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The organization of this paper is as follows. In Section 2, we recall some basic concepts
in set optimization. In Section 3, we show two main results. At first, we show twelve
statements about characterization of cone-convexity and cone-concavity for set-valued map
by compositions. Second, we show general results of [3].

2 Preliminaries

Throughout this paper, let X be a real vector space, Y a real ordered topological vector
space with the vector ordering ≤K induced by a nonempty proper closed convex cone K
(that is, K ̸= Y , K +K = K, and λK ⊂ K for all λ ≥ 0) with int K ̸= ∅ as follow:

x ≤K y if y − x ∈ K for x, y ∈ Y,

and F a set-valued map from X to 2Y \ {∅}.

Definition 2.1. ([7]) Let A be a nonempty subset in Y . Then,

(i) A is said to be K-convex if A+K is convex;

(ii) A is said to be K-closed if A+K is closed;

(iii) A is said to be K-proper if A+K is proper;

(iv) A is said to be K-compact if any cover of A of the form {Uα +K | α ∈ I, Uα is open}
admits a finite cover.

Definition 2.2. ([1]) Let A,B ∈ 2Y \ {∅}. Then, we denote

(i) A ⊂
∩

b∈B(b−K), equivalently B ⊂ ∩a∈A(a+K) by A ≤(1)
K B;

(ii) A ∩ (
∩

b∈B(b−K)) ̸= ∅ by A ≤(2)
K B;

(iii) B ⊂ A+K by A ≤(3)
K B;

(iv) (
∩

a∈A(a+K)) ∩B ̸= ∅ by A ≤(4)
K B;

(v) A ⊂ (B −K) by A ≤(5)
K B;

(vi) A ∩ (B −K) ̸= ∅, equivalently (A+K) ∩B ̸= ∅ by A ≤(6)
K B.

Proposition 2.3. ([3]) For A,B ∈ 2Y \ {∅} and a direction e ∈ int K, the following state-
ments hold:

(i) For each j = 1, . . . , 6,

A ≤(j)
K (te+B) implies A ≤(j)

K (se+B) for any s ≥ t,

(te+B) ≤(j)
K A implies (se+B) ≤(j)

K A for any s ≤ t;

(ii) For each j = 3, 5, 6, ≤(j)
K is reflexive.

Definition 2.4. ([1]) For each j = 1, . . . , 6,

(i) A map F is said to be type (j) K-convex if for each x1, x2 ∈ X and λ ∈ (0, 1),

F (λx1 + (1− λ)x2) ≤(j)
K λF (x1) + (1− λ)F (x2);
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(ii) A map F is said to be type (j) properly quasi K-convex if for each x1, x2 ∈ X and
λ ∈ (0, 1),

F (λx1 + (1− λ)x2) ≤(j)
K F (x1) or F (λx1 + (1− λ)x2) ≤(j)

K F (x2);

(iii) A map F is said to be type (j) naturally quasi K-convex if for each x1, x2 ∈ X and
λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

F (λx1 + (1− λ)x2) ≤(j)
K µF (x1) + (1− µ)F (x2).

Definition 2.5. ([1]) For each j = 1, . . . , 3, a map F is said to be type (j)-lower quasiconvex
if for each x1, x2 ∈ X and λ ∈ (0, 1),

F (λx1 + (1− λ)x2) ≤(j)
K (F (x1) +K) ∩ (F (x2) +K).

Definition 2.6. ([1]) A map F is said to be Ferro type (−1) quasiconvex if for each y ∈ Y ,
F−1(y −K) := {x ∈ X | F (x) ∩ (y −K) ̸= ∅} is convex.

The concepts of cone-concavities are defined as well as cone-convexities.

