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problems. On the line of their work, strong KKT conditions under various generalized
constraint qualifications were presented in [7,8,12] for locally Lipschitz multiobjective opti-
mization problems. Burachik and Rizvi [4] obtained strong KKT necessary conditions by a
new generalized Abadie constraint qualification in smooth case. In a word, the constraint
qualifications presented in [1,3,4,6–10,12–17], which involve not just constraint system but
also objective function, are extensions of constraint qualifications used in nonlinear pro-
gramming.

As we all know, the penalization method is a very important and effective tool for
dealing with optimization theories, see [2, 5, 11, 20, 21] and references therein. It is worth
noting that the standard Mangasarian-Fromovitz constraint qualification and error bound
condition for a nonlinear programming problem with equality and inequality constraints
implies the calmness condition; see [19] for details. Recently, Zhu and Li [22] proposed a
general multiobjective optimization problem with equilibrium constraints and showed two
classes of multiobjective penalty problems are equivalent to the calmness condition, and
obtained a Mordukhovich stationary necessary optimality condition. Inspired by the ideas
reported in [17] and the set Qi used in [3, 8, 12–14, 16, 17], the main purpose of this work
is to study strong KKT conditions for nonsmooth multiobjective optimization problems (in
short, MOP) via the penalization method. We introduce a (MOP)-calmness condition with
order σ > 0 at a local efficient (weak efficient) solution associated with the objective function
and the constraint system, and show that the (MOP)-calmness condition can be implied by
a error bound condition of the parametric form of the set Qi. Moreover, we establish some
equivalent relationships between the exact penalization property with order σ > 0 and the
(MOP)-calmness condition. Based on the (MOP)-calmness condition with order 1, we obtain
strong KKT conditions for (MOP) in terms of the Clarke subdifferential. Finally, we obtain
that the generalized Mangasarian-Fromovitz constraint qualification, which is considered by
Golestani and Nobakhtian in [8] for multiobjective programming, implies the calmness of
multiobjective optimization problems in the case of smooth.

The outline of this paper is as follows. In Section 2, we recall some notions and prelimi-
nary results. In Section 3, the (MOP)-calmness condition for (MOP) and some relationships
between the exact penalization property and the (MOP)-calmness condition are presented.
The strong KKT conditions for (MOP) under the (MOP)-calmness condition with order
1 are given in Section 4, and we also derive that the generalized Mangasarian-Fromovitz
constraint qualification implies the calmness of multiobjective optimization problems in the
case of smooth in this part.

2 Preliminaries

Let Rl be the l-dimensional Euclidean space. For ∀x = (x1, . . . , xl) and y = (y1, . . . , yl) ∈ Rl,
we use the following notations

x = y, if xi = yi, for all i,
x ≦ y, if xi ≤ yi, for all i,
x < y, if xi < yi, for all i,
x ≤ y, if x ≦ y, and x ̸= y.

Since all norms on finite dimensional spaces are equivalent, we take specially the sum norm
on Rn and the product space Rn × Rm for simplicity, that is, for all x = (x1, . . . , xn) ∈ Rn,
we write ∥x∥ = |x1| + |x2| + · · · + |xn|, and for all (x, y) ∈ Rn × Rm, ∥(x, y)∥ = ∥x∥ + ∥y∥.
As usual, we denote by x⊤ the transposition of x, and ⟨x, y⟩ := x⊤y the inner product
of vectors x and y. In general, all vectors are viewed as column vectors and we denote
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by BRn the closed unit ball in Rn, and B(x̄, r) the open ball with center at x̄ and radius
r > 0 for any x̄ ∈ Rn. For a point x̄ and a set C, the distance between them is denoted by
d(x̄, C) = infc∈C ∥x̄ − c∥. It is said that G : Rn → R is locally Lipschitz around x̄ iff there
exist L > 0 and δ > 0 such that |G(x)−G(y)| ≤ L∥x− y∥, ∀x, y ∈ B(x̄, δ), and G is locally
Lipschitz on A ⊆ Rn if and only if G is Lipschitz around each x̄ ∈ A. For n, p,m, s ∈ N, we
consider the following multiobjective optimization problem:

(MOP) min f(x)

s.t. g(x) ≦ 0,

h(x) = 0,

x ∈ K,

where f : Rn → Rp, f(x) = (f1(x), f2(x), . . . , fp(x)), g : Rn → Rm, g(x) =
(g1(x), g2(x), . . . , gm(x)), h : Rn → Rs, h(x) = (h1(x), h2(x), . . . , hs(x)) are vector-valued
maps and K is a nonempty and closed subset of Rn.

Throughout this paper, we assume that the feasible set of (MOP),X := {x ∈ Rn | g(x) ≦
0, h(x) = 0, x ∈ K} is nonempty and fi (i ∈ {1, 2, . . . , p}), gj (j ∈ {1, 2, . . . ,m}), hk (k ∈
{1, 2, . . . , s}) are locally Lipschitz on X. Obviously, X is a closed subset of Rn, note J(x̄) :=
{i ∈ {1, 2, . . . ,m} | gi(x̄) = 0} is the index set of active constraints of g at x̄.

In the context of multiobjective optimization problems, an optimal solution that si-
multaneously minimizes all the objectives is usually not possible, so solutions are often
interchanged by efficient solutions and weak efficient solutions, now we give the definitions
as below.

Definition 2.1. A point x̄ ∈ X is said to be efficient for problem (MOP) iff there is no
x ∈ X such that f(x) ≤ f(x̄). A point x̄ is said to be local efficient for problem (MOP) iff
there exists r > 0 such that there is no x ∈ X ∩ B(x̄, r) such that f(x) ≤ f(x̄).

Definition 2.2. A point x̄ ∈ X is said to be weak efficient for problem (MOP) iff there is
no x ∈ X such that f(x) < f(x̄). A point x̄ is said to be local weak efficient for problem
(MOP) iff there exists r > 0 such that there is no x ∈ X ∩ B(x̄, r) such that f(x) < f(x̄).

Given a function φ : Rn → R local Lipschitz around x̄, we define its Clarke directional
derivative at x̄ in the direction d by:

φ◦(x̄; d) := lim sup
u→x̄,t↓0

φ(u+ td)− φ(u)

t
,

and the Clarke subdifferential of φ at x̄ is defined by:

∂Cφ(x̄) := {ξ ∈ Rn | φ◦(x̄; d) ≥ ⟨ξ, d⟩, ∀d ∈ Rn}.

