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where for i = 1, . . . , N , gi : Rni −→ R is convex, Xi ⊂ Rni is a nonempty compact convex
set, Ai ∈ Rm×ni , and b ∈ Rm. x = (x⊤

1 , · · · , x⊤
N )⊤ with xi ∈ Rni , i = 1, . . . , N and

n1 + n2 + · · ·+ nN = n.
In literature there are several approaches being proposed to solve problem (1.1), such

as (augmented) Lagrangian relaxation and subgradient methods of multipliers [5, 22, 27],
alternating direction methods [6], proximal point methods [9,19], and interior point methods
[11, 30]. However, most of these methods cannot be implemented in a parallel fashion for
solving problem (1.1). To exploit the separable structure of problem (1.1), the Lagrangian
duality is often introduced, where the main idea is to solve the primal problem via solving its
dual problem. But the dual problem is, in general, nonsmooth. Thus, the use of subgradient-
based methods is inevitable. However, it is well-known that the subgradient-based methods
usually suffer from the slow convergence [23]. To overcome this drawback, the augmented
Lagrangian is introduced. However, it cannot be used here because the quadratic penalty
term of the augmented Lagrangian may destroy the separability of problem (1.1).

In [24], Nesterov proposed a novel smoothing technique for solving nonsmooth convex
optimization problems appeared in applications, such as networks and system identification,
image processing and compressed sensing (see, e.g., [7, 13]). In [22], Nesterov’s smoothing
technique is applied to the dual problem under the framework of Lagrangian dual decomposi-
tion for solving separable convex optimization problems, where it is shown that the iteration
complexity of the algorithm for achieving an ϵ-optimal solution is O(1/ϵ). It is much su-
perior to O(1/ϵ2) achieved by the subgradient methods for solving the dual problem [25]
(ϵ is a specified and desired accuracy). We note that the proximal center algorithm pro-
posed in [22] requires two maximizations where the gradient information in all the previous
iterations is needed. This algorithm may need high computational cost for large-scale op-
timization problems. Recently, a double smoothing technique introduced in [10] for solving
large-scale optimization problems is considered as a generalization of Nesterov’s smooth-
ing technique, in which a fast gradient scheme [23] is used. The complexity bound of the
algorithm obtained in [10] for achieving an ϵ-optimal solution is O((1/ϵ) ln(1/ϵ)).

In this paper we propose a simple fast dual gradient algorithm for solving problem (1.1)
motivated by the novel smoothing technique [10,24] and a simple fast gradient scheme [23].
The proposed algorithm is fast and highly parallelizable, which allows us to obtain the dual
and primal approximate solutions simultaneously. The explicitly computational complexity
is established. This complexity bound on the number of iterations for achieving an ϵ-
optimal solution is O((1/ϵ) ln(1/ϵ)), which is better than O(1/ϵ2) obtained by subgradient-
based methods [23]. Although the convergence rate of our algorithm is slightly slower than
that of the proximal center algorithm [22], our algorithm is simpler and computationally
inexpensive.

The rest of this paper is organized as follows. In Section 2, we recall some concepts and
Lagrangian dual decomposition method. In Section 3, a smoothing technique is introduced
and a simple fast gradient method for solving the smoothed dual problem is described. In
Section 4, the convergence of the algorithm is proved. An application to network utility
maximization is presented in Section 5. Some conclusions are given in Section 6.

2 Preliminaries

In this section we introduce some concepts and recall briefly the Lagrangian dual decompo-
sition method for a convex optimization problem with linear constraints.

The standard inner product of two vectors x, y ∈ Rn is denoted as ⟨x, y⟩ = x⊤y, where
the subscript “⊤” denotes the transpose. For x ∈ Rn, its Euclidean norm is ||x|| =

√
⟨x, x⟩.
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Denote l∞ norm by ||x||∞ = maxi |xi|. Let x = (x⊤
1 , · · · , x⊤

N )⊤ represent a column vector
in Rn, where xi is a subvector in Rni , i = 1, . . . , N , and n1 + · · · + nN = n. For a matrix
A ∈ Rm×n, ||A|| denotes the 2-norm.

