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see [2, 4, 9, 10, 11, 16, 17, 18, 19, 20, 21]. In general, necessary and sufficient constraint
qualifications for strong duality are different from necessary and sufficient constraint quali-
fications for min-max duality. Actually, CCCQ implies [CQ2], however, the converse is not
always true. In other words, Lagrange strong duality and Lagrange min-max duality are
not equivalent.

In mathematical programming, surrogate duality is widely studied by many authors, for
example, see [1, 3, 5, 6, 7, 12, 13, 19, 21]. Surrogate duality enables one to replace the
problem by a simpler problem, in which the constraint function is a scalar one. In [19],
we investigated necessary and sufficient constraint qualifications for surrogate duality via
quasiconvex programming. We introduced the closed cone constraint qualification for sur-
rogate duality (S-CCCQ) as a necessary and sufficient constraint qualification for surrogate
strong duality via quasiconvex programming with convex constraints. We investigated the
basic constraint qualification for surrogate duality (S-BCQ) as a necessary and sufficient
constraint qualification for surrogate min-max duality via convex programming. However,
necessary and sufficient constraint qualifications for surrogate min-max duality via quasi-
convex programming with convex constraints have not been investigated yet as far as we
know. Also, relations between surrogate strong duality and surrogate min-max duality have
not been studied yet.

In this paper, we study a constraint qualification which completely characterizes sur-
rogate duality via quasiconvex programming. We show that S-CCCQ is a necessary and
sufficient constraint qualification for surrogate strong duality and surrogate min-max dual-
ity via quasiconvex programming with convex constraints. Also, we compare our constraint
qualification with previous ones for Lagrange duality and surrogate duality.

The remainder of the present paper is organized as follows. In Section 2, we introduce
some preliminaries. In Section 3, we study a constraint qualification which completely
characterizes surrogate duality via quasiconvex programming. In Section 4, we compare our
constraint qualification with previous ones.

2 Preliminaries

Let X be a locally convex Hausdorff topological vector space, X∗ the continuous dual space
of X, and ⟨x∗, x⟩ the value of a functional x∗ ∈ X∗ at x ∈ X. Given a set A∗ ⊂ X∗,
we denote the w∗-closure, the interior, the boundary, the convex hull, and the conical hull
generated by A∗, by clA∗, intA∗, bdA∗, coA∗, and coneA∗, respectively. The indicator
function δA of A ⊂ X is defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

The normal cone of A at x ∈ A is NA(x) := {v ∈ X∗ | ∀y ∈ A, ⟨v, y − x⟩ ≤ 0}. Let f be
a function from X to R := [−∞,∞]. A function f is said to be proper if for all x ∈ X,
f(x) > −∞ and there exists x0 ∈ X such that f(x0) ∈ R. We denote the domain of f by
domf := {x ∈ X | f(x) < ∞}. The epigraph of f is epif := {(x, r) ∈ X × R | f(x) ≤ r},
and f is said to be convex if epif is convex. The subdifferential of f at x is defined as
∂f(x) := {v ∈ X∗ | ∀y ∈ X, f(y) ≥ f(x) + ⟨v, y − x⟩}. The Fenchel conjugate of f , f∗ :
X∗ → R, is defined as f∗(v) := supx∈X{⟨v, x⟩− f(x)}. Define level sets of f with respect to
a binary relation ⋄ on R as

L(f, ⋄, β) := {x ∈ X | f(x) ⋄ β}
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for each β ∈ R. A function f is said to be quasiconvex if for each β ∈ R, L(f,≤, β) is convex.
Any convex function is quasiconvex, but the converse is not generally true. A function f is
said to be quasiaffine if f and −f are quasiconvex.