The Clarke subdifferential of φ is always convex, nonempty and compact.
Let A be a subset of Rn and x̄ ∈ A, we introduce the Clarke tangent cone and the Clarke

normal cone to A at x̄:
The Clarke tangent cone to A at x̄ is

TC(A, x̄) := {v ∈ Rn | ∀tn ↓ 0, ∀xn → x̄ with xn ∈ A,∃vn → v;xn + tnvn ∈ A,∀n}.

The Clarke normal cone to A at x̄ is

N(A, x̄) := {v ∈ Rn | ⟨w, v⟩ ≤ 0,∀w ∈ TC(A, x̄)}.

Propositions 2.3 and 2.4 summarize some well-known properties of the Clarke subdiffer-
ential, which presented in [5].
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Proposition 2.3. If φ : Rn → R is locally Lipschitz around x̄, then

(i) For any σ ∈ R, ∂C(σφ)(x̄) = σ∂Cφ(x̄).

(ii) If x̄ is a local minimizer of φ on D ⊂ Rn, then 0 ∈ ∂Cφ(x̄) +N(D, x̄).

Proposition 2.4. For all i ∈ {1, 2, . . . , n}, φi : Rn → R be a locally Lipschitz function, then

(i) ∂C(Σ
n
i=1φi)(x̄) ⊆ Σn

i=1∂Cφi(x̄).

(ii) For the maximum functional φ : Rn → R defined by φ(x) := max{φi(x) | i =
1, 2, . . . , n}, x ∈ Rn. Then

∂Cφ(x̄) ⊆ co{∂Cφi(x̄) | i ∈ I(x̄)},

where I(x̄) = {i ∈ {1, 2, . . . , n} | φi(x̄) = φ(x̄)}.

3 Exact Penalization, Calmness Condition for MOP

In this section, we focus our attention on establishing some equivalent properties between
a single objective exact penalization and a calmness condition, called (MOP)-calmness, for
(MOP). Simultaneously, we present that a local error bound condition associated with an
extension of the constraint system of (MOP), that is, a calmness condition of the parametric
form of the set Qi, which used in [8, 16,17], implies the (MOP)-calmness condition.

Fixed x̄ ∈ X, for every i ∈ {1, 2, . . . , p}, define Qi, which is called the extension of the
constraint system of (MOP), as below:

Qi := {x ∈ K | g(x) ≦ 0, h(x) = 0, fj(x) ≤ fj(x̄), j = 1, 2, . . . , p and j ̸= i}.

Consider the following parametric form of the set Qi with parameter (u, v, yi) ∈ Rm+s+p−1:

g(x) + u ≦ 0,

h(x) + v = 0,

fj(x) + yij ≤ fj(x̄), j = 1, 2, . . . , p and j ̸= i,

yi = (yi1, y
i
2, . . . , y

i
i−1, y

i
i+1, . . . , y

i
p).

Denote the corresponding feasible set by

Qi(u, v, y
i) := {x ∈ K | g(x)+u ≦ 0, h(x)+v = 0, fj(x)+yij ≤ fj(x̄), j = 1, 2, . . . , p and j ̸= i}.

(3.1)

(MOP)-calmness plays an important role in this paper, which is crucial for the strong
KKT conditions of multiobjective optimization problems.

Definition 3.1. Given σ > 0 and x̄ ∈ X being a local efficient (resp. local weak efficient)
solution for (MOP), then (MOP) is said to be (MOP)-calm with order σ at x̄ iff there exist
δ > 0 and M > 0 such that for every i ∈ {1, 2, . . . , p}, all (u, v, yi) ∈ B(0Rm+s+p−1 , δ) and all
x ∈ Qi(u, v, y

i) ∩ B(x̄, δ), one has:

fi(x) +M∥(u, v, yi)∥σ ≥ fi(x̄).
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Remark 3.2. Given σ > 0 and x̄ ∈ X being a local efficient (resp. local weak efficient)
solution for (MOP), we can also characterize the (MOP)-calmness condition by means of
sequences. (MOP) is (MOP)-calm with order σ at x̄ if and only if there exists M > 0
such that for every i ∈ {1, 2, . . . , p}, every sequence {(uk, vk, y

i(k))} ⊂ Rm+s+p−1 with
(uk, vk, y

i(k)) → 0Rm+s+p−1 and every sequence {xk} ⊂ K satisfying g(xk) + uk ≦ 0, h(xk) +

vk = 0, fj(xk) + y
i(k)
j ≤ fj(x̄), j = 1, 2, . . . , p, j ̸= i and xk → x̄, it holds that

fi(xk) +M∥(uk, vk, y
i(k))∥σ ≥ fi(x̄),

where yi(k) = (y
i(k)
1 , y

i(k)
2 , . . . , y

i(k)
i−1 , y

i(k)
i+1 , . . . , y

i(k)
p ).

According to Definition 3.1, (MOP)-calmness condition is not only depend on the ob-
jective function but also the constraint system. Now we propose the following local error
bound notion for (MOP) associated with the extension of the constraint system of (MOP).

Definition 3.3. Given σ > 0 and x̄ ∈ X, the extension of the constraint system of (MOP) is
said to be have a local error bound with order σ at x̄ iff there exist δ > 0 andM > 0 such that
for every i ∈ {1, 2, . . . , p}, all (u, v, yi) ∈ B(0Rm+s+p−1 , δ)\{0} and all x ∈ Qi(u, v, y

i)∩B(x̄, δ),
one has:

d(x,Qi) < M∥(u, v, yi)∥σ.

Remark 3.4. If p = 1, the Definition 3.3 reduces to that there exist δ > 0 and M > 0
such that for all (u, v) ∈ B(0Rm+s , δ)\{0} and all x ∈ Q(u, v) ∩ B(x̄, δ), one has d(x,Q) <
M∥(u, v)∥σ, where

Q := {x ∈ K | g(x) ≦ 0, h(x) = 0},
Q(u, v, y) := {x ∈ K | g(x) + u ≦ 0, h(x) + v = 0}.

Now we verify that the calmness of (MOP) can be implied by the error boundness of the
extension of the constraint system of (MOP).

Theorem 3.5. Let x̄ ∈ X be a local efficient solution for (MOP), if the extension of the
constraint system of (MOP) has a local error bound with order σ at x̄, then (MOP) is
(MOP)-calm with order σ at x̄.

Proof. We consider two cases, respectively.
Case 1: (u, v, yi) = 0Rm+s+p−1 . Since x̄ ∈ X is a local efficient solution for (MOP), then

for each i ∈ {1, 2, . . . , p}, for all x ∈ Qi(u, v, y
i) ∩ B(x̄, δ) and δ > 0 sufficiently small, we

have
fi(x) +M∥(u, v, yi)∥σ = fi(x) ≥ fi(x̄).