For a function f : Rn → R, if there exists a constant L > 0 such that ||f(x) − f(y)|| ≤
L||x− y|| for all x, y ∈ Rn, then we say that f is L-Lipschitz continuous on Rn with respect
to || · ||. If there exists a constant σ > 0 such that f(x) ≥ f(y) + d⊤(x− y) + σ

2 ||x− y||2 for
all x, y ∈ Rn and all d ∈ ∂f(x), then we say that f is σ-strongly convex on Rn with respect
to || · ||.

Denote by X =
∏N

i=1 Xi, X
∗ and g∗ the feasible set, the optimal solution set and the

optimal value of problem (1.1), respectively. Problem (1.1) is said to satisfy the Slater’s

condition if ri(X) ∩ {x̄|
∑N

i=1 Aix̄i = b} ̸= ∅, where ri(X) is the relative interior of the
set X. A function pX is called a proximity function (prox-function, for short) of a given
nonempty, closed and convex set X ⊂ Rn if pX is continuous, strongly convex with a
convexity parameter σX > 0 and X ⊆ dom(pX) [24]. Let xc be the prox-center of X which
is defined as xc = argminx∈X pX(x). In this paper, we make the following assumptions.

Assumption 2.1. The optimal solution set X∗ is nonempty and the Slater’s condition of
problem (1.1) holds. For each i = 1, . . . , N , the function gi is proper, lower semicontinuous
and convex (not necessarily differentiable) in Rni .

Assumption 2.2. Each feasible set Xi is equipped a prox-function pi with the convexity
parameter σi > 0. Moreover, 0 ≤ Di := maxxi∈Xi pi(xi) < ∞, for i = 1, . . . , N .

The Lagrangian function for problem (1.1) is

L(x, λ) =
N∑
i=1

gi(xi) + λ⊤(

N∑
i=1

Aixi − b),

where λ ∈ Rm is the Lagrangian multiplier. Then, the dual problem can be written as

d∗ = max
λ∈Rm

d(λ), (2.1)

where
d(λ) = min

x∈X
L(x, λ) (2.2)

is the dual function. Note that the dual function d(λ) can be computed in a separable
fashion as

d(λ) =
N∑
i=1

di(λ),

where di(λ) = minxi∈Xi{gi(xi) + λ⊤Aixi} − b⊤λ/N, i = 1, . . . , N. It is obvious that the
dual function d is concave but non-differentiable in general. By Assumption 2.1, the strong
duality holds [6], that is, d∗ = maxλ∈Rm d(λ) = minx∈X{g(x)|

∑N
i=1 Aixi = b} = g∗.

3 Smoothing and Fast Dual Gradient Method

According to (2.2), let

ϕ(λ) = max
x∈X

{−L(x, λ)} = max
x∈X

{
−

N∑
i=1

gi(xi)− λ⊤
( N∑

i=1

Aixi − b
)}

. (3.1)
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Hence, d(λ) = −ϕ(λ) and the dual problem (2.1) can be equivalently written as

d∗ = max
λ∈Rm

d(λ) = − min
λ∈Rm

ϕ(λ) = −ϕ∗.

Now we consider the problem below

ϕ∗ = min
λ∈Rm

ϕ(λ). (3.2)

As shown above, the function ϕ is, in general, non-differentiable and not strongly convex.
However, the properties of the differentiability and strong convexity can be ensured by
smoothing. The goal of the first smoothing is to obtain an objective function with Lipschitz-
continuous gradient, for which we can apply more efficient algorithms for smooth convex
optimization. The second smoothing is to obtain a strongly convex dual objective, which is
necessary to allow us to reconstruct efficiently a near feasible and optimal primal solution
from a near optimal dual solution. To achieve this goal, we follow the argument used
in [10,22].

