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all LSIP problems for which a feasible solution x∗ is optimal if and only if one of the
classical KKT, complementary, and Lagrangian saddle point conditions holds true at x∗.
The optimality theorem of this paper has found applications in [12] where the fundamental
theorem of linear programming is extended to LSIP.

The outline of this paper is as follows. Following this introductory section, in Section 2,
new Farkas-Minkowski type constraint qualifications are proposed. Some relations of the
new CQs with the existing ones are discussed. A number of interesting properties involving
the new and some existing CQs are given. In Section 3, the classical optimality theorem
is discussed in relation to a number of constraint qualifications that are relevant to this
paper. It is shown that the classical optimality theorem holds true under a more general
CQ called locally directional FM CQ (or locally FM CQ in a given direction) proposed in
Section 2, and that in order for the classical KKT, complementary, and Lagrangian saddle
point conditions to remain equivalent to the optimality of a feasible point, this CQ cannot be
further relaxed. These indicate that the locally directional FM CQ is the most general CQ
for the classical optimality theorem to hold true. A few recent optimality results for LSIP
without any constraint qualification, together with one obtained in this paper by applying
the new optimality theorem under the LDFM CQ, are included for an updated picture of
the optimality theory of LSIP. The paper is ended by some brief comments in Section 4.

2 The LSIP Problem and Some Associated CQs

For convenience, we use the following notations following [12, 13] and some earlier works
cited therein. In case the elements, rows or columns of a matrix (or a vector) need to be
specified, they will usually be listed in the text as demonstrated below. For example, the
elements of 2 × 2 matrix A = [aij ]2×2 can be specified as A = [a11, a12; a21, a22]. If an
m×n matrix A has rows a1,a2, · · · ,am or columns b1, b2, · · · , bn, then A can be written
as A = [a1; a2; · · · ; am] or A = [b1, b2, · · · , bn], respectively. We note that in the above
notation for matrices row entries are separated by commas and column entries are separated
by semicolons. For clarity, we will use Rn and Rn to represent the n-column and the n-row
vector spaces, respectively.

In this paper, we consider the following general LSIP problem.
Problem P(c;a, b, T ):

inf cTx (2.1)

s. t. a(t)x ≤ b(t) for t ∈ T, (2.2)

where x = [x1;x2; · · · ;xn] ∈ Rn is the decision vector, c = [c1; c2; · · · ; cn] ∈ Rn is the
objective vector, T is a given arbitrary index set, and

a(t) = [a1(t), a2(t), · · · , an(t)] : t → Rn

and
b(t) : t → R

are given functions defined on T , where a(t) satisfies ∥a(t)∥ = 1 for all t ∈ T . The feasible
region and the optimal set of problem P(c;a, b, T ) are denoted by F and F∗, respectively.

It is well known that the KKT, the complementary, and the Lagrangian saddle point
conditions each characterizes the optimality of a feasible point for problems satisfying the
locally Farkas Minkowski (LFM) CQ which is weaker than other main classes of CQs ([5]).
We recall that a linear inequality αTx ≤ β, where α ∈ Rn and β ∈ R, is said to be
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a linear consequence of the constraint system of problem P(c;a, b, T ) (or simply a linear
consequence of problem P(c;a, b, T ) ) if αTx ≤ β is satisfied by all x ∈ F . A linear
consequence of problem P(c;a, b, T ) is said to be finite if it is a linear consequence of a finite
constraint subsystem of problem P(c;a, b, T ) .

Problem P(c;a, b, T ) (or its constraint system) is said to be LFM, if all of its linear conse-
quences binding F at certain point of F are finite linear consequences. Problem P(c;a, b, T )
(or its constraint system) is said to be LFM at x∗ ∈ F , if every linear consequence binding
F at x∗ is finite.

Some new CQs of Farkas-Minkowski type are proposed in the following.

Definition 2.1. Let α ∈ Rn be a non-zero vector. Problem P(c;a, b, T ) is said to be
Farkas-Minkowski in the direction of α, or DFM in α in brief, if every linear consequence of
problem P(c;a, b, T ) with normal vector α is finite. It is said to be locally Farkas-Minkowski
in the direction of α, or simply LDFM in α, if all linear consequences of the constraint system
with normal vector α that is binding F at some point of F are finite.

Lemma 2.2. The following are simple properties regarding the directional FM CQs.

(a) Problem P(c;a, b, T ) has at most one binding linear consequence with normal vector
in a given direction.

(b) If x∗ ∈ F∗, then −cTx ≤ −cTx∗ is the only binding linear consequence. (Note that
the only possible situation in which problem P(c;a, b, T ) is not LDFM in −c arises
when this linear consequence is not a finite consequence.)

(c) For any non-zero vector α ∈ Rn, if problem P(c;a, b, T ) is DFM in α it must be
LDFM in α.