Case 2: (u, v, yi) ̸= 0Rm+s+p−1 . We assume that (MOP) is not (MOP)-calm with or-
der σ at x̄. Then, there exists i ∈ {1, 2, . . . , p}, such that for every k ∈ N, there exist
(uk, vk, y

i(k)) ∈ B(0, 1
k )\{0Rm+s+p−1} and xk ∈ Qi(uk, vk, y

i(k)) ∩ B(x̄, 1
k ) satisfying

fi(xk) + k∥(uk, vk, y
i(k))∥σ − fi(x̄) < 0. (3.2)

Since Qi is nonempty and closed, hence there exists a projection P (xk, Qi) of xk onto Qi

such that d(xk, Qi) = ∥xk − P (xk, Qi)∥ for all k ∈ N. As (uk, vk, y
i(k)) → (0Rm , 0Rs , 0Rp−1),

xk ∈ Qi(uk, vk, y
i(k)), then d(xk, Qi) → 0. Together with xk → x̄, it follows that

∥P (xk, Qi)− x̄∥ ≤ ∥P (xk, Qi)− xk∥+ ∥xk − x̄∥ = d(xk, Qi) + ∥xk − x̄∥ → 0.
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Combining with x̄ ∈ X is a local efficient solution for (MOP), there exists N1 ∈ N, such
that

fi(P (xk, Qi))− fi(x̄) ≥ 0, ∀k ≥ N1. (3.3)

Moreover as fi is locally Lipschitz, there exist a constant L > 0 and N2 ∈ N, such that

|fi(xk)− fi(P (xk, Qi))| ≤ L∥xk − P (xk, Qi)∥, ∀k ≥ N2. (3.4)

Combining with (3.2) and (3.3), we have that for all k ≥ N1

fi(P (xk, Qi))− fi(xk) = fi(P (xk, Qi))− fi(x̄) + fi(x̄)− fi(xk) > k∥uk, vk, y
i(k)∥σ > 0.

Further, in view of d(xk, Qi) = ∥xk − P (xk, Qi)∥ and (3.4), we have

d(xk, Qi) = ∥xk − P (xk, Qi)∥ ≥ 1

L
|fi(xk)− fi(P (xk, Qi))|

>
k

L
∥(uk, vk, y

i(k))∥σ, ∀k ≥ max{N1, N2}.

This is a contradiction to that (MOP) has a local error bound with order σ at x̄ since
K
L → +∞, (uk, vk, y

i(k)) ̸= 0Rm+s+p−1 , (uk, vk, y
i(k)) → 0Rm+s+p−1 , xk ∈ Qi(uk, vk, y

i(k)) and
xk → x̄.

Now we give an example to illustrate that the converse of Theorem 3.5 may not true.

Example 3.6. For n = 2, p = 2,m = s = 1,K = [−2, 2]× [−2, 2],

f1(x) =

{
|x1| −2 ≤ x1 < −1.5 or 1.5 < x1 ≤ 2

1.5 −1.5 ≤ x1 ≤ 1.5

and

f2(x) =

{
2|x2| −2 ≤ x2 < −0.5 or 0.5 < x2 ≤ 2

1 −0.5 ≤ x2 ≤ 0.5.

Consider the following multiobjective programming:

min f(x) = (f1(x), f2(x))

s.t. g(x) = |x1|+ x2 ≤ 0,

h(x) = x1 + 2|x2| = 0,

x ∈ K.

Obviously, f1(x), f2(x), g(x) and h(x) are locally Lipschitz maps. The set of all efficient
solutions is given as S = {(x1, x2) | x1 = 2x2,−0.5 ≤ x2 ≤ 0}. Now we choose x̄ = (0, 0)
and σ = 2, by the definition of Qi, we have

Q1(u, v, y
1) = {x ∈ K | |x1|+ x2 + u ≤ 0, x1 + 2|x2|+ v = 0, f2(x) + y1 ≤ 1},

Q2(u, v, y
2) = {x ∈ K | |x1|+ x2 + u ≤ 0, x1 + 2|x2|+ v = 0, f1(x) + y2 ≤ 1.5}.

For any 0 < δ ≤ 0.5 and M > 0, for each i ∈ {1, 2} and all (u, v, yi) ∈ B(0, δ) and all
x ∈ Qi(u, v, y

i) ∩ B(x̄, δ), we have

fi(x) +M∥(u, v, yi)∥2 ≥ fi(x̄),
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hence, (MOP)-calmness condition is satisfied for x̄ = (0, 0).
For i = 1 and every k ∈ N, we just choose (uk, vk, y

1(k)) = (− 1
9k ,−

1
9k ,−

1
9k ) ∈ B(0R3 , 1

k )
and x̃ = (x̃1, x̃2) = ( 1

9k , 0) ∈ B(x̄, 1
k ), then

|x̃1|+ x̃2 + uk ≤ 0, x̃1 + 2|x̃2|+ vk = 0, f2(x̃) + y1(k) ≤ 1

are satisfied, thus x̃ ∈ Q1(uk, vk, y
1(k)) ∩ B(x̄, 1

k ). As

Q1 = {x ∈ K | |x1|+ x2 ≤ 0, x1 + 2|x2| = 0, f2(x) ≤ 1} = {(0, 0)},

then d(x̃, Q1) = 1
9k , together with k∥(uk, vk, y

1(k)∥2 = 1
9k and Definition 3.3, the (MOP)

does not have a local error bound with order 2 at x̄.

Recall that a set-valued map Ψ : Rn ⇒ Rs is said to be calm with order σ > 0 at
(x̂, ŷ) ∈ gphΨ = {(x, y) ∈ Rn × Rs | y ∈ Ψ(x)} iff there exist neighborhoods U of x̂ and V
of ŷ, and a real number ℓ > 0 such that

Ψ(x) ∩ V ⊂ Ψ(x̂) + ℓ∥x− x̂∥σBRs , ∀x ∈ U.

In the following proposition, we obtain two equivalent enumerates of the local error
bounds of the extension constraint system of (MOP).

Proposition 3.7. Suppose σ > 0 and x̄ ∈ X. Then the following assertions are equivalent:

(i) The extension constraint system of (MOP) has a local error bound with order σ at x̄.

(ii) For every i ∈ {1, 2, . . . , p}, the set-valued map Qi : Rm+s+p−1 ⇒ Rn, defined in (3.1),
is calm with order σ at (0Rm+s+p−1 , x̄).