Definition 2.7. ([4]) For each j = 1, . . . , 6,

(i) A map F is said to be type (j) K-concave if for each x1, x2 ∈ X and λ ∈ (0, 1),

λF (x1) + (1− λ)F (x2) ≤(j)
K F (λx1 + (1− λ)x2);

(ii) A map F is said to be type (j) properly quasi K-concave if for each x1, x2 ∈ X and
λ ∈ (0, 1),

F (x1) ≤(j)
K F (λx1 + (1− λ)x2) or F (x2) ≤(j)

K F (λx1 + (1− λ)x2);

(iii) A map F is said to be type (j) naturally quasi K-concave if for each x1, x2 ∈ X and
λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

µF (x1) + (1− µ)F (x2) ≤(j)
K F (λx1 + (1− λ)x2).

Definition 2.8. For each j = 1, 4, 5, a map F is said to be type (j)-lower quasiconcave if
for each x1, x2 ∈ X and λ ∈ (0, 1),

(F (x1)−K) ∩ (F (x2)−K) ≤(j)
K F (λx1 + (1− λ)x2).

Definition 2.9. A map F is said to be Ferro type (−1) quasiconcave if for each y ∈ Y ,
F−1(y +K) := {x ∈ X | F (x) ∩ (y +K) ̸= ∅} is convex.

Definition 2.10. ([3]) Let A,B ∈ 2Y \ {∅} and a direction e ∈ int K. For each j = 1, . . . , 6,

we define scalarizing functions I
(j)
e,B and S

(j)
e,B from 2Y \ {∅} to R by

I
(j)
e,B(A) := inf {t ∈ R | A ≤(j)

K (te+B)}, S(j)
e,B(A) := sup {t ∈ R | (te+B) ≤(j)

K A}.

These functions are called unified types of scalarizing functions for sets.
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We assume that +∞−∞ = +∞ and α(+∞) = +∞, α(−∞) = −∞ for α > 0. In this
thesis, let ψ be an extended real valued function from 2Y \ {∅} to R. In usual, a convex set
is defined in a vector space and a convex function is defined as a map from a vector space to
the real field or some real vector space. However, the family of sets 2Y or its subset is not a
vector space in the usual sense, but we would defined and treat some similarity of convexity
of a family of sets A ⊂ 2Y \ {∅} and ψ in the same way.

Definition 2.11. Let A ⊂ 2Y \ {∅}. A is said to be convex if for each A1, A2 ∈ A and
λ ∈ (0, 1),

λA1 + (1− λ)A2 ∈ A .

Definition 2.12.

(i) A function ψ is said to be convex if for each A1, A2 ∈ 2Y \ {∅} and λ ∈ (0, 1),

ψ(λA1 + (1− λ)A2) ≤ λψ(A1) + (1− λ)ψ(A2).

(ii) A function ψ is said to be concave if for each A1, A2 ∈ 2Y \ {∅} and λ ∈ (0, 1),

ψ(λA1 + (1− λ)A2) ≥ λψ(A1) + (1− λ)ψ(A2).

Definition 2.13. A function ψ is said to be j-monotone with respect to ≤(j)
K if

A ≤(j)
K B implies ψ(A) ≤ ψ(B).

In the cases of ψ = I
(j)
e,B , S

(j)
e,B , as in [3], the monotonicity of I

(j)
e,B , S

(j)
e,B hold only in the case

of j = 1, . . . , 5. In other words, for C,D ∈ 2Y \ {∅}, C ≤(j)
K D implies I

(j)
e,B(C) ≤ I

(j)
e,B(D)

and S
(j)
e,B(C) ≤ S

(j)
e,B(D).

Finally, we show some convexity and concavity of I
(j)
e,B and S

(j)
e,B in the sense of Definition

2.12.

Proposition 2.14. For B ∈ 2Y \ {∅} and a direction e ∈ int K, the following statements
hold:

(i) For each j = 1, 2, 3, I
(j)
e,B is convex;

(ii) For each j = 4, 5, 6, if B is (−K)-convex, then I
(j)
e,B is convex.

