
2016



56 El-SAYED M.E. MOSTAFA, M.A. TAWHID AND E. R. ELWAN

Nonlinear conjugate gradient methods are widely studied and comprise a class of uncon-
strained optimization algorithms which are characterized by low memory requirements and
strong global convergence properties. These methods are descent direction methods which
means that after choosing a starting point K0 ∈ IRp×r these methods generate a sequence
of iterates {Kk} ⊂ IRp×r according to the following relation:

Kk+1 = Kk + αk∆Kk, (1.2)

where the step-size αk > 0 satisfies the line search rule and ∆Kk is a descent direction for
f at Kk.

Most of the CG methods update the directions ∆Kk by the following relation:

∆Kk = −gk + βk∆Kk−1, ∆K1 = −g1, (1.3)

where gk = g(Kk) is the gradient of f at Kk and βk is a parameter that differs from one
CG method to the other.

This article is organized as follows. In the next section, we introduce some basic concepts
and definitions which are needed in the subsequent analysis. In Section 3, we introduce the
output feedback pole assignment problem. In Section 4, we compute the required derivative
of the objective function. In Section 5, we describe a conjugate gradient method in order
to find the local solution of the output feedback pole assignment problem. In section 6, we
establish global convergence results for the conjugate gradient method under appropriate
conditions. In Section 7, we extend the proposed CG methods to tackle the output feedback
PAP for decentralized control systems. In Section 8, we propose the state feedback PAP with
robustness measure in terms of the spectral condition number of the closed-loop eigenvector
matrix. In section 9, we test the proposed methods on various test problems from the
literature and present the numerical results. We end the paper with some concluding remarks
and future research.

Notations: For vectors the symbol ∥ · ∥ is the 2–norm, while for matrices ∥ · ∥ denotes
the Frobenius norm defined by ∥M∥ =

√
⟨M,M⟩, where ⟨·, ·⟩ is the inner product given by

⟨M1,M2⟩ = Tr (M∗
2M1), and Tr (·) is the trace operator. The symbol In denotes the identity

matrix of order n. The eigenvalues of a matrix M ∈ IRn×n are denoted by λi(M), i =
1, . . . , n and Λ(M) := diag(λ1, . . . , λn) is a diagonal matrix with eigenvalues on its main
diagonal. We use κ ∈ IRm to denote the vector obtained by the vec–operator that stretches
the matrix variable K ∈ IRp×r into a long column vector κ ∈ IRm, where m = p · r.
Sometimes and for the sake of simplicity we skip the arguments of the considered functions,
e.g. we use fk to denote f(κk) which also means f(Kk).

2 Basic Concepts and Definitions

A function ϕ : IRm → IRm is is said to be locally Lipschitz continuous at κ ∈ IRm with a
constant L > 0 if and only if there exists a number τ > 0 such that

∥ϕ(κ1)− ϕ(κ2)∥ ≤ L∥κ1 − κ2∥, ∀ κ1, κ2 ∈ Bτ (κ),

where Bτ (κ) is an open ball with center at κ and radius τ .

We regard the p×r matrix space as a space of IRp·r, where the matrix variable K ∈ IRp×r

is stretched into a long column vector κ ∈ IRm and m = p · r. Let ψ : IRm → IRn be a
locally Lipschitz continuous function. Radmacher’s theorem; see e.g. [7], implies that the
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mapping ψ is differentiable almost everywhere. Let Dψ be the set of all κ at which ψ is
differentiable and let ∇ψT be its Jacobian whenever it exists. Moreover, let

∂B ψ(κ) =

{
M ∈ IRn×m : M = lim

κk→κ
∇ψ(κk)T , κk ∈ Dψ

}
.

Clarke’s subgradient of ψ at κ, denoted by ∂ψ(κ), is the convex hull of all such ∂B ψ(κ);
see [7].

Theorem 2.1. A Lipschitz continuous function on a bounded set Ω is bounded.

Proof. Suppose that a function f is Lipschitz continuous on Ω. Choose a point y ∈ Ω, then
for any other point x ∈ Ω we have:

||f(x)− f(y)|| ≤ Lf ||x− y||,

where Lf > 0 is Lipschitz constant. Also, we have

||f(x)− f(y)|| ≥ | ||f(x)|| − ||f(y)|| |,

suppose that ||f(x)|| ≥ ||f(y)||, then we can write:

||f(x)|| ≤ ||f(y)||+ Lf ||x− y||.

Even though we do not know ||f(y)||, we do know that it is finite. Let

||f(y)||+ Lf ||x− y|| ≤ τ.

This shows that ||f(x)|| is bounded by the constant τ .

Let D ⊆ IRm be the set of all κ at which f is differentiable, which is an open set.
Therefore, we replace D by the following level set:

Ω(κ0) := {κ ∈ D : f(κ) ≤ f(κ0)} , (2.1)

where κ0 ∈ IRm is given and this set is assumed to be bounded.

3 The Output Feedback Pole Assignment Problem

The pole assignment problem of linear control systems has been an important issue for
decades. The pole assignment via output feedback is more complex than the pole assignment
via state feedback or dynamic feedback. Various approaches from linear system theory,
complex function theory and algebraic geometry are used to explore this problem and the
results are not complete until now; see the survey paper [5] for more details. The pole
assignment problem is also known in the system and control literature as the ‘pole placement’
and ‘pole shifting’; see, e.g., the survey [48] and subsequent references among them [1, 3, 5,
6, 8, 19, 20, 21, 32, 37, 43, 53].

The PAP can be stated as follows. Let Ac : IR
p×r → IRn×n be a continuously differen-

tiable function defined by Ac(K) = A + BKC, where A ∈ IRn×n, B ∈ IRn×p, C ∈ IRr×n

are given constant matrices and let λ̂1, . . . , λ̂n ∈ C be given desired eigenvalues, which are
closed under conjugation. The PAP is to find a matrix K ∈ IRp×r such that

λi(Ac(K)) = λ̂i, i = 1, . . . , n. (3.1)
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In particular, the output feedback PAP, see e.g. [1, 5, 6, 8, 20, 21, 32, 37, 53] is stated
as follows. Consider the linear time-invariant control system with the following state space
realization:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t), (3.2)

where x(t) ∈ IRn, u(t) ∈ IRp, and y(t) ∈ IRr are the state, the control input, and the
measured output vectors, respectively. This linear control system is often closed by the
control law u(t) = Ky(t) as

ẋ(t) = (A+BKC)x(t) := Ac(K)x(t), x(0) = x0,

where K ∈ IRp×r is the output feedback gain matrix, which represents the unknown. For
the above linear control system it is desired to find K that assigns by using the control law
u(t) = Ky(t) the poles of the closed–loop system matrix Ac(K) in a pre-specified region in
the complex plane.

Consider the mapping f̌ : IRp×r → Cn defined as

f̌(K) =

 λ1(Ac(K))− λ̂1
...

λn(Ac(K))− λ̂n.

 . (3.3)

The PAP is to find K ∈ IRp×r by solving the following system of nonlinear equations

f̌(K) = 0. (3.4)

The PAP can be regarded as an inverse eigenvalue problem, see e.g. [52]. The authors
in [15] and [30] introduced another approach for solving PAP in which the pole assignment
problem is stated as a least squares optimization problem. This approach has several ad-
vantages; for example, it converts the exact pole assignment problem into an optimization
problem which can be solved numerically. Also, even though exact pole assignment by out-
put feedback may not be feasible, it can always provide a reasonable alternative which is
optimal in the sense of the least squares of the difference between system poles and desired
poles. Furthermore, the corresponding eigenstructure is obtained automatically if the pole
assignment problem is exactly solved.

Recently, Yang and Orsi [53] proposed Newton’s method with trust region for determining
the local solution of a least–squares problem and Mostafa et al. [32] extended their work
to quasi-Newton and inexact Newton methods. This formulation has the advantage of not
requiring any restrictions on the dimensions of the problem matrices A, B and C, where a
local solution can be obtained for non-solvable problems.

The relaxed output feedback PAP takes the form:

min
K∈IRp×r

f(K) :=
1

2
||f̌(K)||2 =

1

2

n∑
i=1

(λi(Ac(K))− λ̂i)∗(λi(Ac(K))− λ̂i), (3.5)

where f̌(K) is defined in (3.3) and the superscript ∗ denotes the complex conjugate trans-
pose; see [32, 53]. Consequently, the PAP is relaxed to find K that assigns the poles of the

closed-loop system matrix Ac(K) to be as close as possible to the vector λ̂ ∈ Cn of desired
eigenvalues.
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Recently, Fu [10] has shown that the PAP is NP–hard. Moreover, for the solvability of
the PAP, Kiritsis [21] gave a sufficient condition for an arbitrary pole assignment, p · r ≥ n,
i.e., the number of unknowns is greater than or equal to the number of the assigned poles.
Despite the enormous efforts have been given for solving this problem, however, there is a
lack of robust numerical algorithms.

