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Abstract: In this paper, we give some characterization on several types of cone-convexity and cone-concavity
for compositions of a set-valued map and some kind of order-monotone scalarizing function for sets in a vector
space.

Key words: cone-convezity, cone-concavity, order-monotone mapping, scalarization method, set-relations,
set-valued map.

Mathematics Subject Classification: 49J53, 54,C60, 90C29.

Introduction

Scalarization methods are used frequently in multiobjective optimization problems. In gen-
eral, there are two typical types of scalarizing methods, which are linear and nonlinear
ones. The most general nonlinear scalarizing functions for set-valued maps are proposed by
Kuwano, Tanaka, and Yamada in [3]. Such kinds of functions are called unified types scalar-
izing functions for sets. One of important properties of them is monotonisity, which preserve
a preference relationship between decision-space and outcome-space These are many studies
by using them, for example, see [3, 4, 5, 6, 8, 9]. In [3], they study several types of inher-
ited properties on the cone-convexity of parent set-valued map to the compositions of the
set-valued map and unified types of scalarizing functions.

However, the inverse results, which are to drive convexity and concavity of set-valued map
from those of the compositions of set-valued map and unified types scalarizing functions,
have not been studied in detail. In addition, it is unclear that inherited properties on
cone-convexity of parent set-valued map to the compositions of the set-valued map and any
general order monotone function.

The aim of this paper is to show some kind of general cone convexity and concavity related
to several types of compositions of set-valued map and monotone scalarizing function. At
first, we characterize several types of cone-convexity and cone-concavity for set-valued map
by compositions. Secondly, we show some essentiality about inherited properties of convexity
of set-valued map in [3]. In other words, we show some cone-convexity and cone-concavity
for compositions of an ordered monotone scalarizing function and a set-valued map.

*This work is supported by Grant-in-Aid for Scientific Research (C) (JSPS KAKENHI Grant Number
26400194) from Japan Society for the Promotion of Science (JSPS)
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The organization of this paper is as follows. In Section 2, we recall some basic concepts
in set optimization. In Section 3, we show two main results. At first, we show twelve
statements about characterization of cone-convexity and cone-concavity for set-valued map
by compositions. Second, we show general results of [3].

Preliminaries

Throughout this paper, let X be a real vector space, Y a real ordered topological vector
space with the vector ordering <y induced by a nonempty proper closed convex cone K
(that is, K #Y, K + K = K, and AK C K for all A > 0) with int K # () as follow:

r<gyify—zxeKforz,yecy,
and F a set-valued map from X to 2¥ \ {0}.
Definition 2.1. ([7]) Let A be a nonempty subset in Y. Then,
(i) A is said to be K-convez if A+ K is convex;
(ii) A is said to be K-closed if A+ K is closed;
(iii) A is said to be K-proper if A+ K is proper;

)
(iv) A is said to be K-compact if any cover of A of the form {U, + K | « € I, U, is open}
admits a finite cover.

Definition 2.2. ([1]) Let A, B € 2¥ \ {#}. Then, we denote
(i) ACNyep(b—K), equivalently B C Ngea(a + K) by A <\ B;
(i)) AN (Nyep(b—K)) #0by A <Y B;
(i) BC A+ K by A< B;
(iv) (Naeala+K)NB#Dby A< B;
(v) Ac (B—K) by A< B;
(vi) AN(B—K) # 0, equivalently (A+ K)NB # 0 by A< B.

Proposition 2.3. ([3]) For A, B € 2¥ \ {0} and a direction e € int K, the following state-
ments hold:

(i) Foreachj=1,...,6,
A g%) (te + B) implies A Sg) (se + B) for any s > t,
(te+ B) S%) A implies (se + B) gﬁ? A for any s <t
(ii) For each j = 3,5,6, S(Ig) is reflerive.
Definition 2.4. ([1]) For each j =1,...,6,

(i) A map F is said to be type (j) K-convez if for each x1, 22 € X and A € (0,1),

F(Azy + (1= Nag) <9 AF(21) + (1 — N F(x);
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(ii) A map F is said to be type (j) properly quasi K-conver if for each z1,22 € X and
A e (0,1),

F(Azy + (1= Nag) <9 F(ay) or FQay + (1= M) <9 Fan);

(iii) A map F is said to be type (j) naturally quasi K-convez if for each x1,z2 € X and
A € (0,1), there exists u € [0, 1] such that

FOwy + (1= Nz2) <@ pF (1) + (1 — p)F(w2).