Proof. We prove the case of j = 5 in (ii). Others in this Proposition are proved in a similar

way. Suppose that B is (−K)-convex. Let A1, A2 ∈ 2Y \ {∅}, λ ∈ (0, 1), α1 := I
(5)
e,B(A1), and

α2 := I
(5)
e,B(A2). We need to consider three cases: a) α1 = +∞ or α2 = +∞; b) α1, α2 ∈ R;

c) otherwise. We consider only b) because a) and c) can be proved easily. For any s > 0,

A1 ⊂ (α1 + s)e+B −K, A2 ⊂ (α2 + s)e+B −K.

Since B is (−K)-convex,

λA1 + (1− λ)A2 ⊂ λ{(α1 + s)e+B −K}+ (1− λ){(α2 + s)e+B −K}
⇒ λA1 + (1− λ)A2 ⊂ (λα1 + (1− λ)α2 + s)e+B −K.

Therefore,

I
(5)
e,B(λA1 + (1− λ)A2) ≤ λα1 + (1− λ)α2 + s.
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As s > 0 is arbitrary,

I
(5)
e,B(λA1 + (1− λ)A2) ≤ λα1 + (1− λ)α2.

Proposition 2.15. For B ∈ 2Y \ {∅} and a direction e ∈ int K, the following statements
hold:

(i) For each j = 1, 4, 5, S
(j)
e,B is concave;

(ii) For each j = 2, 3, 6, if B is K-convex, then S
(j)
e,B is concave.

Proof. In similar ways in Proposition 2.14, the statements are proved.

3 Main Results

In this section, we show two results about compositions of set-valued maps and monotone
scalarizing functions.

3.1 Characterization of compositions of set-valued map and unified types of
scalarizing functions

At first, we show four properties of unified scalarizing functions.

Proposition 3.1. ([6]) For B ∈ 2Y \ {∅}, the following statements hold:

(i) If B is K-proper, then I
(3)
e,B(B) = 0;

(ii) If B is (−K)-proper, then I
(5)
e,B(B) = 0.

Proposition 3.2. ([4]) For A,B ∈ 2Y \ {∅} and r ∈ R, the following statements hold:

(i) If A is K-closed, then I
(3)
e,B(A) ≤ r implies A ≤(3)

K re+B;

(ii) If B is (−K)-closed, then I
(5)
e,B(A) ≤ r implies A ≤(5)

K re+B.

Using the same methods of proofs for Proposition 3.1 and 3.2, we can prove similar result

for S
(3)
e,BB and S

(5)
e,BB as follows.

Proposition 3.3. For B ∈ 2Y \ {∅}, the following statements hold:

(i) If B is K-proper, then S
(3)
e,B(B) = 0;

(ii) If B is (−K)-proper, then S
(5)
e,B(B) = 0.

Proposition 3.4. For A,B ∈ 2Y \ {∅} and r ∈ R, the following statements hold:

(i) If B is K-closed, then S
(3)
e,B(A) ≥ r implies re+B ≤(3)

K A;

(ii) If A is (−K)-closed, then S
(5)
e,B(A) ≥ r implies re+B ≤(5)

K A.
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In Proposition 3.2, I
(3)
e,B(A) ≤ r and I

(5)
e,B(A) ≤ r are characterized by ≤(3)

K and ≤(5)
K ,

respectively. The inverse of the relation in Proposition 3.2 are clear by the definition of I
(3)
e,B

and I
(5)
e,B . However, it is unclear for the set-relation between A and re + B in the case of

I
(j)
e,B(A) < r. Such problems are discussed as the following.

Theorem 3.5. For A,B ∈ 2Y \ {∅} and r ∈ R, I(3)e,B(A) < r implies A ≤(3)
intK re + B. The

converse is true if B is K-compact.

Proof. Since I
(3)
e,B(A) < r, there exists ϵ > 0 such that I

(3)
e,B(A) < r − ϵ. Then there exists

r ∈ R such that

I
(3)
e,B(A) < r < r − ϵ and A ≤(3)

K re+B (⇔ re+B ⊂ A+K).

By Proposition 2.3, we obtain (r + s)e+B ⊂ A+K for any s > 0. Therefore,

(r − ϵ+ s)e+B = (r + s)e+B + (r − ϵ− r)e
⊂ A+K + int K
= A+ int K.

