rn : fi(x, vi) ≦ 0 ∀vi ∈ Vi, i = 1, . . . , k} ⊂ {x ∈ Rn : maxv0∈V0 f0(x, v0) ≧ 0};

(ii) ∀ϵ > 0, (∃λj
i ≧ 0, µl ≧ 0 (

∑s0
l=1 µl = 1), σ ∈ Σ2

d)

s0∑
l=1

µlf0(·, vl0) +
k∑

i=1

si∑
j=1

λj
ifi(·, v

j
i ) + ϵ = σ.

Proof. (i) is equivalent to the inclusion

{x ∈ Rn : fi(x, v
j
i ) ≦ 0, j = 1, . . . , si, i = 1, . . . , k} ⊂ {x ∈ Rn : max

i=1,...,s0
f0(x, v

i
0) ≧ 0}.

Then by Corollary 2.8, (i) is equivalent to (ii).

Corollary 3.5 (Robust containment under polytopic uncertainty). Let fi(·, vi), i ∈
{0, 1, . . . , k} be SOS-convex polynomial for each vi ∈ Vi := co{v1i , . . . , v

si
i } and let fi(x, ·), i ∈

{0, 1, . . . , k} be affine for each x ∈ Rn. Let d = max{deg f0(·, v10), . . . ,
deg f0(·, vs00 ), . . . , deg fk(·, v1k) , . . . , fk(·, vskk )}. Then the following statements are equiva-
lent:

(i) {x ∈ Rn : fi(x, vi) ≦ 0 ∀vi ∈ Vi, i = 1, . . . , k} ⊂ {x ∈ Rn : maxv0∈V0 f0(x, v0) ≧ 0};

(ii) ∀ϵ > 0, (∃λj
i ≧ 0, µl ≧ 0 (

∑s0
l=1 µl = 1), σ ∈ Σ2

d)

s0∑
l=1

µlf0(·, vlo) +
k∑

i=1

si∑
j=1

λj
ifi(·, v

j
i ) + ϵ = σ.

Proof. Since fi(x, ·), i = 1, . . . , k are affine, fi(x, vi) ≦ 0 ∀vi ∈ Vi if and only if fi(x, v
j
i ) ≦ 0,

vji ∈ Vi, i = 1, . . . , k, j = 1, . . . , si. Moreover, maxv0∈V0 f0(x, v0) = maxj=1,...,s0 f0(x, v
j
0).

So, by Corollary 2.8, (i) is equivalent to (ii).
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Finally, as an application of Theorem 3.1 we derive a zero duality gap result for a
SOS-convex program in the face of parameter uncertainty, where the dual problem can be
represented by a semidfinite program which can be easily solved by interior-point methods.
Related strong duality results for robust convex programs are given in [15] and for a general
robust minimax convex program under a constraint qualification are provided in [17].

Corollary 3.6 (Zero duality gap). Let f : Rn → R be a SOS-convex polynomial and let
gi : Rn × Rqi → R, i = 1, . . . ,m, be functions such that for each vi ∈ Rqi , gi(·, vi) is a
SOS-convex polynomial and for each x ∈ Rn, gi(x, ·) is a concave function. Let Vi ⊂ Rqi ,
i = 1, . . . ,m, be compact and convex. Assume that K̄ := {x ∈ Rn : gi(x, vi) ≦ 0, ∀vi ∈
Vi, i = 1, . . . ,m} ̸= ∅. Let I = {1, . . . ,m}. Then

inf
x∈Rn

{f(x) | gi(x, vi) ≦ 0, ∀vi ∈ Vi, i ∈ I} = sup
µ∈R,λi≧0

vi∈Vi

{
µ | f +

m∑
i=1

λigi(·, vi)− µ ∈ Σ2
}
.

Proof. Let α = infx∈Rn{f(x) | gi(x, vi) ≦ 0, ∀vi ∈ Vi, i ∈ I}. Then α = −∞ or α ∈ R. If
α = −∞, then the conclusion always holds. So, we assume that α ∈ R. Let ϵ > 0. Then

{x ∈ Rn | gi(x, vi) ≦ 0, ∀vi ∈ Vi, i ∈ I} ⊂ {x ∈ Rn | f(x) > α− ϵ}.