In our work, systems with a symmetric state space realization, i.e., systems with state
space matrices satisfying A = AT , C = BT , occur in various contexts, e.g., RC-networks
[30]. For symmetric systems, the symmetric PAP is defined as follows: Find a matrix K
such that

λi(Ac(K)) = λi(A+BKBT ) = λ̂i, i = 1, . . . , n. (3.6)

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differ-
entiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is
the difference of two convex functions, which implies that the eigenvalues are semismooth
functions, see e.g. [47]. This result motivates us to employ the theory of semismoothness to
establish our results.

The PAP is considered as a semi-smooth and nonconvex problem. For related work
on nonconvex and nonsmooth/semismooth problems we refer the interested reader to, e.g.
[44, 45, 47] and the references therein.

4 Derivative of the Objective Function

Rademacher’s theorem says that a loaclly Lipschitz continuous function is differentiable
almost everywhere. The eigenvalues of Ac(K) in (3.5) is not in general differentiable at
a point K where Ac(K) has multiple eigenvalues. Therefore, let us impose the following
assumption on eigenvalues of Ac.

Assumption 4.1. Assume that Ac(K) has no multiple eigenvalues for all K ∈ IRp×r.

According to [18, Theorem 5.4, pp 111] and the description given below, the following
lemma gives the differentiability of the eigenvalues function Λ(Ac(K)).

Lemma 4.2. Let the matrix valued function Ac : IRp×r → IRn×n be differentiable on an
open subset D ⊆ IRp×r and let Ac(K) have distinct eigenvalues for all K. Then Λ(Ac(K))
is differentiable on D.

Let Ac(K) be diagonalizable and let Q(Ac) ∈ Cn×n be a matrix whose columns are the
eigenvectors of Ac(K), i.e., Q and Λ(Ac) satisfy

Ac(K)Q = QΛ. (4.1)

The columns of Q clearly satisfy:

qTi qi = 1,
∂qTi
∂κj

qi = 0, i = 1, . . . , n, j = 1, . . . ,m,

which together with (4.1) imply that

∂λi(Ac(K))

∂κj
= qTi

∂Ac(K)

∂κj
qi, i = 1, . . . , n, j = 1, . . . ,m. (4.2)

The following lemma provides the first–order derivatives of the objective function f(K)
required by the CG methods.
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Lemma 4.3. Let Ac(K) satisfy Assumption 4.1 and let Λ(Ac(K)) and Q ∈ Cn×n be as
defined above. Then gradient of the objective function f has components of the form:

∂f(K)

∂Kkl
= Re

{ n∑
i=1

(∂λi(Ac(K))

∂Kkl

)∗
(λi(Ac)− λ̂i)

}
, k = 1, . . . , p, l = 1, . . . , r, (4.3)

where
∂λi(Ac(K))

∂Kkl
= qTi BEklC qi, i = 1, . . . , n, (4.4)

where qi is the ith column of Q and Ekl ∈ IRp×r is a matrix with zero entries except a value
of one at the (k, l)–position.

Proof (see [32, Lemma 3.2]). The derivatives of Ac(K) with respect to the entries of K are
determined as follows:

∂Ac(K)

∂Kkl
= B

∂K

∂Kkl
C = BEklC, k = 1, . . . , p, l = 1, . . . , r.

From (4.2) the derivatives of the ith component λi(Ac(K)) with respect the (k, l)–entry of
K are:

∂λi(Ac(K))

∂Kkl
= qTi

∂Ac(K)

∂Kkl
qi = qTi BEklC qi, k = 1, . . . , p, l = 1, . . . , r. (4.5)

The derivative of f(K) with respect to the (k, l)–component of K is

∂f(K)

∂Kkl
= Re

{ n∑
i=1

(∂λi(Ac(K))

∂Kkl

)∗
(λi(Ac(K))− λ̂i)

}
, k = 1, . . . , p, l = 1, . . . , r,

where ∂λi(Ac(K))/∂Kkl is given by (4.5).

The gradient of f stretched as a long column vector of the form:

g(κ) = Re
{
G(κ) (λ(Ac(K))− λ̂)

}
, (4.6)

where G(κ) ∈ IRm×n is the Jacobian matrix of f̌(K) which is given by

G(κ) =

 (qT1 BE11Cq1) . . . (qTnBE11Cqn)
...

. . .
...

(qT1 BEprCq1) . . . (qTnBEprCqn)

 ,
and the i := (k, l)th component of g(κ) takes the form:

gi(κ) = Re
{
qT1 BEklCq1(λ1(Ac)− λ̂1) + · · ·+ qTnBEklCqn(λn(Ac)− λ̂n)

}
, (4.7)

where i = 1, . . . ,m.
The next lemma shows that the gradient g of the objective function is locally Lipschitz

continuous.

Lemma 4.4. Let Ac satisfy Assumption 4.1 and assume that Λ(Ac(κ)) is locally Lipschitz
continuous in some neighborhood of the level set (2.1). Further suppose that ∥κ1∥ ̸= ∥κ2∥
for all κ1, κ2 ∈ D. Then g is locally Lipschitz continuous in some neighborhood of (2.1).
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Proof. From (4.6) and for any two vectors κ1, κ2 ∈ D we have

||g(κ1)− g(κ2)|| = ||G(κ1)(λ(Ac(κ1))− λ̂)−G(κ2)(λ(Ac(κ2))− λ̂)||

For simplicity, we write λj(κ) and Λ(κ) instead of λj(Ac(κ)) and Λ(Ac(κ)), respectively.
Then:

||g(κ1)− g(κ2)|| ≤ ||G(κ1)λ(κ1)−G(κ2)λ(κ2)||+ ||(G(κ1)−G(κ2))λ̂)||
≤ ||G(κ1)λ(κ1)−G(κ2)λ(κ1) +G(κ2)λ(κ1)−G(κ2)λ(κ2)||

+ ||(G(κ1)−G(κ2))λ̂)||
≤ ||G(κ1)−G(κ2)|| ||λ(κ1)||+ ||G(κ2)|| ||λ(κ1)− λ(κ2)||

+ ||G(κ1)−G(κ2)|| ||λ̂||

≤ ||G(κ1)−G(κ2)|| (||λ(κ1)||+ ||λ̂||) + ||G(κ2)|| ||λ(κ1)− λ(κ2)||

≤ (||G(κ1)||+ ||G(κ2)||) (||λ(κ1)||+ ||λ̂||) + ||G(κ2)|| ||λ(κ1)− λ(κ2)||.

From the definition of Λ(κ) we have

||Λ(κ1)− Λ(κ2)||2 =
n∑
j=1

|λj(κ1)− λj(κ2)|2 = ||λ(κ1)− λ(κ2)||2,

and since Λ(κ) is locally Lipschitz continuous, then ∀κ1, κ2 ∈ D there exists a constant
L > 0 such that

||λ(κ1)− λ(κ2)|| ≤ L||κ1 − κ2||.
Moreover, from Theorem 2.1 and the boundedness of the level set Ω(κ0) we can deduce that
there exists a constant M1 > 0 such that:

||λ(κ)|| ≤M1 ∀κ ∈ Ω(κ0).

The norm of G(κ) is given by

||G(κ)||2 =

p∑
k=1

r∑
l=1

n∑
j=1

|qTj BEklCqj |2,

where qi’s are normalized eigenvectors, which implies that G(κ) is bounded, i.e. there exists
a constant M2 > 0 such that:

∥G(κ)|| ≤M2 ∀κ ∈ D.

Consequently,

||g(κ1)− g(κ2)|| ≤M2L ||κ1 − κ2||+ 2M2(M1 +M3)

≤M2L ||κ1 − κ2||+ 2M2(M1 +M3)
||κ1 − κ2||
||κ1 − κ2||

≤M2L ||κ1 − κ2||+ 2M2(M1 +M3)
||κ1 − κ2||

| ||κ1|| − ||κ2|| |

where M3 := ||λ̂||. By assumption ||κ1|| ̸= ||κ2|| ∀κ1, κ2 ∈ D. Then there exists a constant
M4 > 0 such that

1

| ||κ1|| − ||κ2|| |
≤M4.
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This implies that
||g(κ1)− g(κ2)|| ≤ L̃||κ1 − κ2||,

where L̃ =M2L+ 2M2(M1 +M3)M4.