We choose s = ϵ, then re+B ⊂ A+ int K, that is, A ≤(3)
intK re+B.

In the case that B is K-compact. We show that A ≤(3)
intK re + B implies I

(3)
e,B(A) < r.

Since A ≤(3)
intK re+B ⇔ re+B ⊂ A+ int K, for any b ∈ B, there exists ab ∈ B such that

re+ b ∈ ab + int K.

As each ab + int K is an open set, there exists ϵb > 0 such that

b ∈ ab − (r − ϵb)e+K.

Let αb ∈ (0, ϵb). Then

b ∈ ab − (r − ϵb + αb)e+ αbe+K ⊂ A− (r − ϵb + αb)e+ int K +K.

Therefore,

B ⊂
∪
b∈B

{A− (r − ϵb + αb)e+ int K +K},

that is, {A − (r − ϵb + αb)e + int K +K | b ∈ B} is a cover of B and each A − (r − ϵb +
αb)e+ int K +K is an open set. Since B is K-compact, there exists {b1, . . . , bn} ⊂ B such
that

B ⊂
n∪

i=1

{A− (r − ϵbi + αbi)e+ int K +K}.

Let j ∈ {1, . . . , n} be the one such that

r − ϵbj + αbj = max{r − ϵbi + αbi | i = 1, . . . , n}.

Therefore, B ⊂ A− (r − ϵbj + αbj )e+ int K +K ⊂ A− (r − ϵbj + αbj )e+K. That is,
B + (r − ϵbj + αbj )e ⊂ A+K. As a result,

I
(3)
e,B(A) ≤ (r − ϵbj + αbj ) < r.
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We have similar statements, which are Theorem 3.6 and Theorem 3.7, as well as Theo-
rem 3.5.

Theorem 3.6. For A,B ∈ 2Y \ {∅} and r ∈ R, the following statements hold:

(i) I
(5)
e,B(A) < r implies A ≤(5)

intK re+B. The converse is true if A is (−K)-compact ;

(ii) S
(3)
e,B(A) > r implies re+B ≤(3)

intK A. The converse is true if A is K-compact ;

(iii) S
(5)
e,B(A) > r implies re+B ≤(5)

intK A. The converse is true if A is (−K)-compact.

Proof. In a similar way in Theorem 3.5, the statements are proved.

Theorem 3.7. For A,B ∈ 2Y \ {∅} and r ∈ R, the following statements hold: For j =
1, 2, 4, 6,

(i) If I
(j)
e,B(A) < r, then A ≤(j)

intK re+B;

(ii) If S
(j)
e,B(A) > r, then re+B ≤(j)

intK A.

Proof. In a similar way in Theorem 3.5, the statements are proved.

In [3, 4, 9], the authors study the inherited properties of convexity and continuity of

I
(j)
e,B ◦ F and S

(j)
e,B ◦ F from those of F . In the below, we show several inverse results, that

is, we drive convexities and concavities of F from those of I
(j)
e,B ◦ F and S

(j)
e,B ◦ F .

Theorem 3.8. For B ∈ 2Y \ {∅}, the following statements hold:

(i) If F is type (3)-lower quasiconvex, then I
(3)
e,B ◦ F is quasiconvex for any B ∈ 2Y \ {∅}.

The converse is true if F is K-closed-valued;

(ii) Let F be K-closed-valued, K-convex-valued, and K-proper-valued. If S
(3)
e,B ◦F is convex

for any K-closed, K-convex, and K-proper set B ∈ 2Y \ {∅}, then F is type (3) K-
convex;

(iii) Let F be K-closed-valued and K-proper-valued. If S
(3)
e,B ◦ F is quasiconvex for any

B ∈ 2Y \ {∅}, then F is type (3) properly quasi K-convex;

(iv) Let F be (−K)-closed-valued and (−K)-proper-valued. If S
(5)
e,B ◦ F is quasiconvex for

any B ∈ 2Y \ {∅}, then F is type (5) properly quasi K-convex;

(v) Let F be (−K)-closed-valued and cone-valued. If I
(5)
e,B ◦ F is quasiconvex for any

B ∈ 2Y \ {∅}, then F is type (5) K-convex;

(vi) Let F be (−K)-closed-valued and cone-valued. If S
(5)
e,B ◦ F is convex for (−K)-closed

cone B ∈ 2Y \ {∅}, then F is type (5) K-convex.