If σ = 1, then (i) and (ii) are also equivalent to (iii).

(iii) For every i ∈ {1, 2, . . . , p}, there exist M > 0, ε̃ > 0, for any x ∈ B(x̄, ε̃), d(x,Qi) <
Md((g(x), h(x), pi(x), x),Rm

− × {0}Rs × Rp−1
− ×K) holds, where

pi(x) = (f1(x)− f1(x̄), . . . , fi−1(x)− fi−1(x̄), fi+1(x)− fi+1(x̄), . . . , fp(x)− fp(x̄)).

Proof. (ii) ⇒ (i). For every i ∈ {1, 2, . . . , p}, by virtue of (ii), there exist B(0Rm+s+p−1 , δ),
a neighborhood of 0Rm+s+p−1 and B(x̄, δ), a neighborhood of x̄ and h > 0, for ∀(u, v, yi) ∈
B(0Rm+s+p−1 , δ), we have that

Qi(u, v, y
i) ∩ B(x̄, δ) ⊂ Qi + h∥(u, v, yi)∥σBRn ,

thus for x ∈ B(x̄, δ) ∩Qi(u, v, y
i), we obtain

d(x,Qi) < h∥(u, v, yi)∥σ.

Thus (i) follows.
(i) ⇒ (ii). It is easy to verify that this proof is reversed of the former.
If σ = 1, let p(x) := (g(x), h(x), pi(x), x). Now we choose 0 < ε̃ < ε such that ∥p(x) −

p(x̄)∥ ≤ ε
2 for all x ∈ B(x̄, ε̃), where ε refers to (iii). For arbitrary η ∈ (0, ε

2 ), there is some

(λ1, λ2, λ3, λ4) ∈ Rm
− × {0}Rs × Rp−1

− ×K such that

∥p(x)− (λ1, λ2, λ3, λ4)∥ ≤ d(p(x),Rm
− × {0}Rs × Rp−1

− ×K) + η ≤ ∥p(x)− p(x̄)∥+ ε

2
≤ ε.
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(i) ⇒ (iii). For any x ∈ B(x̄, ε̃), since x ∈ Qi((λ1, λ2, λ3, λ4)−p(x)) and (λ1, λ2, λ3, λ4)−
p(x) ∈ B(0, ε), by (i), there exists M > 0 such that

d(x,Qi) < M∥(λ1, λ2, λ3, λ4)− p(x)∥ ≤ Md(p(x),Rm
− × {0}Rs × Rp−1

− ×K) +Mη.

Taking into account that η is arbitrary, (iii) is obtained.
(iii) ⇒ (ii). For every x ∈ B(x̄, ε̃) ∩Qi(u, v, y

i), then g(x) + u ≦ 0, h(x) + v = 0, fj(x) +

yij ≤ fj(x̄), j = 1, 2, . . . , p, j ̸= i, x + 0Rn ∈ K, thus d(p(x),Rm
− × {0}Rs × Rp−1

− × K) ≤
∥(u, v, yi, 0Rn)∥ = ∥(u, v, yi)∥, so (ii) follows.

In view of (i) ⇔ (ii), the proof is complete.

Now we give the equivalent characterizations of two classes of penalty problems and the
(MOP)-calmness condition in the following theorem.

Theorem 3.8. Let x̄ ∈ X be a local efficient (resp. local weak efficient) solution for (MOP),
then the following assertions are equivalent:

(i) (MOP) is (MOP)-calm with order σ > 0 at x̄.

(ii) For each i ∈ {1, 2, . . . , p}, there exist some ρ̂ > 0 such that for any ρ ≥ ρ̂, (x̄, 0Rp−1) is
a local efficient (resp. local weak efficient) solution for the following penalty problem
with order σ:

(I) min fi(x) + ρ[∥g+(x)∥+ ∥h(x)∥+ ∥yi∥]σ

s.t. fj(x) + yij ≤ fj(x̄), j = 1, 2, . . . , p, j ̸= i,

x ∈ K,

where

g+(x) := (max{g1(x), 0},max{g2(x), 0}, . . . ,max{gm(x), 0}),
yi = (yi1, . . . , y

i
i−1, y

i
i+1, . . . , y

i
p).

(iii) For each i ∈ {1, 2, . . . , p}, there exist some µ̂ > 0 such that for any µ ≥ µ̂, x̄ is a local
efficient (resp. local weak efficient) solution for the following penalty problem with
order σ:

(II) min fi(x) + µ[∥g+(x)∥+ ∥h(x)∥+
p∑

j=1,j ̸=i

|(fj(x)− fj(x̄))+|]σ

s.t. x ∈ K.

Proof. We only prove the case for x̄ being a local weak efficient solution since the proof of
the case for x̄ being a local efficient solution is similar.

(i) ⇒ (ii). Assume to the contrary that for every k ∈ N, there exists i ∈ {1, 2, . . . , p},
(xk, y

i(k)) ∈ B((x̄, 0Rp−1), 1
k ) with xk ∈ K and fj(xk) + y

i(k)
j ≤ fj(x̄), j = 1, 2, . . . , p, j ̸= i

such that
fi(xk) + k[∥g+(xk)∥+ ∥h(xk)∥+ ∥yi(k)∥]σ < fi(x̄). (3.5)

Taking uk = −g+(xk) and vk = −h(xk), then it follows that g(xk) + uk ≦ 0, h(xk) + vk =

0, fj(xk) + y
i(k)
j ≤ fj(x̄), j = 1, 2, . . . , p, j ̸= i, ∥g+(xk)∥ = ∥uk∥ and ∥h(xk)∥ = ∥vk∥, thus

xk ∈ Qi(uk, vk, y
i(k)) for all k ∈ N. And by (3.5), we have

fi(xk) + k∥(uk, vk, y
i(k))∥σ < fi(x̄).
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As xk → x̄, g(x̄) ≦ 0, h(x̄) = 0, (xk, y
i(k)) ∈ B((x̄, 0Rp−1), 1

k ), g and h are locally Lipschitz,

we have (uk, vk, y
i(k)) → 0Rm+s+p−1 , xk ∈ B(x̄, 1

k ) ∩ Qi(uk, vk, y
i(k)), this is a contradiction

to (MOP)-calmness with order σ > 0 of (MOP) at x̄.