By Theorem 3.1, there exist δ > 0, λi ≧ 0, vi ∈ Vi, i ∈ I and σ ∈ Σ2 such that

f +
m∑
i=1

λigi(·, vi)− δ − α+ ϵ = σ.

Since δ > 0, f+
∑m

i=1 λigi(·, vi)−α+ϵ ∈ Σ2. Thus supµ∈R,λi≧0,vi∈Vi
{µ | f+

∑m
i=1 λigi(·, vi)−

µ ∈ Σ2} ≧ α−ϵ. Since ϵ is arbitrary, supµ∈R,λi≧0,vi∈Vi
{µ | f+

∑m
i=1 λigi(·, vi)−µ ∈ Σ2} ≧ α.

On the other hand, if f +
∑m

i=1 λigi(·, vi) − β ∈ Σ2, then we have for any x ∈ Rn,
f(x) +

∑m
i=1 λigi(x, vi) − β ≧ 0, that is, f(x) +

∑m
i=1 λigi(x, vi) ≧ β. If gi(x, vi) ≦ 0,

∀vi ∈ Vi, i = 1, . . . ,m, then we have f(x) ≧ f(x) +
∑m

i=1 λigi(x, vi) ≧ β. Hence β ≦ α. So,
supµ∈R,λi≧0,vi∈Vi

{µ | f+
∑m

i=1 λigi(·, vi)−µ ∈ Σ2} ≦ α. Hence α = supµ∈R,λi≧0,vi∈Vi
{µ | f+∑m

i=1 λigi(·, vi)− µ ∈ Σ2}.
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[16] V. Jeyakumar and J. Vicente-Pérez, Dual semidefinite programs without duality gaps
for a class of convex minmax programs, J. Optim. Theory Appl. 162 (2014) 735–753.

[17] V. Jeyakumar, G. Li and J. Vicente-Perez, Robust SOS-convex polynomial programs:
Exact SDP relaxation, Optim. Lett. 9 (2015), 1–18.

[18] V. Jeyakumar, J. Ormerod and R. S. Womersley, Knowledge-based semidefinite linear
programming classifiers, Optim. Methods Softw. 21 (2006) 471–481.

[19] V. Jeyakumar, G. Li and S. Suthaharan, Robust support vector machine classifiers with
uncertain knowledge sets via robust optimization, Optimization 63 (2014) 1099–1116.

[20] K. Kellner, T. Theobald and C. Trabandt, Containments problems for polytope and
spectrahedra, SIAM J. Optim. 23 (2013) 1000–1020.

[21] K. Kellner, T. Theobald and C. Trabandt, A semidefinite hierarchy for containment of
spectrahedra, SIAM J. Optim. 25 (2015) 1013–1033.

[22] J.B. Lasserre, Moments, Positive Polynomials and Their Applications, Imperial College
Press, London, 2009.

[23] O.L. Mangasarian, Set containment characterization, J. Global Optim. 24 (2002) 473–
480.

[24] O.L. Mangasarian, Mathematical programming in data mining, Data Min. Knowl. Dis-
cov. 1 (1997) 183–201.

[25] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.



42 V. JEYAKUMAR, G.M. LEE AND J.H. LEE

[26] S. Suzuki, Set containment characterization with strict and weak quasiconvex inequal-
ities, J. Global Optim. 47 (2010) 273–285.

[27] S. Suzuki and D. Kuroiwa, Set containment characterization for quasiconvex program-
ming, J. Global Optim. 45 (2009) 551–563.

[28] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge,
NJ, 2002.

Manuscript received 7 October 2014
revised 12 December 2014

accepted for publication 15 December 2014

V. Jeyakumar
Department of Applied Mathematics, University of New South Wales
Sydney 2052, Australia
E-mail address: v.jeyakumar@unsw.edu.au

G. M. Lee
Department of Applied Mathematics, Pukyong National University
Busan 48513, Korea
E-mail address: gmlee@pknu.ac.kr

J. H. Lee
Department of Applied Mathematics, Pukyong National University
Busan 48513, Korea
E-mail address: mc7558@naver.com