5 Nonlinear CG Method for the PAP

In this section the focus is to analyze and study three types of nonlinear CG method for
calculating the local solution of the PAP problem (3.5).

For a given starting point κ0 ∈ IRm, the considered nonlinear CG methods generate a
sequence of the form:

κk+1 = κk + αkδκk, (5.1)

such that {κk} ⊂ IRm, where δκk ∈ IRm is a descent direction vector for f at κk and αk > 0
is the step-size. The new search direction δκk for the nonlinear CG method is given by the
following relation:

δκk = −gk + βkδκk−1, δκ1 = −g1, (5.2)

where gk = g(κk) is the gradient of f at κk and βk is a parameter. Now we recall a popular
inexact line search condition, Wolfe conditions, see e.g. [33], in order to update a suitable
step-size αk for the new iterate (5.1):

f(κk + αkδκk) ≤ f(κk) + γ αkg
T
k δκk (5.3)

g(κk + αkδκk)
T δκk ≥ γ̂ gTk δκk, (5.4)

where 0 < γ < γ̂ < 1. Moreover, the strong Wolfe condition replaces (5.4) by the following
condition ∣∣g(κk + αkδκk)

T δκk
∣∣ ≤ γ̂

∣∣gTk δκk∣∣ . (5.5)

5.1 Descent nonlinear CG method for the PAP

The PRP–CG method has been considered as one of the most efficient conjugate gradient
methods in practical computation. It essentially performs a restart if a bad direction occurs.
However, the PRP–CG method can cycle infinitely without approaching to any stationary
point when the objective function is nonconvex, see e.g. [13]. Recently, Yu, Zhao and Wei
[54] defined a new formula for βk in order to avoid such a behavior as well as ensure the
sufficient descent condition:

gTk δκk ≤ −c||gk||2, c > 0, (5.6)

for all k ≥ 0 independent of the line search rule. The new search direction of this method is
defined by

δκk = −gk + βNk δκk−1, δκ1 = −g1, (5.7)

and βNk is given by the following formula

βNk (µ) =

{ ||gk||2−|gTk gk−1|
µ|gTk δκk−1|+||gk−1||2

, if ||gk||2 ≥ |gTk gk−1|;

0, otherwise
(5.8)

where µ > 1. Global convergence has been established for this method under the standard
Wolfe conditions.

The following theorem shows that the search direction δκk generated by (5.7) and (5.8)
is a descent direction.
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Theorem 5.1. Let κ ∈ D generated by (5.1) and δκk is calculated by (5.7), where βk = βNk
is given by (5.8). Then for all k ≥ 1

gTk δκk ≤ −
(
1− 1

µ

)
||gk||2. (5.9)

Proof (see also [54, Theorem 2.1]). For k = 1 we have

gT1 δκ1 = −||g1||2 < 0.

For k ≥ 2 and µ > 1 and using (5.7) gives

gTk δκk = −||gk||2 + βNk g
T
k δκk−1.

We obtain from the definition of βNk that

βNk ≤
||gk||2

µ|gTk δκk−1|
.

Hence we obtain

gTk δκk = −||gk||2 + βNk g
T
k δκk−1 ≤ −||gk||2 +

||gk||2

µ|gTk δκk−1|
|gTk δκk−1| ≤ −

(
1− 1

µ

)
||gk||2.

5.2 Descent VLS+CG method for the PAP

Another formula for updating βk has been given in [54] and defined as the following:

βV LS+k (µ) = max(0, βV LSk ), (5.10)

where

βV LSk =
||gk||2 − |gTk gk−1|

µ|gTk δκk−1| − gTk−1δκk−1
,

where µ ≥ 1. The formula βV LS+k (µ) possesses the same properties of the formula (5.8).
The search direction for this method takes the following form:

δκk = −gk + βV LS+k δκk−1, δκ1 = −g1. (5.11)

The following theorem shows that the search direction δκk generated by (5.11) together
with (5.10) is a descent direction.

Theorem 5.2. Let κ ∈ D be generated by (5.1) and δκk is calculated by (5.11) where βV LS+k

is given by (5.10). Then for all k ≥ 1:

gTk δκk ≤ −
(
1− 1

µ

)
||gk||2. (5.12)

Proof. By using mathematical induction we have for k = 1 that

gT1 δκ1 = −||g1||2 < 0.

At k − 1 suppose that
gTk−1δκk−1 ≤ −c||gk−1||2, (5.13)
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where c := (1− 1
µ ) and c > 0. Form (5.11), we have

gTk δκk = −||gk||2 + βV LS+k gTk δκk−1.

If βV LS+k = 0, then gTk δκk = −||gk||2 < 0. Moreover, if βV LS+k = βV LSk then we from the
definition of βV LSk and (5.13) have

βV LSk ≤ ||gk||2

µ|gTk δκk−1|+ c||gk−1||2
.

Hence

βV LSk ≤ ||gk||2

µ|gTk δκk−1|
.

Consequently

gTk δκk = −||gk||2 + βV LSk gTk δκk−1 ≤ −||gk||2 +
||gk||2

µ|gTk δκk−1|
|gTk δκk−1| ≤ −

(
1− 1

µ

)
||gk||2.

5.3 Modified PRP–CG method for the PAP

In [28] the authors proposed a modification on the PRP method denoted by MPRP-CG
method. The search direction of this method is defined as

δκk = −gk + βMPRP
k δκk−1, δκ1 = −g1, (5.14)

in which the update parameter βMPRP
k is given by:

βMPRP
k =

{ ||gk||2−|gTk gk−1|
max (0, gTk δκk−1)+||gk−1||2

, if ||gk||2 ≥ |gTk gk−1| ≥ m̄ ||gk||

0, otherwise,
(5.15)

where m̄ ∈ (0, 1).
The MPRP–CG method generates sufficient descent directions with an inexact line

search; see [28] for the proof.

Theorem 5.3. Let κ ∈ D generated by (5.1) and δκk be calculated by (5.14) with βk given
by (5.15). Then for all k ≥ 1 it holds that

gTk δκk ≤ −||gk||2. (5.16)

In order to find a local solution of the considered problem (3.5), we summarize the
nonlinear CG algorithm as the follows.

Algorithm 5.1. Nonlinear CG method for the output feedback PAP]

0. Let κ0 ∈ IRm, 0 < γ < γ̂ < 1 and ϵ ∈ (0, 1) be given. Moreover, let A,B,C be
given constant matrices. Choose λ̃ ∈ Cn and α0 ∈ (0, 1]. Compute g(κ0) and set
δκ0 = −g(κ0). If ||g(κ0)|| ≤ ϵ or f(κ0) ≤ ϵ stop; otherwise set k ← 0 and go to the
next step.

While ||g(κk)|| > ϵ or f(κk) > ϵ, do
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1. Compute αk > 0 that satisfies Wolfe conditions (5.3)–(5.4), set κk+1 = κk + αkδκk
and then calculate gk+1.

2. If ∥g(κk+1)∥ ≤ ϵ or f(κk+1) ≤ ϵ stop; otherwise go to the next step.

3. Calculate βk by one of the formulas (5.8) or (5.10) or (5.15).

4. Obtain a new search direction δκk+1 by (5.2), set k ← k + 1, and go to Step 1.

End (do)

Remark 5.4. From the problem structure and the definition of the objective function in
(3.5), it is convenient to stop the CG method if f(κk) ≤ ϵ.

6 Convergence Analysis

In this section, the convergence analysis of Algorithm 5.1 is established. Next, assume that
g(κk) ̸= 0 for all k; otherwise a stationary point is found.

Assumption 6.1. We assume the following throughout the paper.

(a) Boundedness: The level set Ω(κ0) in (2.1) is bounded.

(b) Lipschitz continuity: In some neighborhood N of the level set (2.1) the gradient g of
the objective function f is Lipschitz continuous.

From Assumption 6.1 we can deduce that there exists a constant M > 0 such that

||g(κ)|| ≤M ∀κ ∈ Ω(κ0). (6.1)

The following lemma, known as Zoutendijk’s condition, is often used to prove global
convergence properties of nonlinear CG methods.

Lemma 6.2 (see e.g. [13, Theorem 2.1]). Let {κk} be generated by Algorithm 5.1 and let
Assumption 6.1 hold, then

∞∑
k=1

(gTk δκk)
2

||δκk||2
< +∞. (6.2)

6.1 Convergence of the descent nonlinear CG method

The following result can be found in [54, Lemma 2.2] which is useful in our subsequent
analysis.

Lemma 6.3. Let σ > 0 and b be given constants, and assume that {ξi} is series of positive
terms satisfying the following inequality for all k:

k∑
i=1

ξi ≥ σk + b.