(ii) ⇒ (i). Suppose that (MOP) is not (MOP)-calm with order σ > 0 at x̄. Then
for every k ∈ N, there exists i ∈ {1, 2, . . . , p}, (uk, vk, y

i(k)) ∈ B(0Rm+s+p−1 , 1
k ) and xk ∈

Qi(uk, vk, y
i(k)) ∩ B(x̄, 1

k ) such that

fi(xk) + k∥(uk, vk, y
i(k))∥σ − fi(x̄) < 0. (3.6)

As g(xk) + uk ≦ 0, h(xk) + vk = 0, we have

∥g+(xk)∥+ ∥h(xk)∥ ≤ ∥g(xk)− (g(xk) + uk)∥+ ∥h(xk)− (h(xk) + vk)∥
= ∥uk∥+ ∥vk∥.

Combining with (3.6), we obtain

fi(xk) + k[∥g+(xk)∥+ ∥h(xk)∥+ ∥yi(k)∥]σ

= fi(xk) + k∥(uk, vk, y
i(k))∥σ + k[(∥g+(xk)∥+ ∥h(xk)∥+ ∥yi(k)∥)σ − ∥(uk, vk, y

i(k))∥σ]
≤ fi(xk) + k∥(uk, vk, y

i(k))∥σ < fi(x̄).

This shows that the penalty problem with order σ does not admit a local exact penalization
at (x̄, 0Rp−1) since xk ∈ Qi(uk, vk, y

i(k)) ∩ B(x̄, 1
k ) and (xk, y

i(k)) → (x̄, 0Rp−1).

(i)⇒ (iii). Assume that for every k ∈ N, there exist i ∈ {1, 2, . . . , p}, a > 0 and xk ∈
K ∩ B(x̄, 1

ak ), such that

fi(xk) + k[∥g+(xk)∥+ ∥h(xk)∥+
p∑

j=1,j ̸=i

|(fj(xk)− fj(x̄))+|]σ < fi(x̄), (3.7)

and x̄ is a weak efficient solution for (MOP) in B(x̄, 1
ak ). Taking uk = −g+(xk) and vk =

−h(xk). If fj(xk) > fj(x̄), take y
i(k)
j = fj(x̄) − fj(xk), otherwise take y

i(k)
j = 0. As

g(xk)+uk ≦ 0, h(xk)+ vk = 0, fj(xk)+ y
i(k)
j ≤ fj(x̄), j = 1, 2, . . . , p, j ̸= i and xk ∈ K, thus

xk ∈ Qi(uk, vk, y
i(k)) for all k ∈ N and |yi(k)j | = |fj(xk) − fj(x̄)| = |(fj(xk) − fj(x̄))+|, j =

1, 2, . . . , p, j ̸= i. By (3.7), we have

fi(xk) + k∥(uk, vk, y
i(k))∥σ < fi(x̄). (3.8)

As xk → x̄, g(x̄) ≦ 0, h(x̄) = 0, g and h are locally Lipschitz, we have (uk, vk, y
i(k)) → 0,

together with k → +∞, xk ∈ Qi(uk, vk, y
i(k)), xk → x̄ and (3.8), then this is a contradiction

to (MOP)-calmness with order σ > 0 of (MOP) at x̄.

(iii) ⇒ (i). Suppose that (MOP) is not (MOP)-calm with order σ > 0 at x̄. Then
for every k ∈ N, there exist i ∈ {1, 2, . . . , p}, a > 0, (uk, vk, y

i(k)) ∈ B(0, 1
ak ) and xk ∈

Qi(uk, vk, y
i(k))∩B(x̄, 1

ak ) such that (3.6) holds and x̄ is a weak efficient solution for (MOP)

in B(x̄, 1
ak ). As y

i(k)
j ≤ fj(x̄) − fj(xk), we have |yi(k)j | ≥ |(fj(xk) − fj(x̄))+|, together with

∥g+(xk)∥ ≤ ∥g(xk)− (g(xk) + uk)∥ = ∥uk∥ and ∥h(xk)∥ = ∥vk∥, thus

[∥g+(xk)∥+ ∥h(xk)∥+
p∑

j=1,j ̸=i

|(fj(xk)− fj(x̄))+|]σ ≤ ∥(uk, vk, yk)∥σ,
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in view of (3.6), we obtain

fi(xk) + k[∥g+(xk)∥+ ∥h(xk)∥+
p∑

j=1,j ̸=i

|(fj(xk)− fj(x̄))+|]σ

= fi(xk) + k∥(uk, vk, y
i(k))∥σ + k[(∥g+(xk)∥+ ∥h(xk)∥

+

p∑
j=1,j ̸=i

|(fj(xk)− fj(x̄))+|)σ − ∥(uk, vk, y
i(k))∥σ]

≤ fi(xk) + k∥(uk, vk, y
i(k))∥σ < fi(x̄),

which implies that the penalty problem with order σ does not admit a local exact penaliza-
tion at x̄ since {xk} ∈ K and xk → x̄.

4 Strong Karush-Kuhn-Tucker Conditions for (MOP)

In general nonlinear programming, we know that a calmness condition with order 1 can lead
to the KKT condition. Now we can obtain strong KKT condition for the multiobjective
optimization problem under the (MOP)-calmness condition with order 1.

Theorem 4.1 (Strong KKT conditions). Let x̄ ∈ X be a local weak efficient solution
for (MOP) and (MOP) is (MOP)-calm with order 1 at x̄, then there exist λj > 0 (j =
1, 2, . . . , p), βi ≥ 0 (i = 1, 2, . . . ,m), γl ∈ R (l = 1, 2, . . . , s) such that

0 ∈
p∑

j=1

λj∂Cfj(x̄) +
m∑
i=1

βi∂Cgi(x̄) +
s∑

l=1

γl∂Chl(x̄) +N(K, x̄),

βigi(x̄) = 0, i = 1, 2, . . . ,m.

Proof. Since x̄ ∈ X is a local weak efficient solution for (MOP) and (MOP) is (MOP)-calm
with order 1 at x̄, together with (i) and (iii) of Theorem 3.8 , it follows that there exists
some µ̂ > 0 such that for any µ ≥ µ̂, i ∈ {1, 2, . . . , p}, x̄ is a local weak efficient solution for
(II) with order 1. For simplicity, let the real-valued function Γ : Rn → R defined by

Γ(x) = ∥g+(x)∥+ ∥h(x)∥+
p∑

j=1,j ̸=i

|(fi(x)− fi(x̄))+|, ∀x ∈ Rn.