Let Y be a locally convex Hausdorff topological vector space, partially ordered by a
nonempty, closed, and convex cone K ⊂ Y , that is, for y, z ∈ Y , the notation y ≤K z will
mean z − y ∈ K, Y ∗ the continuous dual space of Y , and g a function from X to Y . The
positive polar cone of K is K+ := {λ ∈ Y ∗ | ∀y ∈ K, ⟨λ, y⟩ ≥ 0}. A function g is said to be
K-convex if for all x1, x2 ∈ X, and α ∈ [0, 1], (1−α)g(x1)+αg(x2) ∈ g((1−α)x1+αx2)+K.
It is well known that g is K-convex if and only if λ ◦ g is convex for all λ ∈ K+.

Let f be a function from X to R, g a continuous K-convex function from X to Y , C a
closed convex subset of X, and A = C ∩ g−1(−K). In convex programming, the following
Lagrange strong duality has been studied mainly:

inf
x∈A

f(x) = max
λ∈K+

inf
x∈C

{f(x) + λ ◦ g(x)}.

Also, the following Lagrange min-max duality has attracted the attention of many re-
searchers:

min
x∈A

f(x) = max
λ∈K+

inf
x∈C

{f(x) + λ ◦ g(x)}.

In quasiconvex programming, the following surrogate strong duality and surrogate min-max
duality have been investigated:

inf
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0},

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

We can easily check that the following inequality holds: for each λ ∈ K+,

inf
x∈A

f(x) ≥ inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0} ≥ inf
x∈C

{f(x) + λ ◦ g(x)}.

Hence, if Lagrange duality holds, then surrogate duality also holds. Conversely, even if sur-
rogate duality holds, Lagrange duality does not always hold, see Section 4 for more details.
Recently, some conditions have been investigated as necessary and sufficient constraint qual-
ifications for Lagrange strong duality and Lagrange min-max duality, see [2, 4, 9, 10, 11].
Since necessary and sufficient constraint qualifications for Lagrange strong duality are dif-
ferent from necessary and sufficient constraint qualifications for Lagrange min-max duality,
Lagrange strong duality and Lagrange min-max duality are not equivalent. On the other
hand, in [19], we investigate a necessary and sufficient constraint qualification for surrogate
strong duality via quasiconvex programming with convex constraints and a necessary and
sufficient constraint qualification for surrogate min-max duality via convex programming.
However, necessary and sufficient constraint qualifications for surrogate min-max duality via
quasiconvex programming with convex constraints have not been investigated yet as far as
we know. Also, relations between surrogate strong duality and surrogate min-max duality
have not been studied yet.

3 A Constraint Qualification Which Completely Characterizes Sur-
rogate Duality

In this paper, we consider the following optimization problem:{
minimize f(x),
subject to x ∈ A = C ∩ g−1(−K),
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whereX and Y are locally convex Hausdorff topological vector spaces, K ⊂ Y is a nonempty,
closed, and convex cone, Y is partially ordered by K, f is a function from X to R, g is a
continuous K-convex function from X to Y , and C is a closed convex subset of X. Assume
that A = C ∩ g−1(−K) is nonempty. Let Bλ = C ∩ L(λ ◦ g,≤, 0) for each λ ∈ K+.

In this section, we study a constraint qualification which completely characterize surro-
gate duality via quasiconvex programming. We need the following lemmas.

Lemma 3.1 ([19]). The following statements hold:

(i) for all λ ∈ K+, epi δ∗Bλ
= cl[cone epi (λ ◦ g)∗ + epi δ∗C ],

(ii) epi δ∗A = cl
∪

λ∈K+

cl[cone epi (λ ◦ g)∗ + epi δ∗C ].

An inequality system {g(x) ∈ −K | x ∈ C} is said to satisfy the closed cone constraint
qualification for surrogate duality (S-CCCQ) if∪

λ∈K+

cl
[
cone epi (λ ◦ g)∗ + epi δ∗C

]
is w∗-closed. We can check easily that {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ if and only if

epiδ∗A ⊂
∪

λ∈K+

cl
[
cone epi (λ ◦ g)∗ + epi δ∗C

]
,

in detail, see [19].