Then ∑
i≥1

ξ2i /i = +∞ and
∑
k≥1

ξ2k
ξ1 + · · ·+ ξk

= +∞.
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Under the condition (6.2) the following convergence theorem is established.

Theorem 6.4. Suppose that {κk} is generated by Algorithm 5.1 with βNk updated by (5.8).
Assume further that Assumptions 6.1 and (6.2) hold, then we have

lim inf
k→∞

||gk|| = 0. (6.3)

Proof. From (5.7) we have:

δκk + gk = βNk δκk−1, k ≥ 1. (6.4)

By squaring both sides of (6.4) we have

||δκk||2 = −||gk||2 − 2gTk δκk + (βNk )2||δκk−1||2. (6.5)

Since βNk ≤
||gk||2

||gk−1||2 then we obtain the following:

||δκk||2 = −||gk||2 − 2gTk δκk + (βNk )2||δκk−1||2 ≤ −||gk||2 − 2gTk δκk +
( ||gk||2
||gk−1||2

)2

||δκk−1||2

≤ −||gk||2 − 2gTk δκk + ||gk||4
||δκk−1||2

||gk−1||4
.

Now, we can write

tk ≤ tk−1 −
1

||gk||2
+

2rk
||gk||2

, (6.6)

where

tk =
||δκk||2

||gk||4
, rk = −g

T
k δκk
||gk||2

.

Initially we have t1 = 1
||g1||2 and r1 = 1. By summing up the two sides of (6.6) over all

indices yields:

tk ≤ −
k∑
i=1

1

||gi||2
+ 2

k∑
i=1

|ri|
||gi||2

. (6.7)

Now, suppose that (6.3) does not hold. Then there exists a positive scalar τ such that for
all k ≥ 1

||gk|| ≥ τ. (6.8)

Hence, it follows from (6.7) and (6.1) that

tk ≤ −
k

M
+

2

τ

k∑
i=1

|ri|, (6.9)

which gives

tk ≤
2

τ

k∑
i=1

|ri|. (6.10)

Using the fact that tk ≥ 0 then from (6.9) we obtain

k∑
i=1

|ri| ≥
τk

2M
. (6.11)
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Combining (6.11) with (6.10) and lemma 6.3 we get:

∑
k≥1

(gTk δκk)
2

||δκk||2
=

∑
k≥1

r2k
tk

=∞,

contradicting with Zoutendijk’s condition (6.2). This implies that (6.3) holds and the proof
is complete.

6.2 Convergence of the method VLS+CG

The global convergence of the VLS+CG method is given in the following theorem. The
proof will be omitted because it is similar to theorem 6.4.

Theorem 6.5. Suppose that {κk} is generated by Algorithm 5.1 with βV LS+k updated by
(5.10). Assume further that Assumptions 6.1 and (6.2) hold, then we have

lim inf
k→∞

||gk|| = 0.

6.3 Convergence of the method MPRP

The following theorem indicates the global convergence of the method MPRP; see [28,
Theorem 3.5] for the proof.

Theorem 6.6. Suppose that {κk} is generated by Algorithm 5.1 with βMPRP
k updated by

(5.15). Assume further that Assumptions 6.1 and (6.2) hold, then we have

lim inf
k→∞

||gk|| = 0.

7 Extending the CG Methods for Decentralized Control Systems

In engineering and finance there are many applications of large-scale control systems that are
often composed of lower order subsystems using the decentralized technique, for example
aerospace systems, computer network systems; see, e.g., [41] for details on decentralized
control systems.

Consider the linear time-invariant decentralized control system with ν control stations:

ẋ(t) = Ax(t) +
ν∑
i=1

Biui(t), x(0) = x0,

yi(t) = Cix(t), (7.1)

where x(t) ∈ IRn, ui(t) ∈ IRpi , and yi(t) ∈ IRri are the state, the control input, and the
measured output vectors, respectively. A ∈ IRn×n, Bi ∈ IRn×pi , Ci ∈ IRri×n are given
constant matrices, i = 1, ..., ν.

The output feedback PAP for the decentralized system (7.1) is to find output feedback
gain matrices Ki ∈ IRpi×ri that assign by using the control law

ui(t) = Kiyi(t), i = 1, ..., ν.

the poles of the closed-loop system matrix Ac(K1, ...,Kν) = A +
∑ν
i=1BiKiCi in a pre-

specified region in the complex plane.
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In fact, the considered CG methods can be extended to tackle output feedback PAP
for decentralized control systems which can be viewed as a special case of the original
formulation. Let us define the matrices

B = [B1 . . . Bν ] , C =
[
CT1 . . . CTν

]T
, K = diag(K1, . . . ,Kν).

Under this setting we have Ac(K) = A + BKC and the minimization problem (3.5) now
takes the following form:

min
K1,...,Kν

f(K1, ...,Kν) :=
1

2

n∑
j=1

(λj(Ac(·))− λ̂j)∗(λj(Ac(·))− λ̂j). (7.2)

Let us further define κ = [κT1 , . . . , κ
T
ν ]
T , where each κi ∈ IRpi·ri is obtained by stretching

the matrix Ki into a long column vector, where m =
∑

pi · ri. For a given starting point
κ0 ∈ IRm any of the considered nonlinear CG methods generate a sequence of the form:

κk+1 = κk + αkδκk, k = 0, 1, 2, ...,

where δκk ∈ IRm is a descent direction for fk at the point κk and αk is the step-size that
must satisfy Wolfe conditions (5.3)–(5.4).

The new search directions dk+1 is updated by:

δκk+1 = −gk+1 + βkδκk, δκ0 = −g0, (7.3)

where βk is given by one of the formulas (5.8), (5.10) or (5.15), and gk = ∇fk stretched as
a column vector in IRm.

Algorithm 5.1 is extended in the following lines to tackle the decentralized output feed-
back PAP problem.

Algorithm 7.1 (Nonlinear CG method for the decentralized output feedback PAP).

0. Let κ0 ∈ IRm, ϵ ∈ (0, 1), 0 < γ < γ̂ < 1 and m̄ ∈ (0, 1) be given. Moreover, let
A,B1, ..., Bν , C1, ..., Cν be given constant matrices. Choose λ̃ ∈ Cn and α0 ∈ (0, 1].
Compute g0 = ∇f(κ0) ∈ IRm and set δκ0 = −g0. If ∥g0∥ ≤ ϵ or f(κ0) ≤ ϵ stop;
otherwise set k := 0 and go to the next step.

While ∥gk∥ > ϵ or f(κk) > ϵ, do

1. Compute αk > 0 that satisfies Wolfe conditions (5.3)–(5.4), set κk+1 = κk + αkδκk,
and calculate the gradient vector gk+1.

2. If ∥gk+1∥ ≤ ϵ or f(κk+1) ≤ ϵ stop; otherwise go to the next step.

3. Calculate βk by one of the formulas (5.8), (5.10) or (5.15), e.g.,

βMPRP
k =


||gk+1||2−|gTk+1gk|

max {0, gTk+1δκk}+||gk||2
, if ||gk+1||2 ≥ |gTk+1gk| ≥ m̄ ||gk+1||

0, otherwise

4. Obtain a new search direction by

δκk+1 = −gk+1 + βk δκk,

set k ← k + 1, and go to Step 1.

End (do)
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8 Minimizing the Spectral Condition Number

Motivated by the seminal work of Lam and Yan [23] we consider in this section the pole
assignment with robustness measured in terms of the spectral condition number of the
closed-loop eigenvector matrix. The spectral condition number of the closed-loop system
matrix is one of the most accepted measures of robustness.

In this section we consider the state feedback problem, where C = In in the control
system (3.2). Without loss any of the generality we assume that B is of full column rank.
Given a stable real matrix Λ̃, the PAP is to find a feedback gain matrix K ∈ IRp×n such that
the closed-loop system matrix A + BK and Λ̃ have the same eigenvalues. In other words,
there is a state transformation matrix T ∈ IRn×n such that

(A+BK)T = T Λ̃. (8.1)

Lam and Yan [23] have replaced (8.1) by the following equations:

AT − T Λ̃ +BH = 0, (8.2)

H = KT, (8.3)

where T = T (H) is assumed to be nonsingular. The advantage of introducing H to replace
KT is that (8.2) is linear in T and H. Furthermore, (8.2) takes the form of a Sylvester
equation, where T (H) is an injective function that determines for each H a unique K =
HT−1 via (8.3).