Note that fi(i = 1, 2, . . . , p), g, h are locally Lipschitz, so Γ is locally Lipschitz and the
penalty function fi(·) + µ̂Γ(·) : Rn → R is also locally Lipschitz. By (ii) of Proposition 2.3,
we have

0 ∈ ∂C(fi(·) + µ̂Γ(·))(x̄) +N(K, x̄). (4.1)

In view of (i) of Proposition 2.3 and (i) of Proposition 2.4, we have

∂C(fi(·) + µ̂Γ(·))(x̄) ⊂ ∂Cfi(x̄) + µ̂∂CΓ(x̄) (4.2)

and

∂CΓ(x̄) ⊂ ∂C∥g+(·)∥(x̄) + ∂C∥h(·)∥(x̄) + Σp
j=1,j ̸=i∂C |(fj(x)− fj(·))+|(x̄). (4.3)

In view of (ii) of Proposition 2.4, for all i ∈ {1, 2, . . . ,m}, we have

∂C max{0, gi(·)}(x̄) =

{
0 if gi(x̄) < 0

[0, 1]∂Cgi(x̄) if gi(x̄) = 0,
(4.4)
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and for all l ∈ {1, 2, . . . , s} and k ∈ {1, 2, . . . , p}, we have

∂C |hl(·)|(x̄) = [−1, 1]∂Chl(x̄), (4.5)

∂C |(fk(·)− fk(x̄))+|(x̄) = [0, 1]∂Cfk(x̄). (4.6)

Then we conclude from (4.3-4.6) that

∂CΓ(x̄) ⊂
∑

i∈J(x̄)

[0, 1]∂Cgi(x̄) +
s∑

l=1

[−1, 1]∂Chl(x̄) +

p∑
k=1,k ̸=i

[0, 1]∂Cfk(x̄).

Together with (4.1) and (4.2), there exist β̄j
(i) ≥ 0 with j ∈ J(x̄), γ̄l

(i) ∈ R and t̄k
(i) ≥ 0

such that

0 ∈∂Cfi(x̄) + µ̂(
∑

j∈J(x̄)

β̄j
(i)
∂Cgj(x̄) +

s∑
l=1

γ̄l
(i)∂Chl(x̄) +

p∑
k=1,k ̸=i

t̄k
(i)
∂Cfk(x̄)) +N(K, x̄)

=∂Cfi(x̄) + µ̂
∑

j∈J(x̄)

β̄j
(i)
∂Cgj(x̄) + µ̂

s∑
l=1

γ̄l
(i)∂Chl(x̄) + µ̂

p∑
k=1,k ̸=i

t̄k
(i)
∂Cfk(x̄) +N(K, x̄).

Taking β
(i)
j ≥ 0 with β

(i)
j = µ̂β̄j

(i)
, j ∈ J(x̄) and β

(i)
j = 0, j ∈ {1, 2, . . . ,m}\J(x̄), γ(i)

l ∈ R
with γ

(i)
l = µ̂γ̄l

(i), t
(i)
k ≥ 0 with t

(i)
k = µ̂t̄k

(i)
, then we have

0 ∈ ∂Cfi(x̄) +
m∑
j=1

β
(i)
j ∂Cgj(x̄) +

s∑
l=1

γ
(i)
l ∂Chl(x̄) +

p∑
k=1,k ̸=i

t
(i)
k ∂Cfk(x̄) +N(K, x̄), (4.7)

β
(i)
j gj(x̄) = 0, j = 1, 2, . . . ,m. (4.8)

Summing (4.7) from i = 1 to p, and together with the convexness of Clarke subdifferential,
we obtain

0 ∈ (1 + t
(2)
1 + t

(3)
1 + · · ·+ t

(p)
1 )∂Cf1(x̄) + (1 + t

(1)
2 + t

(3)
2 + · · ·+ t

(p)
2 )∂Cf2(x̄)

+(1 + t
(1)
3 + t

(2)
3 + · · ·+ t

(p)
3 )∂Cf3(x̄) + · · ·+ (1 + t(1)p + t(2)p + · · ·+ t(p−1)

p )∂Cfp(x̄)

+

m∑
j=1

βj∂Cgj(x̄) +

s∑
l=1

γl∂Chl(x̄) +N(K, x̄),

where
p∑

i=1

β
(i)
j = βj ,

p∑
i=1

γ
(i)
l = γl.

As β
(i)
j ≥ 0, j ∈ J(x̄) and β

(i)
j = 0, j ∈ {1, 2, . . . ,m}\J(x̄) and t

(i)
k ≥ 0, then for each i ∈

{1, 2, . . . , p}, λi = 1+
∑p

k=1,k ̸=i t
(i)
k > 0, βj ≥ 0, j ∈ J(x̄) and βj = 0, j ∈ {1, 2, . . . ,m}\J(x̄).

From above, we conclude that there exist λi > 0 (i = 1, 2, . . . , p), βj ≥ 0 (j = 1, 2, . . . ,m)
and γl ∈ R (l = 1, 2, . . . , s) such that

0 ∈
p∑

i=1

λi∂Cfi(x̄) +
m∑
j=1

βj∂Cgj(x̄) +
s∑

l=1

γl∂Chl(x̄) +N(K, x̄),

βjgj(x̄) = 0, j = 1, 2, . . . ,m.

This completes the proof. 2



256 F. LU, S. J. LI AND S. K. ZHU

Remark 4.2. The (MOP)-calmness condition in [22] was defined as f(x)+M∥(u, v, yi)∥σe ̸∈
f(x̄)− intRp, where e = {1, 1, . . . , 1} ∈ intRp. Obviously, it is weaker than that in Definition
3.1. However, under the calmness condition in [22], the KKT conditions obtained are just
weak KKT conditions, in which some multipliers corresponding to the objective functions
may equal to zero.

We now present an example to verify the strong KKT conditions.

Example 4.3. Consider the multiobjective programming in Example 3.6.

Similarly to the analysis in Example 3.6, this problem is (MOP)-calm with order 1 at
x̄ = (0, 0). And by the formulas of f1, f2, g, h and K, we obtain

∂Cg(x̄) = {(c, 1) | −1 ≤ c ≤ 1}, ∂Ch(x̄) = {(1, c) | −2 ≤ c ≤ 2}

and

∂Cf1(x̄) = (0, 0), ∂Cf2(x̄) = (0, 0), (0, 0) ∈ N(K, x̄).

For (0, 0) ∈ N(K, x̄), (−1, 1) ∈ ∂Cg(x̄), (1,−1) ∈ ∂Ch(x̄) and ∀λ1 > 0, λ2 > 0, there exist
β = 1, γ = 1 such that

0R2 = λ1(0, 0) + λ2(0, 0) + β(−1, 1) + γ(1,−1) + (0, 0),

βg(x̄) = 0.

Thus the strong KKT condition holds at x̄.