Definition 2.5. ([1]) For each j =1,...,3, amap F is said to be type (j)-lower quasiconvex
if for each z1,22 € X and A € (0,1),

F(Axy + (1= Nay) <9 (F(a1) + K) N (F(22) + K).

Definition 2.6. ([1]) A map F is said to be Ferro type (—1) quasiconvez if for each y € Y,
F'(y - K):={z € X | F(x) N (y - K) # 0} is convex.

The concepts of cone-concavities are defined as well as cone-convexities.
Definition 2.7. ([4]) For each j =1,...,6,

(i) A map F is said to be type (j) K-concave if for each 1,22 € X and A € (0,1),
AF(21) + (1= N)F(z2) <9 F(Azy + (1 — Naa);

(ii) A map F is said to be type (j) properly quasi K-concave if for each x1,z2 € X and
A€ (0,1),

F(z1) <9 F(Azy + (1 — Nag) or Fzy) <% F(Azy + (1 = \)ay);

(iii) A map F is said to be type (j) naturally quasi K-concave if for each z1,z2 € X and
A € (0,1), there exists p € [0, 1] such that

pF(1) + (1= p)F(w) <@ POy + (1= Vo).

Definition 2.8. For each j = 1,4,5, a map F' is said to be type (j)-lower quasiconcave if
for each x1,z2 € X and A € (0,1),

(F(z1) — K) N (F(az) — K) <9 F(Azy + (1= A)aa).

Definition 2.9. A map F is said to be Ferro type (—1) quasiconcave if for each y € Y,
F Y y+K):={zxe X |F(z)n(y+ K) # 0} is convex.

Definition 2.10. ([3]) Let A, B € 2¥ \ {0} and a direction e € int K. For each j = 1,...,6,
we define scalarizing functions I é;})g and Séj ,)3 from 2¥ \ {0} to R by

195(A) = inf {t e R| A< (te + B)}, SYL(A) :=sup {t € R | (te + B) <} A}.

These functions are called unified types of scalarizing functions for sets.
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We assume that +00 — 0o = +00 and a(+00) = 400, a(—00) = —oo for a > 0. In this
thesis, let 1) be an extended real valued function from 2¥ \ {#} to R. In usual, a convex set
is defined in a vector space and a convex function is defined as a map from a vector space to
the real field or some real vector space. However, the family of sets 2¥ or its subset is not a
vector space in the usual sense, but we would defined and treat some similarity of convexity
of a family of sets & C 2Y \ {#} and ¢ in the same way.

Definition 2.11. Let & C 2Y \ {0}. < is said to be convez if for each Ay, Ay € &/ and
A€ (0,1),
M+ (1= N4y € .

Definition 2.12.
(i) A function v is said to be convez if for each Ay, Ay € 2¥ \ {#} and X € (0,1),
P(AAL + (1= N)A2) < A(Ar) + (1 = A)Y(Az).
(ii) A function % is said to be concave if for each Ay, Ay € 2¥ \ {0} and X € (0,1),
V(AAL + (1= A)A2) > M(Ar) + (1 — N)P(42).

Definition 2.13. A function % is said to be j-monotone with respect to §%) if
A< B implies ¥(A) < ¢(B).

In the cases of Y = 1571)37 Sgg, as in [3], the monotonicity of Ig])g, Sg])g hold only in the case
of j = 1,...,5. In other words, for C, D € 2¥ \ {0}, C §%) D implies Igj)g(C) < Ié,jg(D)
and S73(C) < SUL(D).

Finally, we show some convexity and concavity of I é] ])3 and S é
2.12.

j,)3 in the sense of Definition

)

Proposition 2.14. For B € 2¥ \ {0} and a direction e € int K, the following statements
hold:

(i) For each j =1,2,3, Iéjj)g 18 conver;

(ii) For each j =4,5,6, if B is (—K)-convez, then Ié,jj)s’ is convex.
Proof. We prove the case of j =5 in (ii). Others in this Proposition are proved in a similar
way. Suppose that B is (—K)-convex. Let Ay, Ay € 2¥ \ {0}, A € (0,1), oy := IS])B(Al), and
= IS;(AQ). We need to consider three cases: a) a; = 400 or ag = +00; b) a1, a0 € R;
c) otherwise. We consider only b) because a) and ¢) can be proved easily. For any s > 0,
A C(an+s)e+B—K, A2 C (a2 + s)e+ B — K.

