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solve the corresponding discretized problem. Popular approaches for obtaining the finite
dimensional approximation in the discretize-then-design framework include mesh-associated
discretization techniques and model order reduction (MOR) techniques. Examples of mesh-
associated discretization techniques include the finite difference method [17], the finite el-
ement method [17], the finite volume method [17], and the spectral method [5]. MOR
methods include the proper orthogonal decomposition method [6] and the balanced trun-
cation method [15], both of which exploit system input-output properties [1]. Since MOR
techniques can generate low-order models without compromising solution accuracy, they
are popular for dealing with complex STEPs, which arise frequently in applications such as
plasma physics, fluid flow, and heat and mass transfer (e.g., see [24] and the references cited
therein).

The linear quadratic (LQ) control framework, a widely-used technique in controller syn-
thesis, is well-defined in infinite dimensional function spaces to deal with the parabolic DPS
(e.g., [2, 4]). However, the LQ control framework requires solving Riccati-type differential
equations, which are nonlinear parabolic PDEs of dimension one greater than the original
parabolic PDE system. For example, to generate an optimal feedback controller for a scalar
heat equation, a Riccati PDE defined over a rectangular domain must be solved [16]. Hence,
the LQ approach does not actually solve the controller synthesis problem directly, but in-
stead converts it into another problem (i.e., solve a Riccati-type PDE) that is still extremely
difficult to solve from a computational point of view.

One of the major advances in PDE control in recent years has been the so-called infi-
nite dimensional Voltera integral feedback, or the backstepping method (e.g., [9, 13]). In-
stead of Riccati-type PDEs, the backstepping method requires solving the so-called kernel
equations—linear Klein-Gorden-type PDEs for which the successive approach can be used
to obtain explicit solutions. This method was originally developed for the stabilization of
one dimensional parabolic DPS and then extended to fluid flows [21], magnetohydrodynamic
flows [22,25], and elastic vibration [8]. In addition, the backstepping method can also be ap-
plied to achieve full state feedback stabilization and state estimation of PDE-ODE cascade
systems [18].

In this paper, we propose a new framework for control synthesis for the parabolic DPS.
This new framework does not require solving Riccati-type or Klein-Gorden-type PDEs.
Instead, it requires solving a so-called “costate” PDE, which is much easier to solve from
a computational viewpoint. In fact, many numerical software packages, such as Comsol
Multiphysics and MATLAB PDE ToolBox, can be used to generate numerical solutions
for the costate PDE. The Riccati PDEs, on the other hand, are usually not in standard
form and thus cannot be solved using off-the-shelf software packages. The optimization
approach proposed in this paper is motivated by the well-known PID tuning problem, in
which the coefficients in a PID controller need to be selected judiciously to optimize system
performance. Relevant literature includes reference [7], where extremum seeking algorithms
are used to tune the PID parameters; reference [10], where the PID tuning problem is
reformulated into a nonlinear optimization problem, and subsequently solved using numerical
optimization techniques; and reference [23], where the iterative learning tuning method is
used to update the PID parameters whenever a control task is repeated. The current paper
can be viewed as an extension of these optimization-based feedback design ideas to infinite
dimensional systems.

The remainder of this paper is organized as follows. In Section 2, we formulate two
parameter optimization problems for a class of unstable linear parabolic diffusion-reaction
PDEs with control actuation at the boundary: the first problem involves optimizing a set of
parameters that govern the feedback kernel; the second problem is a modification of the first
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problem with additional constraints to ensure closed-loop stability. In Section 3, we derive
the gradients of the cost and constraint functions for the optimization problems in Section 2.
Then, in Section 4, we present a numerical algorithm, which is based on the results obtained
in Section 3, for determining the optimal feedback kernel. Section 5 presents the numerical
simulation results. Finally, Section 6 concludes the paper by proposing some further research
topics.

2 Problem Formulation

2.1 Feedback Kernel Optimization

We consider the following parabolic PDE system:
yt(x, t) = yxx(x, t) + cy(x, t), (2.1a)

y(0, t) = 0, (2.1b)

y(1, t) = u(t), (2.1c)

y(x, 0) = y0(x), (2.1d)

where c > 0 is a given constant and u(t) is a boundary control. It is well known that the
uncontrolled version of system (2.1) is unstable when the constant c is sufficiently large [9].
Thus, it is necessary to design an appropriate feedback control law for u(t) to stabilize the
system. According to the LQ control [16] and backstepping synthesis approaches [9], the
optimal feedback control law takes the following form:

u(t) =

∫ 1

0

K(1, ξ)y(ξ, t)dξ, (2.2)

where the feedback kernel K(1, ξ) is obtained by solving either a Riccati-type or a Klein-
Gorden-type PDE. By introducing the new notation k(ξ) = K(1, ξ), we can write the feed-
back control policy (2.2) in the following form:

u(t) =

∫ 1

0

k(ξ)y(ξ, t)dξ.

The corresponding closed-loop system is

yt(x, t) = yxx(x, t) + cy(x, t), (2.3a)

y(x, 0) = y0(x), (2.3b)

y(0, t) = 0, (2.3c)

y(1, t) =

∫ 1

0

k(ξ)y(ξ, t)dξ. (2.3d)

In reference [9], the backstepping method is used to express the optimal feedback kernel in
terms of the first-order modified Bessel function. More specifically,

K(1, ξ) = −cξ
I1(

√
c(1− ξ2))√
c(1− ξ2)

, (2.4)

where I1 is the first-order modified Bessel function given by

I1(ω) =
∞∑

n=0

ω2n+1

22n+1n!(n+ 1)!
.
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Figure 1: The feedback kernel (2.4) for various values of c.

The feedback kernel (2.4) is plotted in Figure 1 for different values of c. Note that its shape
is similar to a quadratic function. Note also that K(1, ξ) = 0 when ξ = 0. Accordingly,
motivated by the quadratic behavior exhibited in Figure 1, we express k(ξ) in the following
parameterized form:

k(ξ; Θ) = θ1ξ + θ2ξ
2, (2.5)

where Θ = (θ1, θ2)
⊤ is a parameter vector to be optimized.