Proof. (i) Assume that F is type (3)-lower quasiconvex. We prove that lev(I
(3)
e,B ◦ F ):=

{x ∈ X | (I(3)e,B ◦ F )(x) ≤ α} is convex for any α ∈ R. Let x1, x2 ∈ lev(I
(3)
e,B ◦ F,≤, α) and

λ ∈ (0, 1). We need to consider two cases: a) (I
(3)
e,B ◦ F )(x1) ∈ R or (I

(3)
e,B ◦ F )(x2) ∈ R; b)

(I
(3)
e,B ◦ F )(x1) = −∞ and (I

(3)
e,B ◦ F )(x2) = −∞. We only consider a) because b) can be
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proved in an analogous argument of a). In the case of a), for i = 1, 2, (I
(3)
e,B ◦F )(xi) < α+ s

for any s > 0. By Theorem 3.5, (α+ s)e+B ⊂ F (xi) + int K ⊂ F (xi) +K. Therefore,

(α+ s)e+B ⊂ (F (x1) +K) ∩ (F (x2) +K).

Since F is type (3)-lower quasiconvex, we have

(α+ s)e+B ⊂ F (λx1 + (1− λ)x2) +K.

That is, I
(3)
e,B(F (λx1 + (1− λ)x2)) ≤ α+ s. As s > 0 is arbitrary,

(I
(3)
e,B ◦ F )(λx1 + (1− λ)x2) ≤ α.

Conversely, We show that if I
(3)
e,B ◦ F is quasiconvex for any B ∈ 2Y \ {∅} and F is

K-closed-valued, then F is type (3)-lower quasiconvex. Since type (3)-lower quasiconvex is
equivalent to Ferro type (−1)-quasiconvex, we prove that F is Ferro type (−1)-quasiconvex.

Let y ∈ Y, x1, x2 ∈ F−1(y −K), λ ∈ (0, 1). For i = 1, 2, y ∈ F (xi) +K, that is, F (xi) ≤(3)
K

{y}. Due to the monotonicity of I
(3)
e,B , I

(3)
e,B(F (xi)) ≤ I

(3)
e,{y}({y}). Since K is proper, {y} is

K-proper. Therefore, by Proposition 3.1, I
(3)
e,{y}({y}) = 0. As a result, I

(3)
e,{y}(F (xi)) ≤ 0.

Since I
(3)
e,{y} ◦ F is quasiconvex,

(I
(3)
e,{y} ◦ F )(λx1 + (1− λ)x2) ≤ 0.

By Proposition 3.2,

F (λx1 + (1− λ)x2) ≤(3)
K {y},

that is, y ∈ F (λx1 + (1− λ)x2) +K.
(ii) Let x1, x2 ∈ X,λ ∈ (0, 1), and B := F (λx1 + (1 − λ)x2). Then B is K-closed,

K-convex, and K-proper set. Therefore,

0 = S
(3)
e,B(B)

= S
(3)
e,B(F (λx1 + (1− λ)x2))

≤ λ(S
(3)
e,B ◦ F )(x1) + (1− λ)(S

(3)
e,B ◦ F )(x2)

≤ S
(3)
e,B(λF (x1) + (1− λ)F (x2))

By Proposition 3.4, F (λx1 + (1− λ)x2) = B ≤(3)
K λF (x1) + (1− λ)F (x2).

(iii) We give the proof by the method of contradiction. We assume that F is not type
(3) properly quasi K-convex. Then, there exist x1, x2 ∈ X and λ ∈ (0, 1) such that

F (λx1 + (1− λ)x2) ̸≤(3)
K F (x1) and F (λx1 + (1− λ)x2) ̸≤(3)

K F (x2).