The state feedback PAP is to find H ∈ IRp×n local solution of the following minimization
problem:

min
H

J(H) = ∥T (H)∥2 + ∥T−1(H)∥2, (8.4)

where T (H) solves Sylvester’s equation (8.2) which is assumed to be nonsingular.
It has been shown in [23] that the solution of the problem (8.4) is equivalent to solve the

following minimization problem for an increasing sequence of positive integers {q}:

min
H

ψq(H) =

(
1

2
J([T (H)T T (H)]q)

) 1
2q

, (8.5)

where T (H) solves Sylvester’s equation (8.2). This formulation is characterized by the
gradient of the objective function ψq(H). In order to obtain the gradient of ψq(H) let us
define the following mapping:

S(H) = (T (H)TT (H))2q + (T (H)TT (H))−2q = S(H)T . (8.6)

Then the gradient of the objective function ψq(H) is given by (see [23]):

∇ψq(H) =
1

(ψq(H))2q−1
BTD, (8.7)

where D solves Sylvester’s equation:

ATD −DΛ̃T + T (H)−TS(H) = 0. (8.8)

We have extended the three CG methods NCG, VLS+CG and MPRP-CG to tackle
Problem (8.5) in which Wolfe conditions (5.3)–(5.4) that globalize the CG methods are
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rewritten as:

ψq(Hk + αkdk) ≤ ψq(Hk) + γ αk Tr(∇ψq(Hk)
T dk) (8.9)

Tr(∇ψq(Hk + αkdk)
T dk) ≥ γ̂ T r(∇ψq(Hk)

T dk), (8.10)

where Tr(·) is the trace operator and dk ∈ IRp×n is the search direction evaluated by the
CG method.

Algorithm 8.1 (Nonlinear CG methods for Problem (8.5)).

0. Let H0 ∈ IRp×n, ϵ ∈ (0, 1) and 0 < γ < γ̂ < 1 be given. Moreover, let A,B be given
constant matrices. Choose Λ̃ diagonal matrix of desired eigenvalues and α0 ∈ (0, 1].
Solve (8.2) for T0 = T (H0). Calculate S(T0) by (8.6) and obtain D0 solution of
Sylvester’s equation (8.8). Compute

ψq(H0) =

(
1

2
J([TT0 T0]

q)

) 1
2q

,

and then use (8.7) to compute ∇ψq(H0). Set d0 = −∇ψq(H0). If ||∇ψq(H0)|| ≤ ϵ
stop; otherwise set k := 0, q = 1 and go to the next step.

While ||∇ψq(Hk)|| > ϵ, do

1. Compute αk > 0 that satisfies Wolfe conditions (8.9)–(8.10). Set Hk+1 = Hk + αkdk
and then calculate ∇ψq(Hk+1).

2. If ∥∇ψq(Hk+1)∥ ≤ ϵ stop; otherwise go to the next step.

3. Calculate βk by one of the formulas (5.8)or

(5.10) or (5.15), where gk = ∇ψq(Hk+1). Then obtain a new search direction by:

dk+1 = −∇ψq(Hk+1) + βkdk.

4. Set q ← ⌈ q2⌉+ 1 and k ← k + 1 and go to Step 1.

End (do)

The symbol ⌈q⌉ denotes the smallest integer greater than or equal q.

9 Numerical Results

In this section, some preliminary test of the proposed three CG methods NCG, VLS+CG
and MPRP-CG for solving the two considered PAP. The methods are implemented using
Matlab and all results are using a 3.07 Ghz Pentium 4 CPU with 1 GB RAM. Numerical
results for the three CG methods for finding the local solution of the least–squares problem
(3.5) are given first followed by the results on the formulation (8.5).

In the following, we consider eight test problems in details that quite demonstrate the
performance of the considered methods. Among the considered test problems are two ex-
amples that test the ability of the considered methods for achieving the desired poles for
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the decentralized PAP problem. The methods are compared with respect to number of
iterations as well as the CPU time.

In feedback control it is desirable for the poles of the closed-loop system matrix Ac(K)

to be in the negative side of its complex plane. Therefore, the vector λ̂ of desired eigenvalues
is chosen as follows: λ̂ = λ(A)− ϑ(A)− s, where

ϑ(A) = max ReΛ(A),

is the spectral abscissa of the system matrix A and s is the chosen shift, which is assigned
the two values s = 0.1 and 0.3. Let Λ̃ be a diagonal matrix with desired eigenvalues λ̂ on
its main diagonal.

Most of the considered test problems were chosen from the benchmark collection COM-
Plib [24], while other test problems were chosen from different sources of the literature. For
all test problems the methods start with K0 being an array of ones. In the three methods
NCG, VLS+CG and MPRP-CG the globalization strategy uses the sufficient decrease con-
dition (5.3), where γ = 10−4. The CG methods stop if the objective function fk is strictly
less than the prescribed accuracy 1× 10−4.

Example 9.1. This test problem is from the benchmark collection COMPlib [24, REA1]
of a chemical reactor model. The constant data matrices are:

A =


1.3800 −0.2077 6.715 −5.676

−0.5814 −4.2900 0 0.675
1.0670 4.2730 −6.654 5.893
0.0480 4.2730 1.343 −2.104

 , B =


0 0

5.679 0
1.136 −3.146
1.136 0

 , CT =


1 0 0
0 1 0
1 0 1

−1 0 −1

 .

The system matrix A has the eigenvalues (1.9910, 0.0635,−5.0566,−8.6659).
In the first case of the desired eigenvalues λ̂ the methods NCG, VLS+CG and MPRP-

CG successfully converge to three different stationary points, where the total number of
iterations are 68, 150 and 53, and the corresponding CPU times are 1.66, 4.63 and 1.06 sec.,
respectively. The achieved final output feedback gain matrices are:

KNCG
∗ =

[
0.6461 0.0385 0.3534
2.5001 1.0344 0.2251

]
,

KVLS+CG
∗ =

[
0.4250 0.4498 0.2307
3.7810 2.2761 −0.3072

]
,

KMPRP−CG
∗ =

[
0.5579 −0.0698 0.2239
2.3165 1.0754 0.2158

]
.

For the second choice of λ̂ the three methods converge to three different stationary points
after 89, 44 and 50 iterations with CPU times 1.55, 0.91 and 1.47 sec., respectively.

Example 9.2. This test problem is the aircraft model in cruise flight conditions [24, AC3]
and the given data matrices are the following:

A =


0 0 1 0 0
0 −0.154 −0.0042 1.54 0
0 0.249 −1 −5.2 0

0.0386 −0.996 −0.0003 −0.117 0
0 0.5 0 0 −0.5

 , B =


0 0

−0.744 −0.032
0.337 −1.12
0.02 0

0 0

 ,

C =


0 1 0 0 −1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

 .
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The system matrix A has the eigenvalues (−0.5,−0.0882± 1.2695i,−1.0855,−0.0092).
The three methods are executed for the above mentioned choices of the desired poles

λ̂. In the first case the methods NCG, VLS+CG and MPRP-CG successfully converge to
different stationary points after 49, 30 and 49 iterations and the corresponding CPU times
are 0.56, 0.58 and 0.42 sec., respectively. The achieved final output feedback gain matrices
are, respectively:

KNCG
∗ =

[
0.2142 0.3095 0.8971 −0.0219

−2.2316 0.4350 −0.3988 0.2360

]
,

KVLS+CG
∗ =

[
0.0327 1.0830 1.6250 0.4066

−2.4399 0.8059 −2.1840 −0.7261

]
,

KMPRP−CGCG
∗ =

[
0.2399 0.2702 0.8491 −0.0855

−1.5322 0.3904 −0.2745 0.3993

]
.

In the second choice of λ̂ the three methods converge to different stationary points after
22, 14 and 22 iterations with CPU times 0.28, 0.2 and 0.25 sec., respectively. The following
final output feedback gain matrices are obtained:

KNCG
∗ =

[
1.1080 0.5960 0.6715 0.2006

−1.4487 0.7922 −0.6779 0.4254

]
,

KVLS+CG
∗ =

[
1.1267 0.6777 0.9852 0.1800

−1.2914 0.8189 −0.5278 0.5902

]
,

KMPRP−CG
∗ =

[
1.5231 0.6225 0.7912 0.1456

−1.2219 0.5060 −0.3288 0.5238

]
.

The method VLS+CG has the best performance with respect to number of iterations,
while the methods NCG and MPRP-CG have the same performance for the two cases.

Example 9.3. This test problem is the helicopter model from the benchmark collection
[24, HE4]. The data matrices A,B,C are with sizes n = 8, p = 4, r = 6; therefore we skip
listing them. The system matrix A has the eigenvalues

(−11.4968,−2.3036, 0.2342± 0.5513i,−0.1593± 0.5990i,−0.7104,−0.2923).