Moreover, we assume that the parameters must satisfy the following bound constraints:

a1 ≤ θ1 ≤ b1, a2 ≤ θ2 ≤ b2, (2.6)

where a1, a2, b1 and b2 are given bounds.
Let y(x, t; Θ) denote the solution of the closed-loop system (2.3) with the parameterized

kernel (2.5). The results in [20] ensure that such a solution exists and is unique.
Our goal is to stabilize the closed-loop system with minimal energy input. Accordingly,

we consider the following cost functional:

g0(Θ) =
1

2

∫ T

0

∫ 1

0

y2(x, t; Θ)dxdt+
1

2

∫ 1

0

k2(x; Θ)dx. (2.7)

This cost functional consists of two terms: the first term penalizes output deviation from
zero (stabilization); the second term penalizes kernel magnitude (energy minimization). We
now state our kernel optimization problem formally as follows.

Problem P1. Given the PDE system (2.3) with the parameterized kernel (2.5), find an
optimal parameter vector Θ = (θ1, θ2)

⊤ such that the cost functional (2.7) is minimized
subject to the bound constraints (2.6).

2.2 Closed-Loop Stability

Since (2.7) is a finite-time cost functional, there is no guarantee that the optimized kernel
(2.5) generated by the solution of Problem P1 stabilizes the closed-loop system (2.3) as
t → ∞. Nevertheless, we now show that, by analyzing the solution structure of (2.3),
additional constraints can be added to Problem P1 to ensure closed-loop stability.
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Using the separation of variables approach, we decompose y(x, t) as follows:

y(x, t) = X (x)T (t). (2.8)

Substituting (2.8) into (2.3a), we obtain

X (x)Ṫ (t) = X ′′(x)T (t) + cX (x)T (t), (2.9)

where

Ṫ (t) =
dT (t)

dt
,

X ′′(x) =
d2X (x)

dx2
.

Furthermore, from the boundary conditions (2.3c) and (2.3d),

X (0)T (t) = 0, X (1)T (t) =

∫ 1

0

k(ξ; Θ)X (ξ)T (t)dξ.

Thus, we immediately obtain
X (0) = 0, (2.10)

X (1) =

∫ 1

0

k(ξ; Θ)X (ξ)dξ. (2.11)

Rearranging (2.9) gives

X ′′(x) + cX (x)

X (x)
=

Ṫ (t)

T (t)
.

This equation must hold for all x and t. Hence, there exists a constant σ (an eigenvalue)
such that

X ′′(x) + cX (x)

X (x)
=

Ṫ (t)

T (t)
= σ. (2.12)

Clearly,
T (t) = T0e

σt, (2.13)

where T0 = T (0) is a constant to be determined.
To solve for X (x), we must consider three cases: (i) c < σ; (ii) c = σ; (iii) c > σ. In

cases (i) and (ii), the general solutions of (2.12) are, respectively,

X (x) = X0e
√
σ−cx +X1e

−
√
σ−cx,

and
X (x) = X0 +X1x,

where X0 and X1 are constants to be determined from the boundary conditions (2.10) and
(2.11). Then the corresponding solutions of (2.3) are

y(x, t) = X0T0e
√
σ−cx+σt +X1T0e

−
√
σ−cx+σt,

and
y(x, t) = X0T0e

σt +X1T0xe
σt.

These solutions are clearly unstable because 0 < c ≤ σ. Thus, we want to choose the
parameters θ1 and θ2 so that the unique solution of (2.3) satisfies case (iii) instead of cases
(i) and (ii).
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In case (iii), the general solution of (2.12) is

X (x) = X0 cos(
√
c− σx) +X1 sin(

√
c− σx), (2.14)

where X0 and X1 are constants to be determined from the boundary conditions (2.10) and
(2.11). Substituting (2.14) into (2.10), we obtain

X (0) = X0 = 0.

Hence,
X (x) = X1 sin(

√
c− σx). (2.15)

To simplify the notation, we introduce a new variable α =
√
c− σ. Substituting (2.15) into

condition (2.11), we have

X1 sinα = X1

∫ 1

0

θ1ξ sin(αξ)dξ +X1

∫ 1

0

θ2ξ
2 sin(αξ)dξ,

and thus

sinα =

∫ 1

0

θ1ξ sin(αξ)dξ +

∫ 1

0

θ2ξ
2 sin(αξ)dξ. (2.16)

Evaluating the first integral on the right hand side of (2.16) gives∫ 1

0

θ1ξ sin(αξ)dξ = θ1

(
sinα

α2
− cosα

α

)
. (2.17)

Evaluating the second integral on the right hand side of (2.16) gives∫ 1

0

θ2ξ
2 sin(αξ)dξ = −θ2

(
cosα

α
− 2 sinα

α2

)
+

2θ2(cosα− 1)

α3
. (2.18)

Thus, using (2.17) and (2.18), (2.16) can be simplified as

(θ1α
2 + θ2α

2 − 2θ2) cosα+ (α3 − θ1α− 2θ2α) sinα+ 2θ2 = 0. (2.19)

The following result, the proof of which is deferred to the appendix, is fundamental to our
subsequent analysis.

Lemma 2.1. Suppose Θ = (θ1, θ2)
⊤ satisfies the following inequality:

θ21 + θ22 + 2θ1θ2 − 2θ1 − 4θ2 ≥ 0. (2.20)

Then equation (2.19) has an infinite number of positive solutions.

For any α satisfying (2.19), there exists a corresponding solution of (2.12) in the form
(2.15). Let {αn}∞n=1 be a sequence of positive solutions of (2.19). Then the general solution
of (2.12) is

X (x) =

∞∑
n=1

An sin(αnx),

where An are constants to be determined. The corresponding eigenvalues are

σn = c− α2
n, n = 1, 2, 3, . . .
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Hence, using (2.13),

y(x, t) =
∞∑

n=1

T0Ane
(c−α2

n)t sin(αnx). (2.21)

By virtue of (2.10) and (2.11), this solution satisfies the boundary conditions (2.3c) and
(2.3d). The constants T0 and An must be selected appropriately so that the initial condition
(2.3b) is also satisfied. To ensure stability as t→ ∞, each eigenvalue σn = c− α2

n in (2.21)
must be negative. Thus, we impose the following constraints on Θ = (θ1, θ2)

⊤:

θ21 + θ22 + 2θ1θ2 − 2θ1 − 4θ2 ≥ 0, (2.22a)

c− α2 ≤ −ϵ, (2.22b)

(θ1α
2 + θ2α

2 − 2θ2) cosα+ (α3 − θ1α− 2θ2α) sinα+ 2θ2 = 0, (2.22c)

where ϵ is a given positive parameter and α is the smallest positive solution of (2.19). Note
that α here is treated as an additional optimization variable. Constraint (2.22a) ensures that
there are an infinite number of eigenvalues (see Lemma 2.1) and thus the solution form (2.21)
is valid. Constraints (2.22b) and (2.22c) ensure that the largest eigenvalue is negative, thus
guaranteeing solution stability. Adding constraints (2.22) to Problem P1 yields the following
modified problem.