Since B is (—K)-convex,

Mi+ (1 -=XNA2 Cc M(ar+s)e+ B—K}+ (1—-MN{(ae+s)e+ B— K}
:>)\A1—|—(1—)\)A2C(/\oz1+(1—/\)oz2+s)e+B—K.

Therefore,
Ié%O‘Al +(1=XNA2) <A + (1 = Nag + 5.

)
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As s > 0 is arbitrary,
IO (AL + (1= N Ag) < Aan + (1 = Naa.
O

Proposition 2.15. For B € 2¥ \ {0} and a direction e € int K, the following statements
hold:

(i) For each j =1,4,5, Sgl); is concave;
(ii) For each j =2,3,6, if B is K-convez, then 5571)3 s concave.

Proof. In similar ways in Proposition 2.14, the statements are proved. O

Main Results

In this section, we show two results about compositions of set-valued maps and monotone
scalarizing functions.

Characterization of compositions of set-valued map and unified types of
scalarizing functions

At first, we show four properties of unified scalarizing functions.
Proposition 3.1. ([6]) For B € 2¥' \ {0}, the following statements hold:
(i) If B is K-proper, then ISJ);,(B) =0
(ii) If B is (—K)-proper, then IS%(B) =0.
Proposition 3.2. ([4]) For A, B € 2¥ \ {0} and r € R, the following statements hold:
(i) If A is K-closed, then ISJ)B(A) < r implies A gﬁ? re + B;
(ii) If B is (—K)-closed, then IS%(A) < r implies A §([?) re+ B.

Using the same methods of proofs for Proposition 3.1 and 3.2, we can prove similar result
for SS];B and SS‘)BB as follows.

Proposition 3.3. For B € 2V \ {0}, the following statements hold:
(i) If B is K-proper, then SS%(B) =0;
(ii) If B is (—K)-proper, then 55?1)3(3) =0.

Proposition 3.4. For A, B € 2¥ \ {0} and r € R, the following statements hold:
(i) If B is K-closed, then 55,31)3 (A) > r implies re + B gg) A;

(ii) If A is (—K)-closed, then SS%(A) > r implies re + B S(I?) A.
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In Proposition 3.2, IS’J_Z;(A) < r and Ié%(A) < r are characterized by §§?) and §(I?),
respectively. The inverse of the relation in Proposition 3.2 are clear by the definition of IS’%
and [ é% However, it is unclear for the set-relation between A and re + B in the case of

I é] ))B(A) < r. Such problems are discussed as the following.

Theorem 3.5. For A,B € 2¥ \ {0} and r € R, ISI)B,(A) < r implies A Si(it)K re+ B. The
converse is true if B is K-compact.

3)

Proof. Since IS;(A) < r, there exists € > 0 such that Ie( 5(A) < r — € Then there exists

7 € R such that

)

I8y A) <7<r—cand A< Te+B (&Te+BCA+K).
By Proposition 2.3, we obtain (7 + s)e+ B C A+ K for any s > 0. Therefore,

(r—e+s)e+B (F+s)e+ B+ (r—e—T)e
A+ K +int K

A-+int K.

Nl

We choose s = ¢, then re + B C A+ int K, that is, A <.(3)K re + B.

—int

In the case that B is K-compact. We show that A §.(3)K re + B implies IS')B(A) <.

int

Since A Si(jt)K re+ B & re+ B C A+int K, for any b € B, there exists a; € B such that
re+be€a,+int K.
As each ap + int K is an open set, there exists ¢, > 0 such that
bea,— (r—e)e+ K.
Let oy € (0, €p). Then
beay—(r—e+ap)e+ape+ KCA—(r—e+ap)e+int K + K.