Lemma 3.2 ([19]). The following statements are equivalent:

(i) {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ,

(ii) for each usc quasiconvex function f from X to R,

inf
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0},

(iii) for each v ∈ X∗,

inf
x∈A

v(x) = max
λ∈K+

inf{v(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

In the following theorem, we show that S-CCCQ completely characterizes surrogate
strong duality and surrogate min-max duality for quasiconvex programming with convex
constraints. The proof is short and precise because the definition of f0 is essential.

Theorem 3.3. The following statements are equivalent:

(i) {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ,

(ii) for each usc quasiconvex function f from X to R,

inf
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0},
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(iii) for each v ∈ X∗,

inf
x∈A

v(x) = max
λ∈K+

inf{v(x) | x ∈ C, λ ◦ g(x) ≤ 0},

(iv) for each usc quasiconvex function f from X to R which attains its minimum on A,

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0},

(v) for each usc quasiaffine function f from X to R which attains its minimum on A,

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0},

(vi) there exists x0 ∈ A such that for each usc quasiconvex function f from X to R which
attains its minimum on A at x0,

f(x0) = min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

(vii) there exists x0 ∈ A such that for each usc quasiaffine function f from X to R which
attains its minimum on A at x0,

f(x0) = min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

Proof. By Lemma 3.2, (i), (ii), and (iii) are equivalent. Also, it is clear that

(ii) =⇒ (iv) =⇒ (v) =⇒ (vii), and (ii) =⇒ (vi) =⇒ (vii).

We show that (vii) implies (i). We only show that

epiδ∗A ⊂
∪

λ∈K+

cl [cone epi (λ ◦ g)∗ + epi δ∗C ] .

Let (x∗, α) ∈ epi δ∗A. We define a function f0 from X to R as follows:

f0(x) =

{
−⟨x∗, x⟩ , ⟨x∗, x⟩ > δ∗A(x

∗),
−δ∗A(x

∗), ⟨x∗, x⟩ ≤ δ∗A(x
∗).

Let α ∈ R. If α ≥ −δ∗A(x
∗), then

L(f0,≤, α) = X, and L(f0,≥, α) = ∅.

If α < −δ∗A(x
∗), then

L(f0,≤, α) = {x ∈ X | x∗(x) ≥ −α}, and L(f0,≥, α) = {x ∈ X | x∗(x) ≤ −α}.

This shows that for each α ∈ R, L(f0,≤, α) is convex, and L(f0,≥, α) is closed convex, that
is, f0 is usc quasiaffine. We can see that f0(x) = −δ∗A(x

∗) for each x ∈ A. This means that
f0 is constant on A, that is, f0 attains its minimum on A at x0 ∈ A.

Hence, by the statement (vii), there exists λ̄ ∈ K+ such that

−δ∗A(x
∗) = f0(x0) = min

x∈A
f0(x) = inf{f0(x) | x ∈ C, λ̄ ◦ g(x) ≤ 0}.
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Let x ∈ Bλ̄. We show that ⟨x∗, x⟩ ≤ δ∗A(x
∗). Actually, if ⟨x∗, x⟩ > δ∗A(x

∗), then f0(x) =
−⟨x∗, x⟩, and

⟨x∗, x⟩ = −f0(x) ≤ δ∗A(x
∗).

This is a contradiction. This implies that δ∗Bλ̄
(x∗) ≤ δ∗A(x

∗) ≤ α. Therefore,

(x∗, α) ∈ epi δ∗Bλ̄
= cl[cone epi (λ̄ ◦ g)∗ + epi δ∗C ]

because of Lemma 3.1. This shows that (i) holds.

Remark 3.4. Let F be a subset of {f : X → R}. If

X∗ ⊂ F ⊂ {f : X → R, usc quasiconvex},

then S-CCCQ is equivalent that for each f ∈ F , surrogate strong duality holds. Also, if

{f : X → R, usc quasiaffine} ⊂ F ⊂ {f : X → R, usc quasiconvex},

then S-CCCQ is equivalent that for each f ∈ F , surrogate min-max duality holds. S-CCCQ
implies that for each v ∈ X∗, surrogate min-max duality holds. However, the converse is
not generally true, since

{f : X → R, usc quasiaffine} ̸⊂ X∗.