Problem P2. Given the PDE system (2.3) with the parameterized kernel (2.5), choose
Θ = (θ1, θ2)

⊤ and α such that the cost functional (2.7) is minimized subject to the bound
constraints (2.6) and the nonlinear constraints (2.22).

The next result is concerned with the stability of the closed-loop system corresponding
to the optimized kernel from Problem P2.

Theorem 2.2. Let (Θ∗, α∗) be an optimal solution of Problem P2, where α
∗ is the small-

est positive solution of equation (2.22c) corresponding to Θ∗. Suppose that there exists a
sequence {α∗

n}∞n=1 of positive solutions to equation (2.22c) corresponding to Θ∗ such that
y0(x) ∈ span{sin(α∗

nx)}. Then the closed-loop system (2.3) corresponding to Θ∗ is stable.

Proof. Because of constraint (2.22a), the solution form (2.21) with αn = α∗
n is guaranteed

to satisfy (2.3a), (2.3c) and (2.3d). If y0(x) ∈ span{sin(α∗
nx)}, then there exists constants

Yn, n ≥ 1, such that

y0(x) =
∞∑

n=1

Yn sin(α
∗
nx).

Taking Yn = T0An ensures that (2.21) with αn = α∗
n also satisfies the initial conditions

(2.3b), and is therefore the unique solution of (2.3). Since α∗ is the first positive solution of
equation (2.22c), it follows from constraint (2.22b) that for each n ≥ 1,

c− (α∗
n)

2 ≤ c− (α∗)2 ≤ −ϵ < 0.

This shows that all eigenvalues are negative.

Theorem 2.2 requires that the initial function y0(x) be contained within the linear span
of sinusoidal functions sin(α∗

nx), where each α
∗
n is a solution of equation (2.19) corresponding

to Θ∗. The good thing about this condition is that it can be verified numerically by solving
the following optimization problem: choose span coefficients Yn, 1 ≤ n ≤ N , to minimize

J =

∫ 1

0

∣∣∣∣y0(x)− N∑
n=1

Yn sin(α
∗
nx)

∣∣∣∣2dx, (2.23)
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where N is a sufficiently large integer and each α∗
n is a solution of equation (2.19) correspond-

ing to the optimal solution of Problem P2. If the optimal cost value for this optimization
problem is sufficiently small, then the span condition in Theorem 2.2 is likely to be satisfied,
and therefore closed-loop stability is guaranteed.

Based on our computational experience, the span condition in Theorem 2.2 is usually
satisfied. This can be explained as follows. In the proof of Lemma 2.1 (see the appendix),
we show that for any ϵ ∈ (0, 12π), there exists at least one solution of (2.19) in the interval
[kπ − ϵ, kπ + ϵ] when k is sufficiently large. It follows that kπ is an approximate solution of
(2.19) for all sufficiently large k—in a sense, the solutions α∗

n of (2.19) converge to the integer
multiples of π. In our computational experience, this convergence occurs very rapidly. Thus,
it is reasonable to expect that the linear span of {sin(α∗

nx)} is “approximately” the same
as the linear span of {sin(nπx)}, which is known to be a basis for the space of continuous
functions defined on [0, 1].

3 Gradient Computation

Problem P2 is an optimal parameter selection problem with decision parameters θ1, θ2 and
α. In principle, such problems can be solved as nonlinear optimization problems using the
Sequential Quadratic Programming (SQP) method or other nonlinear optimization methods.
However, to do this, we need the gradients of the cost functional (2.7) and the constraint
functions (2.22) with respect to the decision parameters. The gradients of the constraint
functions can be easily derived using elementary differentiation. Define

g1(Θ) = θ21 + θ22 + 2θ1θ2 − 2θ1 − 4θ2,

g2(α) = c− α2,

g3(Θ, α) = (θ1α
2 + θ2α

2 − 2θ2) cosα+ (α3 − θ1α− 2θ2α) sinα+ 2θ2.

Then the corresponding constraint gradients are given by

∇θ1g1(Θ) = 2θ1 + 2θ2 − 2, ∇θ2g1(Θ) = 2θ2 + 2θ1 − 4, ∇αg2(α) = −2α, (3.1)

and

∇θ1g3(Θ, α) = α2 cosα− α sinα, (3.2a)

∇θ2g3(Θ, α) = (α2 − 2) cosα− 2α sinα+ 2, (3.2b)

∇αg3(Θ, α) = (α3 + θ1α) cosα+ (3α2 − θ1α
2 − θ2α

2 − θ1) sinα. (3.2c)

Since the constraint functions in (2.22) are explicit functions of the decision variables, their
gradients are easily obtained. The cost functional (2.7), on the other hand, is an implicit
function of Θ because it depends on the state trajectory y(x, t). Thus, computing the
gradient of (2.7) is a non-trivial task. We now develop a computational method, analogous
to the costate method in the optimal control of ordinary differential equations [11, 12, 19],
for computing this gradient.