In the first case the methods NCG, VLS+CG and MPRP-CG successfully converge to
three different stationary points with total number of iterations 375, 160 and 107 while the
CPU times are 20.08, 6.89 and 2.91 sec., respectively. The achieved final output feedback
gain matrices are:

KNCG
∗ =


−0.2013 0.5121 1.6305 −0.0763 −0.0454 1.2444
−0.0415 −0.5246 1.8226 0.5507 1.9665 −0.4091
0.2899 1.3814 1.2405 0.1876 0.5078 1.8371
0.3483 1.2725 0.8788 0.4450 0.9255 1.1491

 ,

KVLS+CG
∗ =


0.0164 1.1334 1.9249 −2.3744 0.0063 0.8307

−0.1374 −1.4122 2.0033 0.8213 2.3653 −0.2127
0.0638 2.1951 1.5525 0.2561 0.6073 1.9756

−0.2038 1.3392 0.2809 1.5014 0.8677 1.4136

 ,

KMPRP−CG
∗ =


−0.2521 0.4579 1.3451 −0.3887 −0.0993 1.3143
−0.0734 −0.2506 1.6620 1.2145 1.4120 0.1027
0.2784 1.0921 1.7064 0.2689 0.4127 1.6028
1.0728 1.2140 0.8327 0.8170 0.9485 1.0981

 .
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In the second choice of λ̂ the methods NCG, VLS+CG and MPRP-CG require 159, 190
and 73 iterations to converge to three different stationary points with CPU times 4.14, 6.55
and 2.7 sec., respectively. As can be seen the method MPRP-CG has the best performance
with respect to number of iterations and CPU time for the two cases.

Example 9.4. This example is a modified version of a test problem borrowed from [43]
which has the following data matrices:

A = diag(1,−2,−3,−4), B =


1 0 0
0 1 0
0 0 1
1 1 1

 , C = BT .

It represents a system with a symmetric state space realization, i.e., A = AT , C = BT .
Moreover, the eigenvalues of A are (1,−2,−3,−4).

For the first choice of λ̂ the methods NCG, VLS+CG and MPRP-CG successfully con-
verge to different stationary points after 14, 21 and 18 iterations, where the corresponding
CPU times are 0.19, 0.47 and 0.33 sec., respectively. The achieved final output feedback
gain matrices are:

KNCG
∗ =

 −2.2562 1.1457 1.5732
1.1457 −1.5743 0.3055
1.5732 0.3055 −1.3899

 ,KVLS+CG
∗ =

 −1.4410 0.7021 0.8503
0.7021 −1.1394 −0.0908
0.8503 −0.0908 −1.0829

 ,
KMPRP−CG

∗ =

 −1.6510 0.8364 1.1695
0.8364 −1.0734 −0.1315
1.1695 −0.1315 −1.3558

 .
For the second choice of λ̂ the methods NCG, VLS+CG and MPRP-CG successfully

converge to three different stationary points after 23, 32 and 22 iterations with CPU times
0.33, 0.61 and 0.3 sec., respectively. The corresponding final output feedback gain matrices
are:

KNCG
∗ =

 −2.5859 1.3030 1.5822
1.3030 −1.7263 0.3960
1.5822 0.3960 −1.5756

 ,KVLS+CG
∗ =

 −1.9321 1.0445 1.1332
1.0445 −1.5454 −0.2000
1.1332 −0.2000 −1.0925

 ,
KMPRP−CG

∗ =

 −1.6042 0.3555 0.8681
0.3555 −1.5577 0.5924
0.8681 0.5924 −1.2472

 .
Table 1 shows the overall performance of the three methods NCG, VLS+CG and MPRP-

CG. In this table we list the average number of iterations, the average CPU time in seconds,
and the success rate. The method VLS+CG is the best among the three methods with
respect to number of iterations in the considered two cases, while the method NCG was
more robust. Furthermore, the performance of the method MPRP-CG lies between the two
methods NCG and VLS+CG.

In Table 2 we compare the performance of the three methods NCG, VLS+CG and
MPRP-CG on test problems from different sources. In Table 3 we do the same comparison
on test problems chosen from the benchmark collection [24]. Similar to the above four

examples we test each test problem for two instances of the vector λ̂ of desired poles, namely
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Table 1: The performance of the three methods for s = 0.1, 0.3

NCG VLS+CG MPRP-CG
s = 0.1 s = 0.3 s = 0.1 s = 0.3 s = 0.1 s = 0.3

Av. No. of iterations 148.63 252.28 76.58 121.67 110.71 160
Av. CPU time (sec.) 5.98 9.62 3.35 4.06 3.22 5.14
Success rate (%) 97.56 95.12 92.68 87.8 92.68 90.24

λ̂ = λ(A) − ϑ(A) − 0.1 and λ̂ = λ(A) − ϑ(A) − 0.3. For each test problem we include the
problem size (n, p, r), the spectral abscissa ϑ(A) of the system matrix A, the total number
of iterations and the CPU time.

Table 2: Performance of the methods NCG, VLS+CG and MPRP-CG on test problems
from different sources for two different choices of the desired poles λ̂.

No. of iterations and CPU-time (sec.)
Problem size NCG VLS+CG MPRP-CG

Problem n p r ϑ(A) # it. CPU # it. CPU # it. CPU
[22] 2 2 2 −1.0e−002 128 1.67 96 0.83 128 1.25

392 6.42 24 1.7 290 3.66
[1] 4 2 2 7.1e−001 71 1.5 91 3.81 79 1.11

104 1.92 110 4.45 108 2.13
[19] 4 2 4 1.9e+000 31 0.75 42 1.06 41 1

26 0.75 37 1.2 26 0.58
[43] 4 3 2 2 71 0.96 50 0.84 104 1.41

124 25.63 135 2.3 166 3.3
[43] 4 2 2 2 644 9.08 166 3.89 162 3.27

84 4.61 218 4.52 77 2.27
[43] 4 3 3 1 14 0.19 21 0.47 18 0.33

23 0.33 32 0.61 22 0.3
[31] 3 1 3 1.1e−001 71 0.72 50 1.33 55 0.7

109 2.64 276 7.34 77 1.13
[6] 6 2 3 −4.0e−001 345 12.36 118 4.23 122 7.14

54 1.39 17 0.7 169 3.72
[6] 3 2 2 9.85e+000 25 0.72 32 0.88 18 0.73

31 0.67 23 0.81 38 1.27
[3] 5 3 2 2.3e−002 1225 46.53 443 33.27 1077 33.78

1893 61.92 459 15.17 1252 39.3
[34] 3 2 2 3 34 1.77 47 1.77 39 1.49

73 2.36 38 1.45 85 2.63
[39] 2 2 2 −0.1e−002 127 9.61 49 1.47 91 3.94

1962 69.19 141 4 23 0.47
[27] 2 2 2 −568.23e−002 22 0.55 21 0.67 16 0.2

25 0.66 30 0.69 14 0.31
[36] 2 2 2 1 20 0.31 15 0.3 15 0.25

20 0.28 15 0.45 16 0.33
[9] 2 2 2 14.14e−002 10 0.06 9 0.28 9 0.16

7 0.13 9 0.27 7 0.11
[36] 2 2 2 1 7 0.11 8 0.16 12 0.09

9 0.19 5 0.11 13 0.14

It is important to point out that for the considered set of test problems the three methods
often converge to different stationary points despite the fact that they start from the same
point K0. We may return this behavior to the inherent characteristics of the problem. On
the other side, despite the assumption that Λ(Ac(K)) must have distinct eigenvalues for all
K the methods NCG, VLS+CG and MPRP-CG successfully achieve stationary points while
λ̂ contain repeated values.
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9.1 Performance of the CG methods for decentralized PAP

The performance of the considered CG methods for tackling the decentralized output feed-
back PAP is described by the following examples.

Example 9.5. This test problem is from [50]. It has two control stations and the constant
data matrices are the following:

A =


−0.4 0.2 0.6 0.1 −0.2

0 −0.5 0 0 0.4
0 0 −2 0 0.2

0.2 0.1 0.5 −1.25 0
0.25 0 −0.2 0.5 −1

 , B1 =


1 −1
2 1
0 0
0 0
0 0

 , B2 =


0
0
1

−2
1

 ,

C1 =

[
1 1 0 0 0
1 −1 0 0 0

]
, C2 =

[
0 0 1 −1 1

]
.