Let B := F (λx1 +(1− λ)x2). By the contraposition of Proposition 3.4, S
(3)
e,B(F (xi)) < 0 for

i = 1, 2. Since S
(3)
e,B ◦ F is quasiconvex,

0 = S
(3)
e,B(B) = (S

(3)
e,B ◦ F )(F (λx1 + (1− λ)x2)) < 0.

But this is contradiction.
(iv) In a similar way of (iii), this statement is proved.
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(v) Let x1, x2 ∈ X, λ ∈ (0, 1), and B := F (x1)∪F (x2). For i = 1, 2, F (xi) ⊂ 0e+B −K.

By the definition of I
(5)
e,B , I

(5)
e,B(F (xi)) ≤ 0. Since I

(5)
e,B ◦ F is quasiconvex,

(I
(5)
e,B ◦ F )(λx1 + (1− λ)x2)) ≤ 0.

By Proposition 3.2, F (λx1 + (1− λ)x2)) ≤(5)
K B. As F is cone-valued,

B ⊂ λF (x1) + (1− λ)F (x2)−K.

As a result, F (λx1 + (1− λ)x2)) ≤(5)
K λF (x1) + (1− λ)F (x2).

(vi) In a similar way of (v), this statement is proved.

Theorem 3.9. For B ∈ 2Y \ {∅}, the following statements hold:

(i) If F is type (5)-lower quasiconcave, then S
(5)
e,B ◦F is quasiconvex. The converse is true

if F is (−K)-closed-valued and S
(5)
e,{y} ◦ F is quasiconcave for any y ∈ Y ;

(ii) Let F be (−K)-closed-valued and cone-valued. If S
(5)
e,B ◦ F is convex for any (−K)-

closed cone B ∈ 2Y \ {∅}, then F is type (5) K-convex;

(iii) Let F be (−K)-closed-valued and (−K)-proper-valued. If I
(5)
e,B ◦ F is quasiconvex for

any B ∈ 2Y \ {∅}, then F is type (5) properly quasi K-concave;

(iv) Let F be K-closed-valued and K-proper-valued. If I
(3)
e,B ◦ F is quasiconcave for any

B ∈ 2Y \ {∅}, then F is type (3) properly quasi K-concave;

(v) Let F be K-closed-valued and cone-valued. If S
(3)
e,B ◦F is quasiconcave for any K-closed

cone B ∈ 2Y \ {∅}, then F is type (3) K-concave;

(vi) Let F be K-closed-valued and cone-valued. If I
(3)
e,B ◦F is concave for any K-closed cone

B ∈ 2Y \ {∅}, then F is type (3) K-convex.

Proof. By similar ways to the proof of theorem 3.8, the statements are proved.

3.2 Convexity properties for compositions of set-valued map and monotone
scalarizing function

I
(j)
e,B and S

(j)
e,B have convexity and concavity in the sense of Definition 2.12, respectively.

Moreover, they have monotonicity (see [3]). Therefore, we show a certain essentiality of the
results of [3] by investigating convexity properties for compositions of set-valued map and
monotone scalarizing function.

At first, we define quasiconvexity and quasiconcavity of ψ.

Definition 3.10.

(i) A function ψ is said to be quasiconvex if for any α ∈ R, lev(ψ,≤, α) := {A ∈ 2Y \ {∅} |
ψ(A) ≤ α} is convex.

(ii) A function ψ is said to be quasiconcave if for any α ∈ R, lev(ψ,≥, α) := {A ∈ 2Y \ {∅} |
ψ(A) ≥ α} is convex.
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Next, we show convexity and concavity properties for compositions of F and ψ. The
following statements are proved by similar ways, hence we prove only Theorem 3.12 and
Theorem 3.15.