We define the following costate PDE system:
vt(x, t) + vxx(x, t) + cv(x, t) + y(x, t; Θ)− k(x; Θ)vx(1, t) = 0, (3.3a)

v(0, t) = v(1, t) = 0, (3.3b)

v(x, T ) = 0. (3.3c)

Let v(x, t; Θ) denote the solution of the costate PDE system (3.3) corresponding to the
parameter vector Θ. Then we have the following theorem.
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Theorem 3.1. The gradient of the cost functional (2.7) is given by

∇θ1g0(Θ) = −
∫ T

0

∫ 1

0

xvx(1, t; Θ)y(x, t; Θ)dxdt+
1

3
θ1 +

1

4
θ2, (3.4a)

∇θ2g0(Θ) = −
∫ T

0

∫ 1

0

x2vx(1, t; Θ)y(x, t; Θ)dxdt+
1

4
θ1 +

1

5
θ2. (3.4b)

Proof. Let ν(x, t) be an arbitrary function satisfying

ν(x, T ) = 0, ν(0, t) = ν(1, t) = 0. (3.5)

Then we can rewrite the cost functional (2.7) in augmented form as follows:

g0(Θ) =
1

2

∫ T

0

∫ 1

0

y2(x, t; Θ)dxdt+
1

2

∫ 1

0

k2(x; Θ)dx

+

∫ T

0

∫ 1

0

ν(x, t)
{
− yt(x, t; Θ) + yxx(x, t; Θ) + cy(x, t; Θ)

}
dxdt. (3.6)

Using integration by parts and applying the boundary condition (2.3c), we can simplify the
augmented cost functional (3.6) to obtain

g0(Θ) =
1

2

∫ T

0

∫ 1

0

y2(x, t; Θ)dxdt+
1

2

∫ 1

0

k2(x; Θ)dx

−
∫ 1

0

ν(x, T )y(x, T ; Θ)dx+

∫ 1

0

ν(x, 0)y(x, 0)dx

+

∫ T

0

∫ 1

0

νt(x, t)y(x, t; Θ)dxdt+

∫ T

0

[
ν(x, t)yx(x, t; Θ)

]x=1

x=0
dt

−
∫ T

0

νx(1, t)y(1, t; Θ)dt+

∫ T

0

∫ 1

0

νxx(x, t)y(x, t; Θ)dxdt

+ c

∫ T

0

∫ 1

0

ν(x, t)y(x, t; Θ)dxdt.

Thus, recalling the conditions (2.3b) and (3.5), we obtain

g0(Θ) =
1

2

∫ T

0

∫ 1

0

y2(x, t; Θ)dxdt+
1

2

∫ 1

0

k2(x; Θ)dx

+

∫ T

0

∫ 1

0

{
νt(x, t) + νxx(x, t) + cν(x, t)

}
y(x, t; Θ)dxdt

+

∫ 1

0

ν(x, 0)y0(x)dx−
∫ T

0

νx(1, t)y(1, t; Θ)dt.

Now, consider a perturbation ερ in the parameter vector Θ, where ε is a constant of suf-
ficiently small magnitude and ρ is an arbitrary vector. The corresponding perturbation in
the state is,

y(x, t; Θ + ερ) = y(x, t; Θ) + ε⟨∇Θy(x, t; Θ), ρ⟩+O(ε2), (3.7)

and the perturbation in the feedback kernel is,

k(x; Θ + ερ) = k(x; Θ) + ε⟨∇Θk(x; Θ), ρ⟩+O(ε2), (3.8)



272 Z. REN, C. XU, Q. LIN AND R. LOXTON

where O(ε2) denotes omitted second-order terms such that ε−1O(ε2) → 0 as ε → 0. For
notational simplicity, we define η(x, t) = ⟨∇Θy(x, t; Θ), ρ⟩. Obviously, η(x, 0) = 0, because
the initial profile y0(x) is independent of the parameter vector Θ. Based on (3.7) and (3.8),
the perturbed augmented cost functional takes the following form:

g0(Θ + ερ) =
1

2

∫ T

0

∫ 1

0

{
y(x, t; Θ) + εη(x, t)

}2
dxdt

+

∫ T

0

∫ 1

0

{
νt(x, t) + νxx(x, t) + cν(x, t)

}{
y(x, t; Θ) + εη(x, t)

}
dxdt

+

∫ 1

0

ν(x, 0)y0(x)dx−
∫ T

0

νx(1, t)
{
y(1, t; Θ) + εη(1, t)

}
dt

+
1

2

∫ 1

0

{
k(x; Θ) + ε⟨∇Θk(x; Θ), ρ⟩

}2
dx+O(ε2). (3.9)

From the boundary condition in (2.3d), we have

y(1, t; Θ) + εη(1, t) =

∫ 1

0

k(x; Θ)
{
y(x, t; Θ) + εη(x, t)

}
dx

+

∫ 1

0

ε⟨∇Θk(x; Θ), ρ⟩y(x, t; Θ)dx+O(ε2). (3.10)

Substituting (3.10) into (3.9) gives

g0(Θ + ερ) =
1

2

∫ T

0

∫ 1

0

{
y(x, t; Θ) + εη(x, t)

}2
dxdt

+

∫ T

0

∫ 1

0

{
νt(x, t) + νxx(x, t) + cν(x, t)

}{
y(x, t; Θ) + εη(x, t)

}
dxdt

+

∫ 1

0

ν(x, 0)y0(x)dx−
∫ T

0

νx(1, t)

[∫ 1

0

k(x; Θ)
{
y(x, t; Θ) + εη(x, t)

}
dx

]
dt

−
∫ T

0

νx(1, t)

[∫ 1

0

ε⟨∇Θk(x; Θ), ρ⟩y(x, t; Θ)dx

]
dt

+
1

2

∫ 1

0

{
k(x; Θ) + ε⟨∇Θk(x; Θ), ρ⟩

}2
dx+O(ε2). (3.11)

Taking the derivative of (3.11) with respect to ε and setting ε = 0 gives

⟨∇Θg0(Θ), ρ⟩ = dg0(Θ + ερ)

dε

∣∣∣∣
ε=0

=

∫ T

0

∫ 1

0

{
y(x, t; Θ) + νt(x, t) + νxx(x, t) + cν(x, t)

}
η(x, t)dxdt

−
∫ T

0

∫ 1

0

νx(1, t)k(x; Θ)η(x, t)dxdt

−
∫ T

0

∫ 1

0

νx(1, t)⟨∇Θk(x; Θ), ρ⟩y(x, t; Θ)dxdt

+

∫ 1

0

k(x; Θ)⟨∇Θk(x; Θ), ρ⟩dx. (3.12)
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Choosing the multiplier ν(x, t) to be the solution of the costate system (3.3), the gradient
in (3.12) becomes

⟨∇Θg0(Θ), ρ⟩ =−
∫ T

0

∫ 1

0

vx(1, t; Θ)⟨∇Θk(x; Θ), ρ⟩y(x, t; Θ)dxdt

+

∫ 1

0

k(x; Θ)⟨∇Θk(x; Θ), ρ⟩dx.