4 Comparisons

In this section, we compare S-CCCQ with previous constraint qualifications for Lagrange
duality and surrogate duality.

At first, we introduce a necessary and sufficient constraint qualification for surrogate
min-max duality via convex programming. An inequality system {g(x) ∈ −K | x ∈ C} is
said to satisfy the basic constraint qualification for surrogate duality (S-BCQ) at x0 ∈ A if

NA(x0) ⊂
∪

λ∈K+

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]

}
.

{g(x) ∈ −K | x ∈ C} is said to satisfy S-BCQ if for all y ∈ A, {g(x) ∈ −K | x ∈ C} satisfies
S-BCQ at y.

In the following theorem, we show that S-BCQ is a necessary and sufficient constraint
qualification for surrogate min-max duality via convex programming.

Theorem 4.1 ([19]). The following statements are equivalent:

(i) {g(x) ∈ −K | x ∈ C} satisfies S-BCQ,

(ii) for each real-valued continuous convex function f on X which attains its minimum
on A,

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

(iii) for each v ∈ X∗ which attains its minimum on A,

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.
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Remark 4.2. Let F be a subset of {f : X → R} satisfying

X∗ ⊂ F ⊂ {f : X → R, continuous convex}.

Then, S-BCQ is equivalent that for each f ∈ F , surrogate min-max duality holds. By
Theorem 3.3 and Theorem 4.1, we can prove that S-CCCQ implies S-BCQ. However, the
converse is not generally true.

In convex programming, S-BCQ characterizes surrogate min-max duality. It is clear that
S-BCQ implies S-BCQ at x0 ∈ A. However, the converse is not always true. Hence, the
following two statements are not equivalent:

(i) for each real-valued continuous convex function f from X to R which attains its min-
imum on A,

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0},

(ii) there exists x0 ∈ A such that for each real-valued continuous convex function f which
attains its minimum at x0,

f(x0) = min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

On the other hand, surprisingly, the statements (iv) and (vi) in Theorem 3.3 are equivalent.
S-CCCQ is a necessary and sufficient constraint qualification for three types of surrogate
duality via quasiconvex programming with convex constraints.

Next, we introduce some constraint qualifications for convex constraints.

Definition 4.3 ([2, 9, 10]). Let g be a continuous K-convex function from X to Y , and C
a closed convex subset of X. Assume that A = C ∩ g−1(−K) is nonempty.

(i) {g(x) ∈ −K | x ∈ C} is said to satisfy the closed cone constraint qualification (CCCQ)
if ∪

λ∈K+

epi (λ ◦ g)∗ + epi δ∗C

is w∗-closed,

(ii) {g(x) ∈ −K | x ∈ C} is said to satisfy [CQ2] if

NA(x0) ⊂ NC(x0) +

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈
∪

λ∈K+

epi (λ ◦ g)∗
}

for all x0 ∈ A.

Definition 4.4 ([2, 4, 11]). Let I be an index set, gi proper lsc convex functions from X
to R, C a closed convex subset of X, and S = ∩i∈IL(gi,≤, 0). Assume that A = C ∩ S is
nonempty.

(i) {gi(x) ≤ 0 | i ∈ I, x ∈ C} is said to be Farkas-Minkowski (FM) if

epiδ∗A = cone co
∪
i∈I

epig∗i + epiδ∗C ,
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(ii) {gi(x) ≤ 0 | i ∈ I} is said to satisfy the basic constraint qualification (BCQ) relative
to C at x ∈ A if

NC∩S(x) ⊂ NC(x) + cone co
∪

i∈I(x)

∂gi(x).

(iii) {gi(x) ≤ 0 | i ∈ I, x ∈ C} is said to be locally Farkas-Minkowski (LFM) if {gi(x) ≤
0 | i ∈ I} satisfies BCQ relative to C at for each x ∈ A.