For any parameter u > 0, we smooth the dual objective ϕ as follows:

ϕu(λ) =

N∑
i=1

max
xi∈Xi

{−gi(xi)− λ⊤(Aixi − b/N)− upi(xi)}. (3.3)

It is clear that the objective function ϕu defined in (3.3) is separable in xi, i = 1, . . . , N .
Denote xi(λ) by the optimal solutions of the maximization problem (3.3) in xi, i = 1, . . . , N .

For notational simplicity, we set D =
∑N

i=1 Di and E = (
∑N

i=1 Di)(
∑N

i=1 ||Ai||2/σi). The
following lemma shows the main properties of ϕu(λ).

Lemma 3.1 ([24]). (i) ϕu(λ) is convex and continuously differentiable on λ ∈ Rm;

(ii) The gradient ∇ϕu(λ) = −[
∑N

i=1 Aixi(λ) − b] is Lipschitz continuous with a constant

Lu = 1
u

∑N
i=1

||Ai||2
σi

;
(iii)

ϕu(λ) ≤ ϕ(λ) ≤ ϕu(λ) + uD, ∀λ ∈ Rm. (3.4)

Next the second smoothing is applied to the dual objective ϕu(·), making it strongly
convex. We simply add a strongly convex function v

2 || · ||
2 to ϕu(·) for a parameter v > 0,

which is a special prox-function. This gives rise to the following objective function:

ϕu,v(λ) = ϕu(λ) +
v

2
||λ||2.

The new objective function ϕu,v(λ) has the following good properties.

Lemma 3.2. For the function ϕu,v(λ), it holds that:
(i) ϕu,v(λ) is v-strongly convex and continuously differentiable on λ ∈ Rm;
(ii) The gradient ∇ϕu,v(λ) = ∇ϕu(λ) + vλ is Lipschitz continuous with Lipschitz constant
Lu,v = Lu + v.

We now focus on solving the optimization problem below:

min
λ∈Rm

ϕu,v(λ). (3.5)

Based on Lemma 3.2, we utilize a simple fast gradient method (see Section 2.2 in [23])
to solve problem (3.5) as follows:
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Algorithm 1. Fast dual gradient method for solving problem (3.5)

Initialization: Set λ0 = µ0 = 0 ∈ Rm.

Iteration: For k ≥ 0, compute λk+1 = µk − 1
Lu,v

∇ϕu,v(µ
k),

update µk+1 = λk+1 +
1−

√
v

Lu,v

1+
√

v
Lu,v

(λk+1 − λk).

4 Convergence Analysis

Let λ̃∗ be the unique optimal solution of problem (3.5) and let λ∗ be an optimal solution of
the dual problem (2.1). From Theorem 3.5 in [22], it follows that there exists a sufficiently
large number Λ > 0 such that the set {λ ∈ Rm : ||λ|| ≤ Λ} contains λ∗. This means that

||λ∗|| ≤ Λ. (4.1)

We assume that the bound (4.1) is already available.

From Theorem 2.2.3 in [23] and λ0 = 0, we obtain the sequence {λk}k≥0 satisfying

ϕu,v(λ
k)− ϕu,v(λ̃

∗) ≤ (ϕu,v(0)− ϕu,v(λ̃
∗) +

v

2
||λ̃∗||2)e−k

√
v

Lu,v

= (ϕu(0)− ϕu(λ̃
∗))e

−k
√

v
Lu,v . (4.2)

Since λ̃∗ is the optimal solution of problem (3.5), we have ∇ϕu,v(λ̃
∗) = 0. Therefore, by

Theorem 2.1.5 in [23], we obtain

||∇ϕu,v(λ
k)||2 ≤ 2Lu,v

(
ϕu(0)− ϕu(λ̃

∗)
)
e
−k

√
v

Lu,v . (4.3)

Because of the strong convexity of ϕu,v, it follows from Theorem 2.1.8 in [23] that

||λk − λ̃∗||2 ≤ 2

v
(ϕu,v(λ

k)− ϕu,v(λ̃
∗))

(4.2)