Taking ρ = (1, 0)⊤ gives

∇θ1g0(Θ) = −
∫ T

0

∫ 1

0

xvx(1, t; Θ)y(x, t; Θ)dxdt+
1

3
θ1 +

1

4
θ2.

Similarly, taking ρ = (0, 1)⊤ gives

∇θ2g0(Θ) = −
∫ T

0

∫ 1

0

x2vx(1, t; Θ)y(x, t; Θ)dxdt+
1

4
θ1 +

1

5
θ2.

This completes the proof.

4 Numerical Solution Procedure

Based on the gradient formulas derived in Section 3, we now propose a gradient-based
optimization framework for solving Problem P2. This framework is illustrated in Figure 2
and described in detail below.

Algorithm 4.1. Gradient-based optimization procedure for solving Problem P2.

(a) Choose an initial guess (θ1, θ2, α).

(b) Solve the state PDE system (2.3) corresponding to (θ1, θ2).

(c) Solve the costate PDE system (3.3) corresponding to (θ1, θ2).

(d) Compute the cost and constraint gradients at (θ1, θ2, α) using (3.1), (3.2), and (3.4).

(e) Use the gradient information obtained in Step (d) to perform an optimality test. If
(θ1, θ2, α) is optimal, then stop; otherwise, go to Step (f).

(f) Use the gradient information obtained in Step (d) to calculate a search direction.

(g) Perform a line search to determine the optimal step length.

(h) Compute a new point (θ1, θ2, α) and return to Step (b).

Note that Steps (e)-(h) of Algorithm 4.1 can be performed automatically by standard
nonlinear optimization solvers such as FMINCON in MATLAB.

Recall from Theorem 2.2 that to guarantee closed-loop stability, the optimal value of
α must be the first positive solution of (2.19). In practice, this can usually be achieved
by choosing α = 0 as the initial guess. Moreover, after solving Problem P2, it is easy to
check whether the optimal value of α is indeed the smallest positive solution by plotting the
left-hand side of (2.19).
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Figure 2: Gradient-based optimization framework for solving Problem P2.

4.1 Simulation of the State System

To solve the state system (2.3) numerically, we will develop a finite-difference method. This
method involves discretizing both the spatial and the temporal domains into a finite number
of subintervals, i.e.,

x0 = 0, x1 = h, x2 = 2h, . . . , xn = nh = 1,

t0 = 0, t1 = τ, t2 = 2τ, . . . , tm = mτ = T,

where n and m are positive integers and h = 1/n and τ = T/m. Using the Taylor expansion,
we obtain the following approximations:

∂y(xi, tj)

∂t
=
y(xi, tj + τ)− y(xi, tj)

τ
+O(τ), (4.1a)

∂2y(xi, tj)

∂x2
=
y(xi + h, tj)− 2y(xi, tj) + y(xi − h, tj)

h2
+O(h2), (4.1b)

where O(τ) and O(h2) denote, respectively, omitted first- and second-order terms such that
O(τ) → 0 as τ → 0 and h−1O(h2) → 0 as h→ 0. Substituting (4.1) into (2.3a) gives

yi,j+1 − yi,j
τ

=
yi+1,j − 2yi,j + yi−1,j

h2
+ cyi,j ,

where yi,j = y(xi, tj), i = 0, 1, . . . , n, j = 0, 1, . . . ,m. Simplifying this equation, we obtain

yi,j+1 = (1− 2r + cτ)yi,j + r(yi−1,j + yi+1,j), (4.2)

where 1 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1 and

r =
τ

h2
. (4.3)

The explicit numerical scheme (4.2) is convergent when 0 < r ≤ 0.5 (see reference [3] for
the relevant convergence analysis). Thus, in this paper, we assume that τ and h are chosen
such that 0 < r ≤ 0.5. From (2.3b), we obtain the initial condition

yi,0 = y(xi, 0) = y0(xi), i = 0, 1, . . . , n. (4.4)
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Moreover, from (2.3c) and (2.3d), we obtain the boundary conditions

y0,j = y(0, tj) = 0, j = 1, 2, . . . ,m, (4.5)

and

yn,j = y(1, tj) =

∫ 1

0

k(ξ; Θ)y(ξ, tj)dξ, j = 1, 2, . . . ,m. (4.6)

Using the composite trapezoidal rule [3], the integral in (4.6) becomes

yn,j =
1

2
h
{
k(x0; Θ)y(x0, tj) + k(xn; Θ)y(xn, tj)

}
+ h

n−1∑
i=1

k(xi; Θ)y(xi, tj)

=
1

2
hk(xn; Θ)yn,j + h

n−1∑
i=1

k(xi; Θ)yi,j .

Rearranging this equation yields

yn,j =

[
1− 1

2
hk(xn; Θ)

]−1
[
h

n−1∑
i=1

k(xi; Θ)yi,j

]
. (4.7)

By using the initial condition (4.4) and the boundary conditions (4.5) and (4.7), numer-
ical approximations of y(x, t) at the pre-defined nodes can be calculated forward in time
recursively from (4.2).

4.2 Simulation of the Costate System

As with the state system, we will use the finite-difference method to solve the costate system
(3.3) numerically. Using the Taylor expansion, we obtain the following approximations:

∂v(xi, tj)

∂t
=
v(xi, tj)− v(xi, tj − τ)

τ
+O(τ), (4.8a)

∂2v(xi, tj)

∂x2
=
v(xi + h, tj)− 2v(xi, tj) + v(xi − h, tj)

h2
+O(h2), (4.8b)

∂v(1, tj)

∂x
=
v(xn, tj)− v(xn − h, tj)

h
+O(h). (4.8c)

Substituting (4.8) into (3.3) gives

vi,j − vi,j−1

τ
+
vi+1,j − 2vi,j + vi−1,j

h2
+ cvi,j + yi,j − k(xi; Θ)

vn,j − vn−1,j

h
= 0,

where vi,j = v(xi, tj). We rearrange this equation to obtain

vi,j−1 = (1− 2r + cτ)vi,j + r(vi+1,j + vi−1,j) + τyi,j −
τk(xi; Θ)

h
(vn,j − vn−1,j), (4.9)

where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m and r is as defined in (4.3). From (3.3c), we obtain the
terminal condition

vi,m = v(xi, T ) = 0, i = 0, 1, . . . , n. (4.10)

Moreover, from (3.3b), we obtain the boundary conditions

v0,j = v(0, tj) = 0, vn,j = v(1, tj) = 0, j = 0, 1, . . . ,m. (4.11)

Using the recurrence equation (4.9), together with (4.10) and (4.11), we can compute ap-
proximate values of v(x, t) backward in time. The finite-difference schemes for solving the
state and costate PDEs are summarized in Table 1.
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Table 1: Numerical computation of y(x, t) and v(x, t)

Procedure 1. Evaluation of y(xi, tj).