In convex programming, CCCQ, FM, and similar constraint qualifications involving an
epigraph, are studied as necessary and sufficient constraint qualifications for Lagrange strong
duality. Also, [CQ2], BCQ, LFM, and similar constraint qualifications involving a normal
cone, are introduced as necessary and sufficient constraint qualifications for Lagrange min-
max duality. Similarly, in [19, 21], we investigate necessary and sufficient constraint qual-
ifications for surrogate duality. S-CCCQ, which is a condition involving an epigraph, is a
necessary and sufficient constraint qualification for surrogate strong duality via quasiconvex
programming with convex constraints. S-BCQ at x ∈ A, which is a condition involving a
normal cone of A at x, is a necessary and sufficient constraint qualification for surrogate
min-max duality via convex programming. In general, necessary and sufficient constraint
qualifications for strong duality are different from necessary and sufficient constraint quali-
fications for min-max duality. In convex programming, it is well known that CCCQ implies
[CQ2], and the converse is not generally true. Also, we can easily show that [CQ2] at a
fixed x ∈ A is weaker than [CQ2]. On the other hand, surprisingly, S-CCCQ is a necessary
and sufficient constraint qualification for three types of surrogate duality, see Theorem 3.3.
This result indicates that S-CCCQ completely characterizes surrogate duality for quasicon-
vex programming with convex constraints. Such a constraint qualification have not been
introduced yet as far as we know. The following Table 1 summarizes our results.

duality objective constraint strong min-max min-max at x0

Lagrange convex real FM [4] LFM [4] LFM at x0

BCQ BCQ at x0

Lagrange convex vector CCCQ [9] [CQ2] [9] [CQ2] at x0

surrogate convex vector S-CCCQ S-BCQ S-BCQ at x0 [19]

surrogate quasiconvex vector S-CCCQ [19] S-CCCQ S-CCCQ

Table 1 Necessary and sufficient constraint qualifications

Strictly speaking, BCQ is a necessary and sufficient constraint qualification for the optimality
condition, and LFM at x0 and [CQ2] at x0 have not been investigated yet in the previous
literatures. However, we can check easily that these conditions are necessary and sufficient
constraint qualifications for these duality theorems.

Next, we study relations between constraint qualifications for convex constraints. For
simplicity, we consider constraint qualifications for a real-valued convex inequality system.
Let I be an index set, gi a real-valued continuous convex function on X for each i ∈ I, and
g a function from X to RI such that g(x) = (gi(x))i∈I . Then, we can easily see that g is
RI

+-convex. We define the following constraint qualifications. {gi(x) ≤ 0 | i ∈ I} is said to
satisfy S-CCCQ if {g(x) ∈ −RI

+} satisfies S-CCCQ, that is,

epiδ∗A ⊂
∪

λ∈R(i)
+

cl

[
cone epi

(∑
i∈I

λigi

)∗

+ epi δ∗C

]
,
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where R(i)
+ := {λ ∈ RI | ∀i ∈ I, λi ≥ 0, {i ∈ I | λi ̸= 0} is finite}. Similarly, {gi(x) ≤ 0 | i ∈

I} is said to satisfy S-BCQ at x0 ∈ A if {g(x) ∈ −RI
+} satisfies S-BCQ at x0, that is,

NA(x0) ⊂
∪

λ∈R(i)
+

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈ cl

[
cone epi

(∑
i∈I

λigi

)∗

+ epi δ∗C

]}
,

We show the following nine examples concerned with constraint qualifications for convex
inequality constraints.

Example 4.5 (FM). Let g1(x) = x2 − 2x. Then, A = {x ∈ R | g1(x) ≤ 0} = [0, 2] and

g∗1(v) =
v2

4 + v + 1. Hence

epiδ∗A = {(x, α) ∈ R2 | α ≥ max{2x, 0}} = cone epig∗1 ,

that is, FM is satisfied.