Therefore,

B C U{A—(T—eb+ab)e+intK+K},
beB

that is, {A — (r — e, + ap)e +int K + K | b € B} is a cover of B and each A — (r — ¢, +
ap)e+int K + K is an open set. Since B is K-compact, there exists {b1,...,b,} C B such
that

B C U{A— (r—ep, +ap,)e+int K + K}.
i=1
Let j € {1,...,n} be the one such that
r— e, +ap, =max{r —e, +apy, |i=1,...,n}.

Therefore, B C A—(r—e, +ap,)e+int K+ K C A—(r—e, +ap,)e+ K. That is,
B+ (r—e,; +ap)e C A+ K. As aresult,

I8N A) < (r— e, +ap,) <7
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We have similar statements, which are Theorem 3.6 and Theorem 3.7, as well as Theo-
rem 3.5.

Theorem 3.6. For A, B € 2Y \ {0} and r € R, the following statements hold:

(1) IS])B(A) < r implies A <( i Te+ B. The converse is true if A is (—K)-compact ;

(ii) Sé ) (A) > r implies re + B <1(nt)K A. The converse is true if A is K-compact ;

(iii)

Sésé( A) > r implies re + B <1(§t)K A. The converse is true if A is (—K)-compact.

Proof. In a similar way in Theorem 3.5, the statements are proved. O

Theorem 3.7. For A,B € 2¥ \ {0} and r € R, the following statements hold: For j =
172747 67

(1)
(i)

IfI(J)( A) <r, then A <(]2K re+ B;

m

Ing,)g( ) >, then re+ B <U), A.

Proof. In a similar way in Theorem 3.5, the statements are proved. O

In [3, 4, 9], the authors study the inherited properties of convexity and continuity of

Ié% o F and Sgg o F' from those of F. In the below, we show several inverse results, that

is, we drive convexities and concavities of F' from those of I éj 1)3 o F and Sg])g oF.

Theorem 3.8. For B € 2¥ \ {0}, the following statements hold:

(i)

(i)

(vi)

If F is type (3)-lower quasiconvez, then I( )
The converse is true if F is K- closed—valued

o F' is quasiconvez for any B € 2Y \ {0}.

Let F be K -closed-valued, K -convex-valued, and K -proper-valued. If SS% oF' is convex

for any K-closed, K -conver, and K-proper set B € 2V \ {0}, then F is type (3) K-
convex,

Let F be K-closed-valued and K-proper-valued. If SS’])B o F' is quasiconvex for any
B € 2Y \ {0}, then F is type (3) properly quasi K -conver

Let F be (—K)-closed-valued and (—K)-proper-valued. If SS})B o F' is quasiconvez for
any B € 2Y \ {0}, then F is type (5) properly quasi K -conver,

Let F be (—K)-closed-valued and cone-valued. If ]S)I)B o F' is quasiconver for any
B € 2Y \ {0}, then F is type (5) K-convez;

Let F be (—K)-closed-valued and cone-valued. If Sé% o F is convex for (—K)-closed
cone B € 2¥ \ {0}, then F is type (5) K-convex.

Proof. (i) Assume that F' is type (3)-lower quasiconvex. We prove that lev(IS]é o F):=
{zr e X | (Iigg o F)(z) < a} is convex for any o € R. Let x1,22 € leV(IS,; o F, < ) and
A € (0,1). We need to consider two cases: a) (IS'E); oF)(z1) € R or (I(E‘r% o F)(z2) € R; b)
(IS])B o F)(xz1) = —o0 and (IS)B o F)(x2) = —oo. We only consider a) because b) can be
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proved in an analogous argument of a). In the case of a), for i = 1,2, (1(53])3 oF)(xz;) <a+s

for any s > 0. By Theorem 3.5, (a+ s)e + B C F(z;) +int K C F(x;) + K. Therefore,
(a+s)e+ B C (F(z1) + K) N (F(x2) + K).
Since F is type (3)-lower quasiconvex, we have
(a+s)e+ B C F(Ax;+ (1 —Nag) + K.
That is, ISJ)B(F(/\xl + (1= Nz2)) <a+s. As s > 0 is arbitrary,
(IS% o FY(Ax1 + (1 — N)z2) < o

Conversely, We show that if I 6(3}), o F is quasiconvex for any B € 2Y \ {}} and F is
K-closed-valued, then F is type (3)-lower quasiconvex. Since type (3)-lower quasiconvex is
equivalent to Ferro type (—1)-quasiconvex, we prove that F' is Ferro type (—1)-quasiconvex.
Let y € Y,x1,20 € F~Y(y— K),A € (0,1). Fori =1, 2 y € F(z;) + K, that is, F(z;) <(3)

{y}. Due to the monotonicity of 153])3, Iédj)B(F( i) < I, {y}({y}) Since K is proper, {y} is

K-proper. Therefore, by Proposition 3.1, I {y}({y}) = 0. As a result, I({) }( (x;)) <0.