≤ 2

v
(ϕu(0)− ϕu(λ̃

∗))e
−k

√
v

Lu,v . (4.4)

Using Theorem 2.1.8 in [23] again, we obtain

||λ̃∗||2 ≤ 2

v
(ϕu,v(0)− ϕu,v(λ̃

∗)) =
2

v
(ϕu(0)− ϕu(λ̃

∗)− v

2
||λ̃∗||2),

which implies that

||λ̃∗|| ≤
√

1

v
(ϕu(0)− ϕu(λ̃∗)). (4.5)

4.1 Convergence analysis

The goal is to compute an approximate optimal solution for the primal problem (1.1).
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Definition 4.1. For any given target accuracy ϵ > 0, if there exist nonnegative constants
c1, c2 such that

∣∣∣ N∑
i=1

gi(x̂i)− g∗
∣∣∣ ≤ c1ϵ and

∥∥∥ N∑
i=1

Aix̂i − b
∥∥∥
∞

≤ c2ϵ.

We say that x̂ = (x̂⊤
1 , · · · , x̂⊤

N )⊤ ∈ Rn is an ϵ-optimal feasible solution of the primal problem
(1.1).

The definition bounds the distance of the corresponding primal cost from the optimal
value and the maximum primal infeasibility for the primal suboptimal solution, respectively.
The next result establishes an upper bound on the distance of the objective values ϕ(λk)
from the optimal objective value ϕ(λ∗).

Proposition 4.2. Let {λk}k≥0 be the sequence of iterates generated by Algorithm 1. Then,
for all k ≥ 0, it holds that

ϕ(λk)− ϕ(λ∗) ≤ (2 +
√
2) (ϕ(0)− ϕ(λ∗) + uD) e

− k
2

√
v

Lu,v + uD +
v

2
Λ2.

Proof. From (3.4), we have ϕu(0) ≤ ϕ(0) and ϕ(λ∗)− uD ≤ ϕ(λ̃∗)− uD ≤ ϕu(λ̃
∗). Then,

ϕu(0)− ϕu(λ̃
∗) ≤ ϕ(0)− ϕ(λ∗) + uD. (4.6)

Since ϕu(λ̃
∗) + v

2 ||λ̃
∗||2 ≤ ϕu(λ

∗) + v
2 ||λ

∗||2, we have

ϕu(λ̃
∗) ≤ ϕu(λ

∗) +
v

2
||λ∗||2

(3.4)

≤ ϕ(λ∗) +
v

2
||λ∗||2.

Therefore,

ϕu(λ
k)− ϕu(λ̃

∗)
(3.4)

≥ ϕ(λk)− uD − ϕ(λ∗)− v

2
||λ∗||2.

It follows from the above inequality and (4.1) that

ϕ(λk)− ϕ(λ∗) ≤ ϕu(λ
k)− ϕu(λ̃

∗) + uD +
v

2
Λ2. (4.7)

Since ϕu,v(λ) = ϕu(λ) +
v
2 ||λ||

2, we have

ϕu(λ
k)− ϕu(λ̃

∗)
(4.2)

≤ (ϕu(0)− ϕu(λ̃
∗))e

−k
√

v
Lu,v +

v

2
(||λ̃∗||2 − ||λk||2). (4.8)

Now we estimate ||λ̃∗||2 − ||λk||2 as follows:

||λ̃∗||2 − ||λk||2 ≤ ||λ̃∗ − λk||(||λ̃∗ − λk||+ 2||λ̃∗||)
(4.4)(4.5)

≤ 2 + 2
√
2

v
(ϕu(0)− ϕu(λ̃

∗))e
− k

2

√
v

Lu,v . (4.9)

Combining (4.6)-(4.9), the result of the theorem follows readily. The proof is completed.