Example 4.6 (S-CCCQ, LFM and not FM). Let I = [0, 1], wi = (1−i, i), for each i ∈ (0, 1),

gi(x) = ⟨wi, x⟩+ 2
√
i(1− i),

and for each i ∈ {0, 1},

gi(x) =

{
(⟨w1, x⟩)2 ⟨w1, x⟩ ≥ 0,
0 otherwise.

Then A = {x ∈ R2 | gi(x) ≤ 0, ∀i ∈ I} = {x ∈ R2 | x1x2 ≥ 1, x1 < 0}. We can
check that Lagrange strong duality does not always hold. Actually, let f(x) = −x1 then

infx∈A f(x) = 0, but f does not attain its minimum. For each λ ∈ R(i)
+ ,

inf
x∈A

f(x) = 0 > inf
x∈Rn

{
f(x) +

∑
i∈I

λigi(x)

}
.

This shows that Lagrange strong duality does not hold for f . Since FM is a necessary and
sufficient constraint qualification for Lagrange strong duality, FM is not satisfied.

On the other hand, Lagrange min-max duality always holds. Actually, let f be a real-
valued convex function which attains its minimum on A. If a solution x ∈ intA, then

inf
x∈A

f(x) = inf
x∈R2

f(x) = inf
x∈R2

{
f(x) +

∑
i∈I

0gi(x)

}
.

If a solution x ∈ bdA, then x1x2 = 1. Then, there exists i0 ∈ (0, 1) such that ⟨wi0 , x⟩ =
−2
√
i0(1− i0). Hence, NA(x) = cone{wi0}, and

0 ∈ ∂f(x) +NA(x) = ∂f(x) + cone{wi0}.

This shows that there exists λi0 ≥ 0 such that

inf
x∈A

f(x) = inf
x∈R2

{f(x) + λi0gi0(x)} .

Since LFM is a necessary and sufficient constraint qualification for Lagrange min-max du-
ality, LFM is satisfied.
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Surrogate strong duality always holds. Let v ∈ R2. If v attains its minimum on A, then
Lagrange min-max duality holds. Hence,

min
x∈A

v(x) = max
λ∈R(i)

+

inf
x∈R2

{
v(x) +

∑
i∈I

λigi(x)

}
.

We can check easily that for each λ ∈ R(i)
+ ,

inf
x∈A

v(x) ≥ inf

{
v(x)

∣∣∣∣∣ ∑
i∈I

λigi(x) ≤ 0

}
≥ inf

x∈R2

{
v(x) +

∑
i∈I

λigi(x)

}
.

This means that surrogate strong duality holds. If v does not attain its minimum on A,
then v ∈ {w ∈ R2 | w1 > 0 or w2 > 0} ∪ cone{(−1, 0), (0,−1)}. When v ∈ {w ∈ R2 | w1 >

0 or w2 > 0}, then infx∈A v(x) = −∞ and surrogate strong duality holds for each λ ∈ R(i)
+ .

If v ∈ cone{(−1, 0)}, then

inf
x∈A

v(x) = 0 = inf{v(x) | g0(x) ≤ 0}.

Also, if v ∈ cone{(0,−1)}, then

inf
x∈A

v(x) = 0 = inf{v(x) | g1(x) ≤ 0}.

This shows that surrogate strong duality holds for each v ∈ R2. Hence, by Lemma 3.2,
S-CCCQ is satisfied.

Example 4.7 (LFM and not S-CCCQ). Let I = (0, 1), wi = (1− i, i), and

gi(x) = ⟨wi, x⟩+ 2
√
i(1− i),

Then A = {x ∈ R2 | gi(x) ≤ 0,∀i ∈ I} = {x ∈ R2 | x1x2 ≥ 1, x1 < 0}. By the similar way
in Example 4.6, we can show that LFM is satisfied.

Let v = (−1, 0), then infx∈A v(x) = 0, and we can check that for each λ ∈ R(i)
+ ,

inf
x∈A

v(x) = 0 > inf

{
v(x)

∣∣∣∣∣ ∑
i∈I

λigi(x) ≤ 0

}
.