; (3) . .
Since Ie,{y} o F'is quasiconvex,

(1(3)

By Proposition 3.2,
Fy + (1= Naw) < {y),
that is, y € F(Az1 + (1 — Nag) + K.
(ii) Let z1,22 € X, A € (0,1), and B := F(Ax; + (1 — A)x2). Then B is K-closed,
K-convex, and K-proper set. Therefore,

)
SPL(B)
3 (PO + (1= A)a2)

ASE) 0 F) (1) + (1= \)(SP) 0 F) (w2)

)

0

g
€,
st

A(
523) (AF(21) + (1 — \)F(22)

IAIA

By Proposition 3.4, F(Az1 + (1 — A)zg) = B Sg) AF(21) + (1 = N F(z2).
(iii) We give the proof by the method of contradiction. We assume that F' is not type
(3) properly quasi K-convex. Then, there exist 21,22 € X and X € (0,1) such that

F(zy + (1= Nag) 29 F(z1) and F(Azy + (1 — Nao) 2 F(x,).

Let B := F(Ax1 + (1 — A\)z2). By the contraposition of Proposition 3.4, Ségj)g(F(gci)) < 0 for

)

. . 3 . .
i=1,2. Since Sé 1)3 o F' is quasiconvex,

0=25%(B) = (S®) o F)(F(Ax1 + (1 — N)z2)) < 0.

But this is contradiction.
(iv) In a similar way of (iii), this statement is proved.
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(v) Let 1,29 € X, A € (0,1), and B := F(x1)UF(z2). Fori =1,2, F(x;) C0e+ B — K.
By the definition of IPF’E);, 155; (F(x;)) <0. Since Ié% o F' is quasiconvex,

(1) 0 F)(Az1 + (1= N)z2)) <0

By Proposition 3.2, F(Azy + (1 — A)z2)) gﬁ?’ B. As F' is cone-valued,
B C AF(z1)+ (1 - AN)F(x2) — K.

As a result, F(Az1 + (1 — N)ag)) Sg) AF(21) + (1 = N F(z2).
(vi) In a similar way of (v), this statement is proved. O

Theorem 3.9. For B € 2Y \ {0}, the following statements hold:

(i) If F is type (5)-lower quasiconcave, then Sé% o F' is quasiconvex. The converse is true

if Fis (—K)-closed-valued and Sé‘?y} o F' is quasiconcave for any y € Y;

(ii) Let F be (—K)-closed-valued and cone-valued. If SSE); o F' is convex for any (—K)-
closed cone B € 2Y \ {0}, then F is type (5) K-convex

(iii) Let F be (—K)-closed-valued and (—K)-proper-valued. If Ié% o F' is quasiconvex for
any B € 2V \ {0}, then F is type (5) properly quasi K -concave;

(iv) Let F be K-closed-valued and K -proper-valued. If IS]% o F' is quasiconcave for any
B €2V \ {0}, then F is type (3) properly quasi K -concave;

(v) Let F be K-closed-valued and cone-valued. If SSEOF 1s quasiconcave for any K -closed
cone B € 2¥ \ {0}, then F is type (3) K-concave;

(vi) Let F be K-closed-valued and cone-valued. If 16(?1)3 o F' is concave for any K-closed cone
B € 2Y \ {0}, then F is type (3) K-convez.

Proof. By similar ways to the proof of theorem 3.8, the statements are proved. O

Convexity properties for compositions of set-valued map and monotone
scalarizing function

Iéj é and Séj 1)9 have convexity and concavity in the sense of Definition 2.12, respectively.
Moreover, they have monotonicity (see [3]). Therefore, we show a certain essentiality of the
results of [3] by investigating convexity properties for compositions of set-valued map and
monotone scalarizing function.