In view of Theorem 3.5, Proposition 3.7 and Theorem 4.1, we immediately obtain the
following result.

Corollary 4.4. Let x̄ ∈ X be a local efficient solution for (MOP). Suppose that the extension
constraint system of (MOP) has a local error bound with order 1 at x̄, or equivalently, the set-
valued map Qi : Rm+s+p−1 ⇒ Rn, defined in (3.1), is calm with order 1 at (0Rm+s+p−1 , x̄),
or equivalently, (iii) of Proposition 3.7 is satisfied for x̄. Then there exist λj > 0 (j =
1, 2, . . . , p), βi ≥ 0 (i = 1, 2, . . . ,m) and γl ∈ R (l = 1, 2, . . . , s) such that

0 ∈
p∑

j=1

λj∂Cfj(x̄) +
m∑
i=1

βi∂Cgi(x̄) +
s∑

l=1

γl∂Chl(x̄) +N(K, x̄),

βigi(x̄) = 0, i = 1, 2, . . . ,m.

As we all know, the no nonzero abnormal multiplier constraint qualification, which is
presented in [18], is very useful in optimization. In Fritz John conditions, it ensures the
multiplier of the objective function is positive for nonlinear programming. The following
notion is an extension of no nonzero abnormal multiplier constraint qualification. In the
following part, we assume that all emerging functions in (MOP) are smooth.

Definition 4.5. The generalized no nonzero abnormal multiplier constraint qualification
(GNNAMCQ) holds at x̄ ∈ X if for every i ∈ {1, 2, . . . , p}, there is no nonzero mul-
tiplier y = (β, γ, α) ∈ Rm+s+p−1, where β = (β1, β2, . . . , βm), γ = (γ1, γ2, . . . , γs), α =
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(α1, α2, α3, . . . , αi−1, αi+1, . . . , αp) such that

0 ∈
m∑
i=1

βi∇gi(x̄) +

s∑
j=1

γj∇hj(x̄) +

p∑
k=1,k ̸=i

αk∇fk(x̄) +N(K, x̄),

βi ≥ 0, i = 1, 2, . . . ,m,

γj ∈ R, j = 1, 2, . . . , s,

αk ≥ 0, k = 1, 2, . . . , p, k ̸= i,

βigi(x̄) = 0, i = 1, 2, . . . ,m.

Now we are in the position to compare GNNAMCQ and the error bound condition of
(MOP), next lemma states that the former implies the latter.

Lemma 4.6. Suppose that all emerging functions in (MOP) are smooth and GNNAMCQ
holds at x̄ ∈ X. Then there exist δ > 0 and κ > 0 such that

d(x,Qi) < κd((g(x), h(x), pi(x), x),Rm
− × {0}Rs × Rp−1

− ×K),

where

pi(x) = (f1(x)−f1(x̄), f2(x)−f2(x̄), . . . , fi−1(x)−fi−1(x̄), fi+1(x)−fi+1(x̄), . . . , fp(x)−fp(x̄)).

Proof. Let p(x) := (g(x), h(x), pi(x), x), define S(x) := p(x) − Rm
− × {0}Rs × Rp−1

− × K,
then its inverse be S−1(u) = {x | u ∈ S(x)}. Obviously, S−1(0) = {x | p(x) ∈ Rm

− ×
{0}Rs × Rp−1

− × K} = Qi. Since the GNNAMCQ holds at x̄ ∈ X, it follows from [18] (or
the Mordukhovich criterion) that there exist δ1 > 0, ℓ > 0 such that

d(x, S−1(u)) ≤ ℓd(u, S(x)), ∀x ∈ B(x̄, δ1), ∀u ∈ B(0, δ1).

Therefore, there exists 0 < κ < ℓ such that

d(x, S−1(u)) < κd(u, S(x)), ∀x ∈ B(x̄, δ1),∀u ∈ B(0, δ1),

and the desired result is obtained by setting u = 0. 2

Remark 4.7. Suppose x̄ ∈ X is a local efficient solution of (MOP), in view of Lemma 4.6,
Proposition 3.7 and Theorem 3.5, the following implication holds true:

GNNAMCQ holds at x̄ ⇒ (MOP) is (MOP)-calm at x̄ with order 1.

Now we say that the generalized Mangasarian-Fromovitz constraint qualification for
(MOP), which is presented in [8] for nonsmooth multiobjective programming problems,
holds at x̄ if the following statements hold:

(i) 0 ∈
∑m

k=1 νk∇hk(x̄) +N(K, x̄) ⇒ ν = 0,

(ii) (F i)s ∩Gs ∩H− ∩ TC(K, x̄) ̸= ∅, for i = 1, 2, . . . , p,

where F i := ∪j∈{1,2,...,p},j ̸=i∇fj(x̄), G := ∪j∈J(x̄)∇gj(x̄),H := (∪k∈{1,2,...,s}∇hk(x̄))
∪

(∪k∈{1,2,...,s}∇(−hk)(x̄)) and for a set C ⊂ Rn, the C− and Cs are the negative polar
and strictly negative polar of C, defined respectively by

C− := {ξ ∈ Rn|⟨ξ, v⟩ ≤ 0, ∀v ∈ C},
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Cs := {ξ ∈ Rn|⟨ξ, v⟩ < 0, ∀v ∈ C}.

In [8], Golestani and Nobakhtian present the strong KKT condition for (MOP) under the
generalized Mangasarian-Fromovitz constraint qualification. Now we are in the position to
compare the generalized Mangasarian-Fromovitz constraint qualification and the calmness
condition of (MOP) when all emerging functions in (MOP) are smooth.

Theorem 4.8. Suppose x̄ ∈ X and the generalized Mangasarian-Fromovitz constraint qual-
ification is satisfied. Then GNNAMCQ is hold at x̄.

Proof. Suppose to the contrary that the GNNAMCQ does not hold at x̄, this yields that
there exists nonzero multiplier (µ, ν, λ) ∈ Rm+s+p−1, where µ = (µ1, µ2, . . . , µm), ν =
(ν1, ν2, . . . , νs) and λ = (λ1, λ2, . . . , λi−1, λi+1, . . . , λp), such that

0 ∈
m∑
l=1

µl∇gl(x̄) +
s∑

k=1

νk∇hk(x̄) +

p∑
j=1,j ̸=i

λj∇fj(x̄) +N(K, x̄),

µl ≥ 0, l = 1, 2, . . . ,m,

νk ∈ R, k = 1, 2, . . . , s,

λj ≥ 0, j = 1, 2, . . . , p, j ̸= i,

µlgl(x̄) = 0, l = 1, 2, . . . ,m.