This means that S-CCCQ is not satisfied.

Example 4.8 (S-CCCQ, LFM for some x0 ∈ bdA and not LFM). Let I = [0, 1], wi =
(−i, i− 1), for each i ∈ (0, 1],

gi(x) =

{
(⟨wi, x⟩)2 ⟨wi, x⟩ > 0,
0 otherwise,

and

g0(x) =

{
⟨w0, x⟩ ⟨w0, x⟩ > 0,
0 otherwise,

Then, A = {x ∈ R2 | gi(x) ≤ 0,∀i ∈ I} = R2
+. Let x0 = (1, 0). Then, LFM at x0 is satisfied.

Actually, ⟨w0, x0⟩ = 0 = g0(x0) and

NA(x0) = {(v1, v2) ∈ R2 | v1 = 0, v2 ≤ 0} = cone ∂g0(x0).
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However, let x = (0, 0), then LFM at x is not satisfied. Actually,

NA(x) = −R2
+ ⊋ {(v1, v2) ∈ R2 | v1 = 0, v2 ≤ 0} = cone co

∪
i∈I(x)

∂gi(x).

We show that surrogate strong duality always holds. Let v ∈ R2. If v attains its minimum
on A, then v ∈ R2

+ and infx∈A v(x) = 0. We can check that there exists i0 ∈ I such that
v ∈ −cone{wi0} and

inf
x∈A

v(x) = 0 = inf{v(x) | gi0(x) ≤ 0}.

If v does not attain its minimum on A, then v ∈ {w ∈ R2 | w1 < 0 or w2 < 0}. Since

infx∈A v(x) = −∞, surrogate strong duality holds for each λ ∈ R(i)
+ . By Lemma 3.2, S-

CCCQ is satisfied.

Example 4.9 (S-BCQ, LFM for some x0 ∈ bdA, not S-CCCQ, and not LFM). Let I =
(0, 1), wi = (1− i, i) for each i ∈ (0, 1),

gi(x) =

{(
⟨wi, x⟩+ 2

√
i(1− i)

)2
⟨wi, x⟩ > −2

√
i(1− i),

0 otherwise

for each i ∈ (0, 1) \ { 1
2}, and

g 1
2
(x) =

⟨
w 1

2
, x
⟩
+ 1.

Then A = {x ∈ R2 | gi(x) ≤ 0, ∀i ∈ I} = {x ∈ R2 | x1x2 ≥ 1, x1 < 0}.
For each x ∈ A, S-BCQ at x is satisfied. Actually, if x ∈ intA, it is clear that

NA(x) = {0} ⊂
∪

λ∈R(i)
+

{
x∗ ∈ R2

∣∣∣∣ (x∗, ⟨x∗, x⟩) ∈ cl

[
cone epi

(∑
i∈I

λigi

)∗]}
.

It x ∈ bdA, then there exists i0 ∈ I such that NA(x) = cone{wi0}. This shows that

NA(x) = cone{wi0}
⊂

{
x∗ ∈ R2 | (x∗, ⟨x∗, x⟩) ∈ cl cone epi g∗i0

}
⊂

∪
λ∈R(i)

+

{
x∗ ∈ R2

∣∣∣∣ (x∗, ⟨x∗, x⟩) ∈ cl

[
cone epi

(∑
i∈I

λigi

)∗]}
.

We can easily show that LFM at x0 = (−1,−1) ∈ A is satisfied since g 1
2
(x0) = 0 and

∂g 1
2
(x0) = {w 1

2
}. However, LFM at x =

(
− 1√

3
,−

√
3
)
is not satisfied since g 1

4
(x) = 0 and

∂g 1
4
(x) = {0}.
Let v = (−1, 0), then infx∈A v(x) = 0, and we can check that for each λ ∈ R(i)

+ ,

inf
x∈A

v(x) = 0 > inf

{
v(x)

∣∣∣∣∣ ∑
i∈I

λigi(x) ≤ 0

}
.