At first, we define quasiconvexity and quasiconcavity of ).

Definition 3.10.

(i) A function 1 is said to be quasiconvez if for any a € R, lev(, <, a) := {A € 2¥ \ {0} |
Y(A) < a} is convex.

(ii) A function 1 is said to be quasiconcave if for any a € R, lev(y, >, ) := {A € 2Y \ {0} |
P(A) > a} is convex.
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Next, we show convexity and concavity properties for compositions of F' and . The
following statements are proved by similar ways, hence we prove only Theorem 3.12 and
Theorem 3.15.

Theorem 3.11. Let ¢ be j-monotone with respect to §(I§)
statements hold:

and convex. Then the following

(i) If F is type (j) K-convex, then 1) o F is convex;
(ii) If F is type (j) naturally quasi K-convez, then i o F' is quasiconvez.

Theorem 3.12. Let b be j-monotone with respect to <
following statements hold:

%) and quasiconvex. Then the
(i) If F is type (j) K-convez, then 1 o F' is quasiconvex;
(ii) If F is type (j) naturally quasi K-convez, then i o F' is quasiconvez.

Proof. We prove only (ii) because (i) is proved in a similar way. Suppose that 1 is qua-

siconvex, j-monotone with respect to S%) and F' is type (j) naturally quasi K-convex.

Let @ € R, 21,29 € lev(¢poF,<,a), and A € (0,1). Since @ o F(z1),% o F(z3) < «,
F(x1), F(z2) € lev(y), <,a). As F is type (j) naturally quasi K-convex, there exists p € [0, 1]
such that 4

F(Azy + (1= Nag) <9 uF (1) + (1 — p)F(x).

Since v is quasicovex, for this p,
uF(x1) + (1 — p)F(xe) € lev(y, <, ).
As 1) is j-monotone with respect to S%),

Yo F(Ary+ (1= Nwz) < P(uF(21) + (1 - p)F(x2))
< a.
Therefore, Az; + (1 — A2 € lev(v o F, <, «), that is, ¢ o F' is quasiconvex. O
Theorem 3.13. Let ¥ be j-monotone with respect to S(Ig) and concave. Then the following
statements hold:

(i) If F is type (j) K-concave, then ¢ o F is concave;

(ii) If F is type () naturally quasi K-concave, then 1 o F is quasiconcave.
Theorem 3.14. Let 1 be j-monotone with respect to S%)
following statements hold:

and quasiconcave. Then the

(1) If F is type (j) K-concave, then v o F is quasiconcave;

(ii) If F is type () naturally quasi K-concave, then 1 o F is quasiconcave.
Theorem 3.15. Let v be j-monotone with respect to S(Ig). Then the following statements
hold:

(i) If F is type (j) properly quasi K-convex, then v o F is quasiconve;
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(ii) If F is type (j) properly quasi K-concave, then v o F is quasiconcave.

Proof. We prove only (i) because (ii) is proved in a similar way. Suppose that ¢ is j-

monotone with respect to §([§) and F is type (j) properly quasi K-convex. Let a € R,

x1,22 € X, and A € (0,1). Since F is type (j) properly quasi K-convex,
F(zy + (1= Nag) <9 F(ay) or FOwy + (1= Nap) <P F(ay),
and that v is j-monotone with respect to S(Ig),
Yo F(Azy + (1 — M) < max{t o F(x1),9 o F(x2)},

that is, ¥ o F' is quasiconvex. O

The results as mentioned above are collected as below. We denote “convex”, “quasi-
convex”, “concave”, and “quasiconvex” by “cv”’, “qcv”, “cc”, and “qcc” for short in table,
respectively.

Table 1: Summary about convexity and concavity of a composite function

Assumption Conclusion
P | F Yok
j-monotone cv type (7) K-convex cv
cv type () naturally quasi K-convex
qev | type (j) K-convex qev
type () naturally quasi K-convex
cc type (j) K-concave cc
cc type () naturally quasi K-concave
qcc | type (j) K-concave qce
type (j) naturally quasi K-concave
j-monotone type (j) properly quasi K-convex qcv
type () properly quasi K-concave qce
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