1: Set 1/n→ h, T/m→ τ .
2: Compute yi,0 for each i = 0, 1, . . . , n using (4.4).
3: Set 1 → j.
4: Compute yi,j for each i = 1, 2, . . . , n− 1 by solving (4.2).
5: Compute y0,j using (4.5).
6: Compute yn,j using (4.7).
7: If j = m, then stop. Otherwise, set j + 1 → j and go to Step 4.

Procedure 2. Evaluation of v(xi, tj).

1: Compute vi,m for each i = 0, 1, . . . , n using (4.10).
2: Set j = m− 1.
3: Compute vi,j for each i = 1, 2, . . . , n− 1 using (4.9).
4: Compute v0,j and vn,j using (4.11).
5: If j = 0, then stop. Otherwise, set j − 1 → j and go to Step 3.

4.3 Numerical Integration

Recall the cost functional (2.7):

g0(Θ) =
1

2

∫ T

0

∫ 1

0

y2(x, t; Θ)dxdt+
1

2

∫ 1

0

k2(x; Θ)dx

=
1

2

∫ T

0

∫ 1

0

y2(x, t; Θ)dxdt+
1

6
θ21 +

1

10
θ22 +

1

4
θ1θ2.

Furthermore, recall the cost functional’s gradient from (3.4):

∇θ1g0(Θ) = −
∫ T

0

∫ 1

0

xvx(1, t; Θ)y(x, t; Θ)dxdt+
1

3
θ1 +

1

4
θ2,

∇θ2g0(Θ) = −
∫ T

0

∫ 1

0

x2vx(1, t; Θ)y(x, t; Θ)dxdt+
1

4
θ1 +

1

5
θ2.

Clearly, both the cost functional (2.7) and its gradient (3.4) involve evaluating double inte-
grals of the form ∫ T

0

∫ 1

0

ψ(x, t)dxdt, (4.12)

where ψ(x, t) = y2(x, t; Θ) for the cost functional and ψ(x, t) = −∇θik(x; Θ)vx(1, t; Θ)y(x, t; Θ),
i = 1, 2, for the cost functional’s gradient. To evaluate these integrals, we partition the
space and temporal domains using the same equally-spaced mesh points x0, x1, . . . , xn and
t0, t1, . . . , tm as in Sections 4.1 and 4.2. These subintervals define step sizes h = 1/n and
τ = T/m. The integral in (4.12) can be written as the following iterated integral:∫ T

0

∫ 1

0

ψ(x, t)dxdt =

∫ T

0

(∫ 1

0

ψ(x, t)dx

)
dt.
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Applying the composite Simpson’s rule [3] twice, we obtain the following approximation:

∫ T

0

∫ 1

0

ψ(x, t)dxdt =
1

3
τ

{
ϕ(t0) + 2

(m/2)−1∑
l=1

ϕ(t2l) + 4

m/2∑
l=1

ϕ(t2l−1) + ϕ(tm)

}
, (4.13)

where

ϕ(tj) =
1

3
h

[
ψ(x0, tj) + 2

(n/2)−1∑
k=1

ψ(x2k, tj) + 4

n/2∑
k=1

ψ(x2k−1, tj) + ψ(xn, tj)

]
.

More details on numerical integration algorithms are available in [3]. Using (4.13), the cost
functional (2.7) and its gradient (3.4) can be evaluated successfully.

5 Numerical Simulations

Our numerical simulations were conducted within the MATLAB programming environment
running on a desktop computer with the following configuration: Intel Core i7-2600 3.40GHz
CPU, 4.00GB RAM, 64-bit Windows 7 Operating System. For the finite-difference dis-
cretization, we used n = 14 spatial intervals and m = 5000 temporal intervals over a time
horizon of [0, T ] = [0, 4]. Our code implements the gradient-based optimization procedure
in Algorithm 4.1 by combining the FMINCON function in MATLAB with the gradient
computation method described in Section 3.

Consider the uncontrolled version of (2.3) in which u(t) = 0. In this case, the exact
solution is

y(x, t) = 2
∞∑

n=1

Cne
(c−n2π2)t sin(nπx)dx, (5.1)

where Cn are the Fourier coefficients defined by

Cn =

∫ 1

0

y0(x) sin(nπx)dx.

The eigenvalues of (5.1) are c−n2π2, n = 1, 2, . . . The largest eigenvalue is therefore c−π2,
which indicates that system (2.3) with u(t) = 0 is unstable for c > π2 ≈ 9.8696. We report
the numerical results from our algorithm for three different scenarios.

5.1 Scenario 1

For the first scenario, we choose c = 10 and y0(x) = sin(πx). The corresponding
uncontrolled open-loop response (see equation (5.1)) is shown in Figure 3. As we can see
from Figure 3, the state of the uncontrolled system grows as time increases. For the feedback
kernel optimization, we suppose that the lower and upper bounds for the optimization
parameters are ai = −10 and bi = 10, respectively. We also choose ϵ = 1 in (2.22b).
Starting from the initial guess (θ1, θ2, α) = (−1.0, 2.0, 0), our program terminates after 23
iterations and 15.8358 seconds. The optimal cost value is g0 = 0.1712 and the optimal
solution of Problem P2 is (θ∗1 , θ

∗
2 , α

∗) = (−1.0775, 0.5966, 3.3486).
The spatial-temporal response of the controlled plant corresponding to (θ∗1 , θ

∗
2) is shown

in Figure 4(a). The figure clearly shows that the controlled system (2.3) with optimized
parameters (θ∗1 , θ

∗
2) is stable. The corresponding boundary control and kernel function are

shown in Figures 4(b) and 4(c), respectively.



278 Z. REN, C. XU, Q. LIN AND R. LOXTON

Figure 3: Uncontrolled open-loop response for Scenario 1.