By (ii) of the generalized Mangasarian-Fromovitz constraint qualification, there exists
η ∈ TC(K, x̄) such that

⟨η,∇fj(x̄)⟩ < 0, j ∈ {1, 2, . . . , p}, j ̸= i,

⟨η,∇gj(x̄)⟩ < 0, j ∈ J(x̄),

⟨η,∇hk(x̄)⟩ = 0, k ∈ {1, 2, . . .m},
⟨η, d⟩ ≤ 0, d ∈ N(K, x̄).

As µlgl(x̄) = 0, l = 1, 2, . . . ,m, thus µl = 0, l ∈ {1, 2, . . . ,m}\J(x̄). And we have that there
exists d̄ ∈ N(K, x̄) such that

⟨η,
m∑
l=1

µl∇gl(x̄) +

s∑
k=1

νk∇hk(x̄) +

p∑
j=1,j ̸=i

λj∇fj(x̄) + d̄⟩ = 0. (4.9)

From the above, we obtain λj = 0, j = 1, . . . , p, j ̸= i, µl = 0, l = 1, . . . ,m. Thus we have

0 ∈
s∑

k=1

νk∇hk(x̄) +N(K, x̄),

in view of (i) of the generalized Mangasarian-Fromovitz constraint qualification, we get
νk = 0, k = 1, . . . ,m, thus we have a contradiction to (µ, ν, λ) ̸= 0Rm+s+p−1 , so GNNAMCQ
holds at x̄.

Sometimes, for x̄ ∈ X, the GNNAMCQ is satisfied, but the generalized Mangasarian-
Fromovitz constraint qualification does not hold at x̄.
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Example 4.9. For n = 2, p = 2,m = s = 1,K = R2,

min f(x) = (f1(x), f2(x)) = (x2
1 + x1, x

2
2)

s.t. g(x) = x2 ≤ 0,

h(x) = x1 − x2 = 0,

x ∈ K.

The set of all efficient solutions is given as S = {(x1, x2) | x1 = x2,− 1
2 ≤ x1 ≤ 0}.

Now we choose x̄ = (−1
4 ,−

1
4 ). By the information of f1, f2, g, h,K, we have ∇f1(x̄) =

( 12 , 0),∇f2(x̄) = (0,−1
2 ),∇g(x̄) = (0, 1),∇h(x̄) = (1,−1) and N(K, x̄) = (0, 0). It is easy to

verify that the GNNAMCQ is satisfied.
As (F 1)s = {(x1, x2) | x1 < 0}, Gs = ∅,H− = {(x1, x2) | x1 − x2 = 0}, then we have

(F 1)s ∩Gs ∩H− ∩TC(K, x̄) = ∅, that is, the generalized Mangasarian-Fromovitz constraint
qualification is not satisfied.

Remark 4.10. Suppose x̄ ∈ X is a local efficient solution of (MOP), in view of Remark 4.7
and Theorem 4.8, we have the following implications:

For x̄ ∈ X, the generalized Mangasarian-Fromovitz constraint qualification is satisfied

⇒ GNNAMCQ holds at x̄

⇒ (MOP) is (MOP)-calm at x̄ with order 1.
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[7] G. Giorgi, B. Jiménez and V. Novo, Strong Kuhn-Tucker conditions and constraint
qualifications in locally Lipschitz multiobjective optimization problems, Top. 17 (2009)
288–304.

[8] M. Golestani and S. Nobakhtian, Nonsmooth multiobjective programming: strong
Kuhn-Tucker conditions, Positivity 17 (2013) 711–732.



260 F. LU, S. J. LI AND S. K. ZHU

[9] M. Golestani and S. Nobakhtian, Nonsmooth multiobjective programming and con-
straint qualifications, Optimization 62 (2013) 783–795.

[10] M. Golestani and S. Nobakhtian, Convexificators and strong Kuhn-Tucker conditions,
Comp Math Appl. 64 (2012) 550–557.

[11] X.X. Huang, K.L. Teo and X.Q. Yang, Calmness and exact penalization in vector
optimization with cone constraints, Comput. Optim. Appl. 35 (2006) 47–67.

[12] X.F. Li and J.Z. Zhang, Stronger Kuhn-Tucker type conditions in nonsmooth multiob-
jective optimization: locally Lipschitz case, J. Optim. Theory Appl. 127 (2005) 367–388.

[13] X.J. Long and N.J. Huang, Optimality conditions for efficiency on nons-
mooth multiobjective programming problems, Taiwanese J. Math. (2013), doi:
10.11650/tjm.18.2014.3730.

[14] D.V. Luu, Convexificators and necessary conditions for efficiency, Optimization 63
(2014) 321–335.

[15] D.V. Luu, Necessary and sufficient conditions for efficiency via convexificators, J. Op-
tim. Theory Appl. 160 (2014) 510–526.

[16] T. Maeda, Constraint qualifications in multiobjective optimization problems: differen-
tiable case, J. Optim. Theory Appl. 80 (1994) 483–500.

[17] V. Preda and I. Chitescu, On constraint qualification in multiobjective optimization
problems: semidifferentiable case, J. Optim. Theory Appl. 100 (1999) 417–433.

[18] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.

[19] S.M. Robinson, Stability theory for systems of inequalities, part II: Differentiable non-
linear systems, SIAM J. Numer. Anal. 13 (1976) 497–513.

[20] J.J. Ye, Necessary and sufficient optimality conditions for mathematical programs with
equilibrium constraints, J. Math. Anal. Appl. 307 (2005) 350–369.

[21] J.J. Ye, Constraint qualifications and necessary optimality conditions for optimization
problems with variational inequality constraints, SIAM J. Optim. 10 (2000) 943–962.

[22] S.K. Zhu and S.J. Li, Exact penalization and necessary optimality conditions for mul-
tiobjective optimization problems with equilibrium constraints, Abstract and Applied
Analysis 2014 (2014) 1–13.

Manuscript received 22 August
revised 2 March 2015

accepted for publication 16 March 2015

F. Lu
College of Mathematics and Statistics
Chongqing University, Chongqing 401331, China
E–mail address: lufang8771030@163.com



EXACT PENALIZATION AND SKKT CONDITIONS FOR NMOP 261

S.J. Li
College of Mathematics and Statistics
Chongqing University, Chongqing 401331, China
E-mail address: lisj@cqu.edu.cn

S.K. Zhu
Department of Economic Mathematics
Southwestern University of Finance and Economics
Chengdu 611130, China
E-mail address: zskcqu@163.com