Theorem 3.11. Let ψ be j-monotone with respect to ≤(j)
K and convex. Then the following

statements hold:

(i) If F is type (j) K-convex, then ψ ◦ F is convex;

(ii) If F is type (j) naturally quasi K-convex, then ψ ◦ F is quasiconvex.

Theorem 3.12. Let ψ be j-monotone with respect to ≤(j)
K and quasiconvex. Then the

following statements hold:

(i) If F is type (j) K-convex, then ψ ◦ F is quasiconvex;

(ii) If F is type (j) naturally quasi K-convex, then ψ ◦ F is quasiconvex.

Proof. We prove only (ii) because (i) is proved in a similar way. Suppose that ψ is qua-

siconvex, j-monotone with respect to ≤(j)
K and F is type (j) naturally quasi K-convex.

Let α ∈ R, x1, x2 ∈ lev(ψ ◦ F,≤, α), and λ ∈ (0, 1). Since ψ ◦ F (x1), ψ ◦ F (x2) ≤ α,
F (x1), F (x2) ∈ lev(ψ,≤, α). As F is type (j) naturally quasiK-convex, there exists µ ∈ [0, 1]
such that

F (λx1 + (1− λ)x2) ≤(j)
K µF (x1) + (1− µ)F (x2).

Since ψ is quasicovex, for this µ,

µF (x1) + (1− µ)F (x2) ∈ lev(ψ,≤, α).

As ψ is j-monotone with respect to ≤(j)
K ,

ψ ◦ F (λx1 + (1− λ)x2) ≤ ψ(µF (x1) + (1− µ)F (x2))

≤ α.

Therefore, λx1 + (1− λ)x2 ∈ lev(ψ ◦ F, ≤, α), that is, ψ ◦ F is quasiconvex.

Theorem 3.13. Let ψ be j-monotone with respect to ≤(j)
K and concave. Then the following

statements hold:

(i) If F is type (j) K-concave, then ψ ◦ F is concave;

(ii) If F is type (j) naturally quasi K-concave, then ψ ◦ F is quasiconcave.

Theorem 3.14. Let ψ be j-monotone with respect to ≤(j)
K and quasiconcave. Then the

following statements hold:

(i) If F is type (j) K-concave, then ψ ◦ F is quasiconcave;

(ii) If F is type (j) naturally quasi K-concave, then ψ ◦ F is quasiconcave.

Theorem 3.15. Let ψ be j-monotone with respect to ≤(j)
K . Then the following statements

hold:

(i) If F is type (j) properly quasi K-convex, then ψ ◦ F is quasiconvex;
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(ii) If F is type (j) properly quasi K-concave, then ψ ◦ F is quasiconcave.

Proof. We prove only (i) because (ii) is proved in a similar way. Suppose that ψ is j-

monotone with respect to ≤(j)
K and F is type (j) properly quasi K-convex. Let α ∈ R,

x1, x2 ∈ X, and λ ∈ (0, 1). Since F is type (j) properly quasi K-convex,

F (λx1 + (1− λ)x2) ≤(j)
K F (x1) or F (λx1 + (1− λ)x2) ≤(j)

K F (x2),

and that ψ is j-monotone with respect to ≤(j)
K ,

ψ ◦ F (λx1 + (1− λ)x2) ≤ max{ψ ◦ F (x1), ψ ◦ F (x2)},

that is, ψ ◦ F is quasiconvex.

The results as mentioned above are collected as below. We denote “convex”, “quasi-
convex”, “concave”, and “quasiconvex” by “cv”, “qcv”, “cc”, and “qcc” for short in table,
respectively.

Table 1: Summary about convexity and concavity of a composite function
Assumption Conclusion

ψ F ψ ◦ F
j-monotone cv type (j) K-convex cv

cv type (j) naturally quasi K-convex
qcv type (j) K-convex qcv

type (j) naturally quasi K-convex
cc type (j) K-concave cc
cc type (j) naturally quasi K-concave
qcc type (j) K-concave qcc

type (j) naturally quasi K-concave
j-monotone type (j) properly quasi K-convex qcv

type (j) properly quasi K-concave qcc
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