The system matrix A has the eigenvalues (−0.2592,−0.7904±0.1470i,−1.4535,−1.8564).
In the first case of the desired eigenvalues λ̂, starting from

K0 =

 1 1 0
1 1 0
0 0 1

 ,
the methods NCG, VLS+CG and MPRP-CG successfully converge to three different station-
ary points, where the total number of iterations are 138, 159 and 219, and the corresponding
CPU times are 3.84, 25.16 and 6.23 sec., respectively. The achieved final output feedback
gain matrices are:

KNCG
∗ =

 0.0043 0.1988 0
0.3422 0.4097 0

0 0 0.4482

 ,
KVLS+CG

∗ =

 0.1192 0.0111 0
2.1671 0.2765 0

0 0 0.2531

 ,
KMPRP−CG

∗ =

 −0.0058 0.1929 0
0.3198 0.3981 0

0 0 0.4471

 .
In the second choice of λ̂ starting from the zero matrix for K0 the three methods NCG,
VLS+CG and MPRP-CG successfully converge to three different stationary points, where
the total number of iterations are 3, 5 and 4 and the corresponding CPU times are 0.47, 0.52
and 0.44 sec., respectively. The following final output feedback gain matrices are obtained:

KNCG
∗ =

 −0.0832 0.0245 0
−0.2356 −0.0709 0

0 0 −0.0169

 ,
KVLS+CG

∗ =

 −0.1332 0.0065 0
−0.3953 −0.1399 0

0 0 −0.0176

 ,
KMPRP−CG

∗ =

 −0.0987 0.0184 0
−0.2885 −0.0927 0

0 0 −0.0171

 .
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Table 4 indicates the final eigenvalues of the matrix Ac = A+B1K1C1 +B2K2C2 after
applying the three methods on this test problem comparing with the desired eigenvalues λ̃
for s = 0.3.

Example 9.6. This test problem has three control stations and the constant data matrices
are [42]:

A =

 1 0 1
0 1 2
1 2 3

 , B1 =

 0
0
1

 , B2 =

 1
0
0

 , B3 =

 0
1
1


C1 =

[
1 0 0

]
, C2 =

[
0 0 1

]
, C3 =

[
1 2 2

]
.

The system matrix A has the eigenvalues (−0.4495, 1.0000, 4.4495). For the first case of

the desired eigenvalues λ̂, starting from the zero matrix for K0. The three methods NCG,
VLS+CG and MPRP-CG successfully converge to three different stationary points after 40,
76 and 48 iterations and with CPU times 0.89, 1.34 and 0.89 sec., respectively. The achieved
stationary points are:

KNCG
∗ =

 −0.4291 0 0
0 9.3166 0
0 0 −3.4151

 ,

KVLS+CG
∗ =

 −0.4296 0 0
0 9.3119 0
0 0 −3.4142

 ,
KMPRP−CG

∗ =

 −0.4259 0 0
0 9.2909 0
0 0 −3.4095

 .
For the second choice of λ̂ starting from the zero matrix for K0 the three methods NCG,

VLS+CG and MPRP-CG successfully converge to three different stationary points after
61, 54 and 31 iterations, where the corresponding CPU times are 0.99, 1.64 and 0.72 sec.,
respectively. The final stationary points are:

KNCG
∗ =

 −0.4897 0 0
0 9.9403 0
0 0 −3.5601

 ,

KVLS+CG
∗ =

 −0.4926 0 0
0 9.9653 0
0 0 −3.5657

 ,
KMPRP−CG

∗ =

 −0.4888 0 0
0 9.9353 0
0 0 −3.5589

 .
9.2 Performance of the CG methods on Problem (8.5)

The following two examples represent the application of the three CG methods on Problem
(8.5) of the state feedback PAP.
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Example 9.7. This test problem is taken from [22]. The given data matrices are the
following:

A =


0.9512 0 0 0

0 0.9048 −1.1895 3.569
0 0 0 0
0 0 0 0

 , B =


4.877 4.877

0 0
1 0
0 1

 , C = I4.

The system matrix A has the eigenvalues (0.9512, 0.9048, 0, 0).
The three methods are executed for the above mentioned choices of the desired poles

Λ̃. In the first case the methods NCG, VLS+CG and MPRP-CG successfully converge to
different stationary points after 7, 6 and 7 iterations and the corresponding CPU times are
0.25, 0.22 and 0.24 sec., respectively. The achieved final output feedback gain matrices are,
respectively:

KNCG
∗ =

[
−0.3411 0.4426 −0.4469 1.6809
−0.1130 −0.4281 0.5497 −1.5430

]
,

KVLS+CG
∗ =

[
−0.3402 0.4150 −0.4326 1.6281
−0.1152 −0.4358 0.5599 −1.5515

]
,

KMPRP−CGCG
∗ =

[
−0.3463 0.3942 −0.4044 1.6060
−0.1189 −0.4302 0.5660 −1.5318

]
.

In the second choice of Λ̃ the three methods converge to different stationary points after
5, 6 and 3 iterations with CPU times 0.17, 0.16 and 0.09 sec., respectively. The following
final output feedback gain matrices are obtained:

KNCG
∗ =

[
−0.4451 0.5654 −0.3299 2.1692
−0.1489 −0.5674 0.7257 −1.7777

]
,

KVLS+CG
∗ =

[
−0.4467 0.5327 −0.3076 2.1193
−0.1509 −0.5738 0.7346 −1.7831

]
,

KMPRP−CG
∗ =

[
−0.4261 0.6495 −0.4289 2.2558
−0.1512 −0.5606 0.7283 −1.7601

]
.

Example 9.8. This test problem is borrowed from [51] which has the following data ma-
trices:

A =

 −50 0 0
0.25 −0.125 0.357

1000.05 −0.025 −2.245

 , B =

 50
0

−100

 , C = I3,

The system matrix A has the eigenvalues (−2.2408,−0.1292,−50).
In the first case of the desired poles Λ̃, the methods NCG, VLS+CG and MPRP-CG

converge to the same stationary points after 22, 17 and 21 iterations, where the corresponding
CPU times are 1.16, 0.91 and 1.09 sec., respectively. The achieved final output feedback
gain matrices in the first case are:

KNCG
1∗ = KVLS+CG

1∗ = KMPRP−CG
1∗ =

[
0.0019 0.0002 0.0001

]
.

In the second choice of Λ̃ the methods NCG, VLS+CG and MPRP-CG also successfully
converge to the same stationary points after 25, 39 and 23 iterations and CPU times 1.2, 2
and 0.84 sec., respectively. The corresponding final output feedback gain matrices are the
following:

KNCG
2∗ = KVLS+CG

2∗ = KMPRP−CG
2∗ =

[
−0.0110 −0.0012 −0.0004

]
.
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Table 5 shows the overall performance of the three methods NCG, VLS+CG and MPRP-
CG for finding a local solution of the minimization problem (8.5). In this table we list the
average number of iterations and the average CPU time in seconds. We conclude that the
method VLS+CG is the best among the three methods with respect to the CPU-time in the
two considered cases.

In Tables 6 and 7 we compare the performance of the three methods NCG, VLS+CG
and MPRP-CG on test problems from different sources as well as from the benchmark
collection [24], respectively. We test each test problem for two shifts in the negative side of
the complex plane namely s = 0.1, 0.3. For each test problem we include the problem size
(n, p), the spectral abscissa ϑ(A) of the system matrix A, the total number of iterations and
the CPU time.

Conclusions and future research

Conjugate gradient methods have played a special role for solving large scale optimiza-
tion problems due to the simplicity of their iteration, convergence properties and their low
memory requirements. In this article the output feedback PAP is considered which is a spe-
cial algebraic inverse eigenvalue problem. Two formulations of the problem are considered;
the first one is a nonlinear least–squares problem while the second is based on minimizing
the spectral condition number of the closed–loop eigenvector matrix. The CG methods
are extended to tackle the output feedback PAP for decentralized control systems. Global
convergence is established for the three CG methods under a nonmonotonic backtracking
strategy. Moreover, some preliminary numerical tests arising from output feedback pole
assignment are presented and demonstrated the performance of the proposed methods.

Our future work is concentrated on the following directions not only solving output
feedback PAP but also improving the current implementation:

• smooth the proposed CG methods for output feedback PAP and its variants;

• use spectral conjugate gradient methods based on a modified secant equation [29] for
output feedback PAP and study the convergence properties of these methods using
different inexact line searches [14], [40], [46];

• design a conjugate gradient method that is suitable to solve ill-conditioned mini-
mization problems (the Hessian of objective functions at a stationary point is ill-
conditioned). Can we integrate trust region technique to the conjugate gradient meth-
ods for output feedback PAP and its variants?;

• apply three-term conjugate gradient algorithms [2] for output feedback PAP and its
variants.
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Table 3: Performance of the methods NCG, VLS+CG and MPRP-CG on test problems
from the benchmark collection [24] for two different choices of the desired poles λ̂.