Table 2: Solutions of (2.19) and corresponding optimal span coefficients Yn in (2.23) for
Scenario 1.

n α∗
n α∗

n/π Yn

1 3.3486 1.0658 1.0364
2 6.3838 2.0320 −0.0915
3 9.4952 3.0224 0.0505
4 12.6173 4.0162 −0.0360
5 15.7493 5.0131 0.0268
6 18.8835 6.0108 −0.0206
7 22.0205 7.0093 0.0161
8 25.1582 8.0081 −0.0126
9 28.2971 9.0072 0.0098
10 31.4363 10.0064 −0.0074

Recall from Theorem 2.2 that closed-loop stability is guaranteed if α∗ = 3.3486 is the
first positive solution of equation (2.19) and the initial function y0(x) is contained within the
linear span of {sin(α∗

nx)}, where each α∗
n is a solution of equation (2.19) corresponding to

(θ∗1 , θ
∗
2). It is clear from Figure 4(d) that α∗ is indeed the first positive solution of equation

(2.19). To verify the linear span condition, we use FMINCON in MATLAB to minimize
(2.23) for N = 10. The first 10 positive solutions of (2.19) corresponding to the optimal
parameters θ∗1 = −1.0775 and θ∗2 = 0.5966 are given in Table 2. The optimal span coefficients
that minimize (2.23) are also given. The optimal value of J in (2.23) is 2.184832× 10−5,
which indicates that the span condition holds. Note also from Table 2 that α∗

n/π
converges to an integer as n→ ∞ (recall the discussion of the end of Section 2.2).

5.2 Scenario 2

For the second scenario, we choose c = 11 and y0(x) = (1+x) sin(πx). The corresponding
uncontrolled open-loop trajectory is shown in Figure 5. Starting from the initial guess
(θ1, θ2, α) = (−1.0, 1.5, 0), our program converges after 26 iterations and 11.5767 seconds
with an optimal cost value of g0 = 0.5515. The corresponding optimal parameter values
are (θ∗1 , θ

∗
2 , α

∗) = (−2.9141, 1.7791, 3.6056). We show the spatial-temporal response for the
controlled system with optimized feedback parameters (θ∗1 , θ

∗
2) in Figure 6(a). Again, as

with Scenario 1, the controlled plant corresponding to the optimal solution of Problem P2 is
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Figure 4: Simulation results for Scenario 1 (optimized parameters θ∗1 = −1.0775, θ∗2 =
0.5966, α∗ = 3.3486).

stable. The optimal boundary control and optimal kernel function are shown in Figures 6(b)
and 6(c), respectively. Figure 6(d) shows the left-hand side of (2.19). Note that α∗ = 3.6056
is the first positive root, as required by Theorem 2.2. Using MATLAB to minimize (2.23)
for N = 14, we obtain an optimal cost of 1.249410 × 10−12, which indicates that the span
condition in Theorem 2.2 holds. The values of α∗

n and Yn in (2.23) are given in Table 3.

xt

y
(x
,
t)

Figure 5: Uncontrolled open-loop response for Scenario 2.



280 Z. REN, C. XU, Q. LIN AND R. LOXTON

Table 3: Solutions of (2.19) and optimal span coefficients Yn in (2.23) for Scenario 2.

n α∗
n α∗

n/π Yn

1 3.6056 1.1476 −0.4185
2 6.4595 2.0562 1.4867
3 9.5520 3.0404 1.4965
4 12.6561 4.0285 −0.7676
5 15.7817 5.0234 0.4462
6 18.9096 6.0191 −0.3391
7 22.0433 7.0166 0.2493
8 25.1778 8.0143 −0.1992
9 28.3147 9.0128 0.1520
10 31.4520 10.0114 −0.1189
11 34.5905 11.0104 0.0871
12 37.7291 12.0095 −0.0622
13 40.8685 13.0088 0.0429
14 44.0081 14.0086 1.0061

5.3 Scenario 3

For the final scenario, we choose c = 14 and y0(x) = (2 + x) sin(2.5πx). The correspond-
ing uncontrolled open-loop trajectory is shown in Figure 7. Starting from the initial guess
(θ1, θ2, α) = (−2.0, 1.5, 0), our program terminates after 22 iterations and 10.0226
seconds with an optimal cost value of g0 = 3.1006. The corresponding optimal solution
is (θ∗1 , θ

∗
2 , α

∗) = (−9.1266, 6.4093, 4.1231). The spatial-temporal response of the controlled
plant corresponding to (θ∗1 , θ

∗
2) is shown in Figure 8(a), which clearly shows that the con-

trolled system (2.3) with optimized parameters (θ∗1 , θ
∗
2) is stable. The optimal boundary

control and optimal kernel function are shown in Figures 8(b) and 8(c), respectively. Min-
imizing (2.23) for N = 14 yields an optimal cost of 8.045397 × 10−15. We report the
corresponding values of α∗

n and Yn in Table 4. Finally, Figure 8(d) shows the left-hand side
of equation (2.19) corresponding to the optimized parameters.

6 Conclusion

In this paper, we have introduced a new gradient-based optimization approach for boundary
stabilization of parabolic PDE systems. As with the well-known LQ control and backstep-
ping synthesis approaches, our new approach involves expressing the boundary controller
as an integral state feedback in which a kernel function needs to be designed judiciously.
However, unlike the LQ control and backstepping approaches, we do not determine the feed-
back kernel by solving Riccati-type or Klein-Gorden-type PDEs; instead, we approximate
the feedback kernel by a quadratic function and then optimize the quadratic’s coefficients
using dynamic optimization techniques. This approach requires solving a so-called “costate
PDE”, which is much easier to solve numerically than the Riccati and Klein-Gorden PDEs.
Indeed, as shown in Section 4, the costate PDE can be solved easily using the finite-difference
method. Based on the work in this paper, we have identified several unresolved research
questions described as follows: (i) Is it possible to prove, or at least weaken, the linear
span condition in Theorem 2.2? (ii) Can the proposed kernel optimization approach be
applied to other classes of PDE plant models? (iii) Is it possible to develop methods for
minimizing cost functional (2.7) over an infinite time horizon? These issues will be explored
in future work.
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Figure 6: Simulation results for Scenario 2 (optimized parameters θ∗1 = −2.9141, θ∗2 =
1.7791, α∗ = 3.6056).
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Figure 7: Uncontrolled open-loop response for Scenario 3.
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Table 4: Solutions of (2.19) and corresponding optimal span coefficients Yn in (2.23) for
Scenario 3.