This means that S-CCCQ is not satisfied.
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Example 4.10 (S-CCCQ and not LFM for each x ∈ bdA). Let I = [0, 1], wi = (−i, i− 1),
for each i ∈ I,

gi(x) =

{
(⟨wi, x⟩)2 ⟨wi, x⟩ > 0,
0 otherwise.

Then, A = {x ∈ R2 | gi(x) ≤ 0,∀i ∈ I} = R2
+. We can show that S-CCCQ is satisfied by

the similar way in Example 4.8. Also, since ∂gi(x) = {0} for each i ∈ I and x ∈ A, LFM is
not satisfied for each x ∈ bdA.

Example 4.11 (S-BCQ, not S-CCCQ and not LFM for each x ∈ bdA). Let I = (0, 1),
wi = (1− i, i), for each i ∈ (0, 1),

gi(x) =

{(
⟨wi, x⟩+ 2

√
i(1− i)

)2
⟨wi, x⟩ > −2

√
i(1− i),

0 otherwise.

Then A = {x ∈ R2 | gi(x) ≤ 0,∀i ∈ I} = {x ∈ R2 | x1x2 ≥ 1, x1 < 0}. By the similar way
in Example 4.9, we can show that S-BCQ is satisfied, S-CCCQ is not satisfied. Also, by the
similar way in Example 4.10, we can show that LFM at for each x ∈ A are not satisfied.

Example 4.12 (LFM for some x0 ∈ bdA and not S-BCQ). Let I = (0, 1], wi = (−i, i− 1),
gi be a function as follows:

gi(t) =

{
⟨wi, x⟩ ⟨wi, x⟩ > 0,
0 otherwise.

Then, A = {x ∈ R2 | gi(x) ≤ 0,∀i ∈ I} = R2
+. LFM at x0 = (0, 1) is satisfied since g1(x) = 0

and NA(x0) = {(v1, 0) | v1 ≤ 0} = cone ∂g1(x0). However, let x = (1, 0), then for each
i ∈ I, gi(x) < 0. This means that LFM at x is not satisfied, that is, LFM is not satisfied.

We show that S-BCQ at x = (1, 0) is not satisfied. Actually, let v = (0, 1), then v is a

linear function on R2 and v(x) = 0 = infy∈A v(y). However, for each λ ∈ R(i)
+ ,

v(x) = 0 > inf

{
v(y)

∣∣∣∣∣ ∑
i∈I

λigi(y)

}
.

This shows that S-BCQ at x is not satisfied, that is, S-BCQ is not satisfied.

Example 4.13 (S-BCQ for some x0 ∈ bdA, not S-BCQ, and not LFM for each x ∈ bdA).
Let I = (0, 1) \ { 1

2}, wi = (1− i, i), for each i ∈ I,

gi(x) =

{(
⟨wi, x⟩+ 2

√
i(1− i)

)2
⟨wi, x⟩ > −2

√
i(1− i),

0 otherwise.

Then A = {x ∈ R2 | gi(x) ≤ 0,∀i ∈ I} = {x ∈ R2 | x1x2 ≥ 1, x1 < 0}. By the similar way
in Example 4.12, we can show that S-BCQ at x = (−1,−1) is not satisfied. By the similar
way in Example 4.9, we can show that S-BCQ at for each x ∈ bdA \ {(−1,−1)} is satisfied.
Also, by the similar way in Example 4.10, LFM is not satisfied at for each x ∈ bdA.

The following Venn diagram of constraint qualifications summarizes the results illustrated
by the examples.
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FM

(Ex. 4.5)

LFM

(Ex. 4.7)

S-CCCQ

LFM at some x0

S-BCQ

S-BCQ at some x0

(Ex. 4.6)

(Ex. 4.8) (Ex. 4.9)

(Ex. 4.10) (Ex. 4.11)

(Ex. 4.12)

(Ex. 4.13)

Fig. 1 Venn Diagram of constraint qualifications
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