(d) Problem P(c;a, b, T ) is LDFM in all directions if it has no optimal solution.

(e) If problem P(c;a, b, T ) has an optimal solution, then it is DFM in −c if and only if it
is LDFM in −c.

Proof. Properties (a)-(d) are straightforward from the definitions of DFM in α and LDFM
in α. To show that (e) holds, let v∗ be the optimal value of problem P(c;a, b, T ). The
only linear consequence binding F and having normal vector −c is −cTx ≤ v∗. If prob-
lem P(c;a, b, T ) is LDFM in −c, that is, if −cTx ≤ v∗ is a linear consequence of a finite con-
straint subsystem, then any other linear consequences with normal vector in the direction of
−c are consequences of the same finite constraint subsystem and hence problem P(c;a, b, T )
is DFM in −c. Then, (e) follows from (c).

The following example provides an LSIP problem that is LDFM in −c but not DFM in
−c.

Example 2.3. The problem is specified by a(t) = [1/
√
1 + t4, −t2/

√
1 + t4], b(t) =

−t/
√
1 + t4, c = [0; 1], and T = {t | 0 < t < ∞}.

As shown in Figure 1, F is the region above the curve x2 = − 1
4x1

for −∞ < x1 < 0.
The straight lines corresponding to t = 1, 2, · · · demonstrate the corresponding constraints.
We see that this problem is feasible and bounded. It has optimal value v∗ = 0 but has no
optimal solution. The feasible region has no binding linear consequence with normal vector
−c. Thus, it is LDFM in −c, but not DFM in −c as the inequality −cTx ≤ 0 is a linear
consequence but not a finite linear consequence.
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Figure 1: Constraints and Feasible Region for Example 2.3

Lemma 2.4. The following are properties on the relation between the directional FM CQs
and some well-known CQs.

(a) Problem P(c;a, b, T ) is FM if and only if it is DFM in all directions.

(b) Problem P(c;a, b, T ) is LFM if and only if it is LDFM in all directions.

(c) For x∗ ∈ F∗, if the constraint system of problem P(c;a, b, T ) is LFM at x∗, then
problem P(c;a, b, T ) must be LDFM in −c.

Proof. Properties (a) and (b) are straightforward from the definitions of the corresponding
CQs. To prove (c), we note that if problem P(c;a, b, T ) is not LDFM in −c, −cTx ≤ −cTx∗,
which in this case is the unique linear consequence binding F (at x∗), must not be a finite
consequence of the constraint system and hence problem P(c;a, b, T ) is not LFM at x∗.

3 Optimality

A function λ : T → R is said to be a generalized finite sequence on T if its support given by

supp(λ) = {t ∈ T |λ(t) ̸= 0}

is a finite set. Let R(T ) denote the linear space of all generalized finite sequences on T ,

and R(T )
+ the positive cone of R(T ). For given f : T → Rm and λ ∈ R(T ) with supp(λ) =

{t1, t2, · · · , tp}, we define

∑
t∈T

λ(t)f(t) =


∑

1≤i≤p

λ(ti)f(ti) , if p ≥ 1,

0 , if p = 0 (i.e. supp(λ) = ϕ).

The Lagrangian on Rn × R(T ) is defined by

L(x, λ) = cTx+
∑
t∈T

λ(t)(a(t)x− b(t)).

The optimality theorem under the LFM CQ, according to [16], can be stated as follows:
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Theorem 3.1. Let the constraint system of problem P(c;a, b, T ) be LFM at x∗ ∈ F . Then,
the following statements are equivalent:

(i) x∗ ∈ F∗.

(ii) (KKT condition) −c ∈ A (x∗), where

A (x∗) = cone
{
a(t)T | t ∈ T and a(t)x∗ = b(t)

}
is the active cone at x∗.

(iii) (complementarity condition) There exist tj ∈ T and λj ≥ 0, j = 1, 2, · · · , k, such that

−c =
k∑

j=1

λja(tj)
T

and

λj(a(tj)x
∗ − b(tj)) = 0, j = 1, 2, · · · , k;

(iv) (Lagrangian saddle point condition) There exists λ∗ ∈ R(T )
+ such that the Lagrangian

L(x, λ) satisfies

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), for all x ∈ Rn and all λ ∈ R(T )
+ .

The above theorem says that, for a given feasible point x∗, under the condition that
the problem is LFM at x∗, the classical optimality conditions (ii)-(iv) are equivalent to the
optimality of x∗. However, the converse is not true, as shown by the following example
where the conditions (ii)-(iv) are equivalent to the optimality of x∗ ∈ F , but the problem is
not LFM at x∗.

Example 3.2. The LSIP problem is specified by a(t) = [sin(t), − cos(t)], b(t) = 0, c =
[0; −1], and T = {t ∈ R | − π/4 ≤ t < π/4}.