n α∗
n α∗

n/π Yn

1 4.1231 1.3124 −0.4383
2 6.6959 2.1314 1.7274
3 9.7345 3.0986 1.2549
4 12.7804 4.0683 −0.7124
5 15.8861 5.0564 0.4225
6 18.9930 6.0456 −0.3256
7 22.1166 7.0399 0.2415
8 25.2406 8.0343 −0.1951
9 28.3713 9.0308 0.1510
10 31.5022 10.0274 −0.1208
11 34.6366 11.0251 0.0922
12 37.7711 12.0229 −0.0723
13 40.9075 13.0212 0.0662
14 44.0440 14.0196 1.0151

Figure 8: Simulation results for Scenario 3 (optimized parameters θ∗1 = −9.1266, θ∗2 =
6.4093, α∗ = 4.1231).

A Proof of Lemma 2.1

We prove the lemma in three steps.
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A.1 Preliminaries

Let
Q(α) =

√
(θ1α2 + θ2α2 − 2θ2)2 + (α3 − θ1α− 2θ2α)2

=
√
α6 + (θ21 + 2θ1θ2 + θ22 − 2θ1 − 4θ2)α4 + θ21α

2 + 4θ22.

Furthermore, let φ(α) ∈ (−π, π] be the unique angle satisfying

cos(φ(α)) =
α3 − θ1α− 2θ2α

Q(α)
,

and

sin(φ(α)) =
θ1α

2 + θ2α
2 − 2θ2

Q(α)
.

Using the definitions of Q(α) and φ(α), equation (2.19) can be rewritten as follows:

Q(α) sin(φ(α)) cos(α) +Q(α) cos(φ(α)) sin(α) = −2θ2.

Thus, using the angle sum trigonometric identity, we obtain

Q(α) sin(α+ φ(α)) = −2θ2. (A.1)

Now, under condition (2.20), Q(α) → ∞ as α→ ∞. Furthermore,

lim
α→+∞

cos(φ(α)) = 1, lim
α→+∞

sin(φ(α)) = 0.

Hence, φ(α) → 0 as α→ ∞.

A.2 Angle φ(α) is Continuous at all Sufficiently Large α

Since φ(α) → 0 as α → ∞, there exists a constant ᾱ such that − 1
4π < φ(α) < 1

4π for all
α > ᾱ. Consider an arbitrary point α′ > ᾱ. We will show that φ(·) is continuous at α′.

Let δ > 0. In view of the definition of sin(φ(α)), there exists an ε > 0 such that

|α− α′| < ε =⇒ − 1√
2
δ < sin(φ(α))− sin(φ(α′)) <

1√
2
δ. (A.2)

Now, using Taylor’s Theorem,

sin(φ(α))− sin(φ(α′)) = cos(ζ)(φ(α)− φ(α′)), (A.3)

where ζ belongs to the interval bounded by φ(α) and φ(α′). Suppose α satisfies |α− α′| <
min(ε, α′ − ᾱ). Then

−1

4
π < φ(α) <

1

4
π, −1

4
π < φ(α′) <

1

4
π.

Hence,

−1

4
π < ζ <

1

4
π

and

cos ζ >
1√
2
. (A.4)
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Combining (A.2)-(A.4) yields

1√
2
δ > | sin(φ(α))− sin(φ(α′))| = | cos(ζ)| · |φ(α)− φ(α′)| ≥ 1√

2
|φ(α)− φ(α′)|.

Hence, we have established the following implication:

|α− α′| < min(ε, α′ − ᾱ) =⇒ |φ(α)− φ(α′)| < δ.

This shows that φ(·) is continuous at α′, as required.

A.3 Roots of Equation (A.1)

Let ϵ ∈ (0, 12π) and define

ak = kπ − ϵ, bk = kπ + ϵ.

Clearly, for each integer k ≥ 0, ak < bk < ak+1 and

sin(ak) =

{
sin(ϵ), if k is odd,

− sin(ϵ), if k is even,

sin(bk) =

{
− sin(ϵ), if k is odd,

sin(ϵ), if k is even.

Using Taylor’s Theorem, we have

sin(α+ φ(α)) = sin(α) + cos(ζ)φ(α),

where ζ = ζ(α) belongs to the interval bounded by α and α+ φ(α). Thus,

| sin(α+ φ(α))− sin(α)| = | cos(ζ)φ(α)| ≤ |φ(α)|. (A.5)

Since φ(α) → 0 as α→ ∞, there exists an integer k1 ≥ 1 such that for all k ≥ k1,

|φ(ak)| <
1

2
sin(ϵ), |φ(bk)| <

1

2
sin(ϵ).

Hence, substituting α = ak and α = bk into (A.5) gives, for k ≥ k1,

sin(ak + φ(ak))

{
> 1

2 sin(ϵ), if k is odd,

< −1
2 sin(ϵ), if k is even,

sin(bk + φ(bk))

{
< −1

2 sin(ϵ), if k is odd,

> 1
2 sin(ϵ), if k is even.

Since Q(α) → ∞ as α→ ∞, there exists an integer k2 ≥ 1 such that for all k ≥ k2,

−1

2
Q(ak) sin(ϵ) ≤ −2θ2 ≤ 1

2
Q(ak) sin(ϵ),

−1

2
Q(bk) sin(ϵ) ≤ −2θ2 ≤ 1

2
Q(bk) sin(ϵ).
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Thus, for all k ≥ max{k1, k2},

Q(ak) sin(ak + φ(ak))

{
> 1

2Q(ak) sin(ϵ) ≥ −2θ2, if k is odd,

< −1
2Q(ak) sin(ϵ) ≤ −2θ2, if k is even,

Q(bk) sin(bk + φ(bk))

{
< −1

2Q(bk) sin(ϵ) ≤ −2θ2, if k is odd,

> 1
2Q(bk) sin(ϵ) ≥ −2θ2, if k is even.

Since φ is continuous when α is large, this implies that, for all sufficiently large k, there
exists a solution of (A.1) within the interval [ak, bk]. The result follows immediately.
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