No. of iterations and CPU-time (sec.)
Problem size NCG VLS+CG MPRP-CG

Problem n p r ϑ(A) # it. CPU # it. CPU # it. CPU
AC1 5 3 3 0 489 12.42 53 2 216 7.59

641 13.59 114 2.58 891 24.27
AC2 5 3 3 −9.2e−003 489 12.33 53 2.02 216 7.63

641 13.47 114 2.55 891 24.33
AC3 5 2 4 −7.9e−003 49 0.56 30 0.58 49 0.42

22 0.28 14 0.2 22 0.25
AC12 4 3 4 5.8e−001 185 7.25 131 9.74 226 7.05

756 22.84 301 8.25 388 11.8
AC15 4 2 3 −1.1e−002 29 0.28 26 0.41 24 0.34

40 0.77 18 0.31 30 0.45
AC16 4 2 4 −1.1e−002 17 0.28 15 0.41 26 0.39

36 0.39 25 0.53 36 0.66
HE2 4 2 2 −2.9e−002 94 2.53 84 3.34 173 3.16

259 6.69 429 13.72 196 6.44
HE3 8 4 6 8.71−002 52 0.92 67 1.83 42 0.74

101 1.72 244 11.55 239 9.92
HE4 8 4 6 2.3e−001 375 20.08 160 6.89 107 2.91

159 4.14 190 6.55 73 2.7
REA1 4 2 3 2.0 68 1.66 150 4.63 53 1.06

89 1.55 44 0.91 50 1.47
REA2 4 2 2 2.0 26 0.38 82 1.41 21 0.49

37 1 78 1.67 56 0.73
DIS1 8 4 4 −8.8e−002 124 20.5 77 6.94 256 13.13

799 38.66 588 37.52 152 27.16
DIS2 3 2 3 1.7e+000 12 0.11 14 0.19 19 0.19

20 0.33 16 0.16 16 0.24
DIS4 6 4 6 1.4e+000 37 1.07 37 1.53 30 0.86

36 1.19 41 1.41 44 1.55
NN2 2 1 1 0 9 0.39 9 0.39 9 0.38

– – – – – –
NN4 4 2 3 −4.1e−002 30 0.42 48 0.72 23 0.41

17 0.33 17 0.42 14 0.27
NN8 3 2 2 −2.9e−002 11 0.17 8 0.22 22 0.3

23 0.23 14 0.3 14 0.31
NN16 8 4 4 0 104 38.44 – – – –

– – – – – –
HF2D10 5 2 3 1.3e−001 53 0.97 61 1.52 166 1.95

122 2.05 68 1.67 61 1.22
HF2D11 5 2 3 2.5e−001 62 0.7 53 0.75 66 0.72

119 0.97 89 1.31 108 1.17
HF2D12 5 2 4 −1.7e−001 180 2.52 40 1.14 160 1.75

161 2.97 31 1 86 2.69
HF2D13 5 2 4 −2.5e−001 165 7.61 168 8.95 151 7.72

151 7.13 156 7.74 108 7.81
HF2D14 5 2 4 2.2e−001 110 7.58 – – – –

70 3.75 – – – –
HF2D15 5 2 4 1.6e+000 – – 286 16.53 – –

466 33.86 – – – –
HF2D17 5 2 4 5.4e−001 330 16.28 – – 166 6.39

138 5.8 – – 62 3.27
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Table 4: Comparison between the achieved final eigenvalues of Example 9.5.

λ̃ -0.3000 -0.8312 -0.8312 -1.4943 -1.8972

λNCG(Ac) -0.2978 -0.8326 -0.8326 -1.4982 -1.8888

λV LS+CG(Ac) -0.2961 -0.8296 -0.8296 -1.4983 -1.8931

λMPRP−CG(Ac) -0.2994 -0.8299 -0.8299 -1.4983 -1.8901

Table 5: State feedback PAP: Performance of the three CG methods for the two cases
s = 0.1, 0.3

NCG VLS+CG MPRP-CG
s = 0.1 s = 0.3 s = 0.1 s = 0.3 s = 0.1 s = 0.3

Av. No. of iterations 13.66 17.17 11.24 12.83 9.66 13.59
Av. CPU time (sec.) 5.17 3.29 2.39 2.54 3.41 2.64

Table 6: State feedback PAP: Performance of the methods NCG, VLS+CG and MPRP-CG
on test problems from different sources for two different choices of Λ̃.

No. of iterations and CPU-time (sec.)
Problem size NCG VLS+CG MPRP-CG

Problem n p ϑ(A) # it. CPU # it. CPU # it. CPU
[43] 4 3 2 11 0.11 12 0.11 6 0.08

12 0.11 15 0.09 12 0.09
[43] 4 2 2 8 0.06 6 0.09 4 0.09

3 0.08 5 0.09 4 0.05
[43] 4 3 1 4 0.19 26 0.52 5 0.14

4 0.13 6 0.16 4 0.11
[49] 5 2 54.52e−001 6 0.13 4 0.14 4 0.09

6 0.34 7 0.11 9 0.38
[22] 2 2 −1.0e−002 6 0.11 11 0.23 7 0.16

3 0.06 2 0.08 4 0.09
[22] 4 2 95.12e−002 7 0.25 6 0.22 7 0.24

5 0.17 6 0.16 3 0.09
[19] 4 2 1.9e+000 17 0.48 6 0.19 10 0.3

6 0.16 8 0.2 5 0.17
[34] 3 2 3 20 0.23 16 0.23 23 0.2

10 0.11 21 0.19 8 0.13
[39] 2 2 −0.1e−002 7 0.16 7 0.13 6 0.14

3 0.09 7 0.08 4 0.08
[4] 3 2 − 58.58e−002 4 0.11 5 0.11 4 0.09

5 0.05 4 0.11 4 0.08
[51] 3 1 − 1.29e−001 22 1.16 17 0.91 21 1.09

25 1.2 39 2 23 0.84
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Table 7: State feedback PAP: Performance of the methods NCG, VLS+CG and MPRP-CG
on test problems from the benchmark collection [24] for two different choices of Λ̃.

No. of iterations and CPU-time (sec.)
Problem size NCG VLS+CG MPRP-CG

Problem n p ϑ(A) # it. CPU # it. CPU # it. CPU
AC4 4 1 25.79e-001 14 0.5 11 0.39 14 0.47

16 0.47 13 0.38 10 0.28
AC11 4 2 54.52e−001 7 0.17 7 0.19 6 0.25

5 0.31 9 0.24 4 0.28
REA1 4 2 2.0 43 1.08 29 0.73 13 0.3

2 0.16 3 0.16 3 0.14
REA2 4 2 2.0 7 0.27 4 0.28 5 0.24

8 0.22 5 0.14 5 0.2
HF1 130 1 −1.9e−002 30 138.2 12 58.27 13 89.64

17 79.92 12 60.75 11 64.11
IH 21 11 0 29 2.23 13 1.66 13 1.39

18 1.11 10 1.5 10 0.59
NN1 3 1 36.06e−001 13 0.2 6 0.14 11 0.28

8 0.09 6 0.11 8 0.08
NN8 3 2 −2.9e−002 7 0.17 5 0.17 1 0.11

7 0.17 6 0.14 7 0.16
NN17 3 2 1.17e+000 6 0.09 8 0.16 9 0.11

3 0.09 5 0.13 2 0.11
HF2D10 5 2 1.3e−001 21 0.7 23 0.84 12 0.39

35 0.99 25 0.81 27 0.92
HF2D11 5 2 2.5e−001 18 0.5 11 0.36 15 0.44

11 0.33 15 0.47 13 0.41
HF2D12 5 2 −1.7e−001 18 0.69 17 0.78 18 0.83

24 0.86 12 0.47 24 1
HF2D13 5 2 −2.5e−001 12 0.41 12 0.44 12 0.39

17 0.58 22 0.91 16 0.53
HF2D14 5 2 2.2e−001 10 0.36 11 0.45 10 0.38

113 3.58 34 1.14 104 3.53
HF2D15 5 2 1.6e+000 25 0.53 21 0.59 12 0.3

12 0.27 8 0.28 12 0.34
HF2D16 5 2 11.35e−002 5 0.25 4 0.22 5 0.22

26 0.77 20 0.53 16 0.74
HF2D17 5 2 5.4e−001 10 0.38 10 0.38 7 0.22

87 2.52 20 0.61 39 1.13
HF2D18 5 2 28.08e−002 9 0.34 6 0.25 7 0.19

7 0.48 27 1.72 3 0.27