For this example, the only optimal solution to the LSIP problem is x∗ = [0; 0]. It is
easy to see that the optimality of any feasible point x̄ is equivalent to the satisfaction of any
of the conditions (ii)-(iv) in Theorem 3.1 at x̄, as they all hold at x∗ = [0; 0]. However, the
problem is not LFM at x∗, as the inequality

x1 − x2 ≤ 0

is a linear consequence of the constraints binding the feasible region, but it is not a finite
consequence.

There have been efforts to further relax the LFM CQ. Especially, the optimality condi-
tions for LSIP problems without any CQ stated in the following theorem are obtained in
[13] (conditions (ii)-(iv)) and [4] (condition (v)). As we can see, the conditions (ii)-(iv) in
Theorem 2 are generalizations of the corresponding conditions in Theorem 1.

Theorem 3.3. For x∗ ∈ F , the following statements are equivalent:

(i) x∗ ∈ F∗;
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(ii) (generalized KKT condition) there exist sequences {ci} and {xi} in Rn such that

ci → c (i → ∞), (3.1)

xi → x∗ (i → ∞), (3.2)

and

−ci ∈ Ai(x
i), i = 1, 2, · · · ; (3.3)

where Ai(x
i) is the active cone of problem P(ci;a, b, T (xi)) at xi given by

Ai

(
xi
)
= cone

{
a(t)T | t ∈ T (xi) and a(t)xi = b(t)

}
in which T (xi) = {t | t ∈ T, a(t)xi ≤ b(t)}.

(iii) (generalized complementarity condition) there exist sequences
{
ci
}
and {xi} satisfying

(3.1) and (3.2), and tij ∈ T (xi), 1 ≤ j ≤ k, such that{
a(tij) | 1 ≤ j ≤ k

}
is linearly independent,

a(tij)x
i = b(tij), 1 ≤ j ≤ k, i = 1, 2, · · ·

and

−ci =

k∑
j=1

λi
ja(t

i
j)

T , λi
j > 0, j = 1, 2, · · · , k, i = 1, 2, · · · ;

(iv) (generalized Lagrange saddle point condition) there exist sequences
{
ci
}

and
{
xi
}

satisfying (3.1) and (3.2), and λi ∈ R(T (xi))
+ , i = 1, 2, · · · , such that

L(xi, λ) ≤ L(xi, λi) ≤ L(x, λi), i = 1, 2, · · ·

for all x ∈ Fi =
{
x | a(t)x ≤ b(t) for all t ∈ T (xi)

}
and all λ ∈ R(T (xi))

+ .

(v) There exists a sequence {(λi, εi)} ⊂ R(T )
+ × R such that∑

t∈T

λi(t)b (t) ≤ εi − cTx∗, for i = 1, 2, · · · , (3.4)

and
(
∑
t∈T

λi(t)a (t)
T
, εi) → (−c, 0+). (3.5)

We note that all conditions (ii)-(v) in Theorem 3.3 are in asymptotic form which is
not preferred in computational applications as they are difficult to check when applied to
numerical algorithms. At the same time, a drawback of Theorem 3.1 is the fact that its
CQ depends on the optimal solution x∗ which is usually not known, at least not directly
from the given data defining the problem. Furthermore, the CQ is a bit too strong to cover
all problems whose optimal solutions are characterized by any of the classical optimality
conditions. All these highlight the advantages of the CQ we propose here, as one will see
from the remaining of this section.

The following lemma is obvious.



OPTIMALITY FOR LSIP UNDER NEW CQ 229

Lemma 3.4. Consider problem P(c;a, b, T ). If any of the conditions (ii)-(iv) in Theo-
rem 3.1 is satisfied at any x∗ ∈ F∗, then all of them are satisfied at all optimal solutions.

The following example shows that LDFM in −c doesn’t necessarily imply that the con-
straint system of problem P(c;a, b, T ) is LFM at an optimal solution, even if optimal solution
exists.

Example 3.5. The problem is specified by c = [0; 1], a(t) = [sin t, −1], b(t) = 0, and
T = {t | − π

2 < t < π
2 }.

It can be seen that x∗ is the only optimal solution to the problem in Example 3.5. The
linear inequality −cTx ≤ 0, which is the only linear consequence having normal vector −c
and binding the feasible region, is itself a constraint of the constraint system. Thus, the
problem is LDFM in −c. On the other hand, both x1 − x2 ≤ 0 and −x1 − x2 ≤ 0 are linear
consequences binding F but none of them is a linear consequence of any finite constraint
subsystem.

Theorem 3.6. Suppose that the constraint system of problem P(c;a, b, T ) is LDFM in −c.
Then, for any x∗ ∈ F , the following statements are equivalent:

(i) x∗ ∈ F∗.

(ii) (KKT condition) −c ∈ A (x∗), where A (x∗) is the same as in Theorem 3.1.

(iii) (complementarity condition) There exist tj ∈ T and λj ≥ 0, j = 1, 2, · · · , k, such that

−c =
k∑

j=1

λja(tj)
T

and

λj(a(tj)x
∗ − b(tj)) = 0, j = 1, 2, · · · , k;

(iv) (Lagrangian saddle point condition) There exists λ∗ ∈ R(T )
+ such that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), for all x ∈ Rn and all λ ∈ R(T )
+ .

Proof. From Lemma 3.4, it suffices to prove that (i) and (ii) are equivalent. It is well-known
that (ii) implies (i). So, we need only to prove that (i) implies (ii).

Let (i) holds. The linear inequality −cTx ≤ −cTx∗ is a (the only) linear consequence
of the constraint system, that is binding F in direction −c. Since the constraint system
of problem P(c;a, b, T ) is LDFM in −c, −cTx ≤ −cTx∗ is a linear consequence of a finite
constraint subsystem

a(ti)x ≤ b(ti), i = 1, 2, · · · ,K,

where ti ∈ T for 1 ≤ i ≤ K. This means that x∗ is an optimal solution to the LP problem

Problem LP:

inf cTx

s. t. a(ti)x ≤ b(ti) i = 1, 2, · · · ,K
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Therefore, there are tij , with 1 ≤ ij ≤ K, j = 1, 2, · · · , l, such that

−c =

l∑
j=1

λja(tij )
T ,

a(tij )x
∗ = b(tij )

for some λj > 0, j = 1, 2, · · · , l. These imply −c ∈ A(x∗).

In fact, LDFM in −c is the weakest constraint qualification for the classical optimality
theorem to hold. In other words, the inverse of Theorem 3.6 is true, as shown by the
following result.

Corollary 3.7. Suppose F∗ ̸= ϕ. Then, the following statements hold.

(a) If problem P(c;a, b, T ) is LDFM in −c, then (ii)-(iv) in Theorem 3.6 are satisfied at
all x∗ ∈ F∗.

(b) If any one of (ii)-(iv) in Theorem 3.6 is satisfied at any x∗ ∈ F∗, the problem P(c;a, b, T )
is LDFM in −c.

Proof. The sufficiency is given by Theorem 3.6. The necessity is seen by observing the
fact that the only binding linear consequence −cTx ≤ cTx∗ is a consequence of the finite
constraint subsystem

{a(tj)x ≤ b(tj) | j = 1, 2, · · · , k}

corresponds to those appear in the complementarity condition (iii).

The following is an immediate consequence of Corollary 3.7.

Corollary 3.8. The following statements are equivalent:

(a) Problem P(c;a, b, T ) is LDFM in −c.

(b) Conditions (i)-(iv) are equivalent at all optimal solutions.

The last corollary shows that in order for the classical optimality conditions hold at all
optimal solutions, the requirement that problem P(c;a, b, T ) be LDFM in −c cannot be
further relaxed.

The application of Theorem 3.6 to Theorem 3.3 leads to an optimality result with-
out CQ, as given in the following. We note that (3.3) is the KKT condition of prob-
lem P(ci,a, b, T (xi)) at its feasible solution xi. The following theorem is then implied by
Theorems 3.3 and 3.6.

Theorem 3.9. Consider problem P(c,a, b, T ). A feasible solution x∗ ∈ F is optimal if and
only if there exist sequences {ci} and {xi} in Rn such that

ci → c (i → ∞),

xi → x∗ (i → ∞),

and for each i = 1, 2, · · · , problem P(ci,a, b, T (xi)) is LDFM in −ci and has optimal solution
xi.

Optimality theorems for various subclasses of semi-infinite programming problems can
be found in, for example, [11, 14, 15, 17] and the references cited therein.



OPTIMALITY FOR LSIP UNDER NEW CQ 231

4 Comments

This paper provides a simple but non-trivial constraint qualification that characterizes the
class of all LSIP problems for which the classical KKT, complementary, and Lagrangian
saddle point conditions at a feasible point are equivalent to the optimality of that point.
This result is an improvement over the most general result in the existing literature. It is
shown that the satisfaction of the classical KKT, or complementary, or Lagrangian saddle
point conditions at a feasible point is equivalent to its optimality if and only if the problem is
locally directional Farkas-Minkowski in the negative direction of the objective vector, given
that the LSIP problem is posed as a minimization problem. This, together with the recent
development of LSIP optimality theorems without constraint qualifications, makes the LSIP
optimality theory fairly complete in the sense that we are able to characterize all LSIP
problems for which the classical optimality theorem applies, and that we have developed
new optimality conditions in cases where the classical optimality theorem fails to apply. In
addition, the new result has found an application in generalizing the fundamental theorem
of linear programming to linear semi-infinite programming.
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