Theorem 4.3. For any given accuracy ϵ > 0, let {λk}k≥0 be the sequence of dual iterates
generated by Algorithm 1. Then, there exists a k1 = O( 1ϵ ln

1
ϵ ) > 0 such that for all k ≥ k1,

ϕ(λk)− ϕ(λ∗) ≤ ϵ.
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Proof. In order to achieve ϕ(λk)− ϕ(λ∗) ≤ ϵ, we require all the three terms in Proposition
4.2 to be less than or equal to ϵ/3. Therefore, we choose the corresponding smoothing
parameters in view of the given accuracy ϵ > 0 to be

u = u(ϵ) =
ϵ

3D
, v = v(ϵ) =

2ϵ

3Λ2
. (4.10)

Then, we have

ϕ(λk)− ϕ(λ∗) ≤ (2 +
√
2)(ϕ(0)− ϕ(λ∗) +

ϵ

3
)e

− k
2

√
v

Lu,v +
2ϵ

3
. (4.11)

By choosing

k1 = 2

√
Lu,v

v
ln

3(2 +
√
2)
(
ϕ(0)− ϕ(λ∗) + ϵ

3

)
ϵ

, (4.12)

we can verify easily that, for k ≥ k1

(2 +
√
2)(ϕ(0)− ϕ(λ∗) +

ϵ

3
)e

− k
2

√
v

Lu,v ≤ ϵ

3
.

By the definitions of Lu, u, v and Lu,v, we have

Lu,v

v
=

1

uv

N∑
i=1

||Ai||2

σi
+ 1 =

9Λ2E

2ϵ2
+ 1. (4.13)

Substituting (4.13) to (4.12) and taking into consideration of (4.11), we need at most k1 =
O( 1ϵ ln

1
ϵ ) iterations such that ϕ(λk)− ϕ(λ∗) ≤ ϵ.

In order to reconstruct a near optimal and feasible primal solution efficiently, we need
to provide an upper bound on the norm of ∇ϕu(λ

k).

Theorem 4.4. For any given accuracy ϵ > 0, let {λk}k≥0 be the sequence of dual iterates
generated by Algorithm 1. Suppose that (4.10) holds. Then, there exists a k2 = O( 1ϵ ln

1
ϵ )

such that for all k ≥ k2,

||∇ϕu(λ
k)|| ≤ ϵ

Λ
. (4.14)

Proof. From Lemma 3.2, it gives rise to

||∇ϕu(λ
k)|| = ||∇ϕu,v(λ

k)− vλk|| ≤ ||∇ϕu,v(λ
k)||+ v||λk||.

The first term on the right-hand side of the inequality above can be estimated as follows:

||∇ϕu,v(λ
k)||

(4.3)

≤
√
2Lu,v

(
ϕu(0)− ϕu(λ̃∗)

)
e
− k

2

√
v

Lu,v .

For the term ||λk||, we have

||λk|| ≤ ||λk − λ̃∗||+ ||λ̃∗||
(4.4)

≤
√

2

v

(
ϕu(0)− ϕu(λ̃∗)

)
e
− k

2

√
v

Lu,v + ||λ̃∗||. (4.15)

Moreover, we note that

ϕ(λ∗) +
v

2
||λ∗||2

(3.4)

≥ ϕu(λ
∗) +

v

2
||λ∗||2 ≥ ϕu(λ̃

∗) +
v

2
||λ̃∗||2

≥ ϕ(λ∗)− uD +
v

2
||λ̃∗||2,
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which implies that ||λ̃∗||2 ≤ ||λ∗||2 + 2u
v D. Hence,

||λ̃∗|| ≤
√

||λ∗||2 + 2u

v
D

(4.10)
=

√
||λ∗||2 + Λ2 ≤

√
2Λ. (4.16)

Combining the above estimates, we obtain

||∇ϕu(λ
k)||

(4.6)(4.10)

≤
(√

Lu,v +
√
v
)√

2
(
ϕ(0)− ϕ(λ∗) +

ϵ

3

)
e
− k

2

√
v

Lu,v +
2
√
2ϵ

3Λ
.

For ϵ > 0 fixed, the first term of the above inequality decreases in terms of the iteration
counter k. To achieve ||∇ϕu(λ

k)|| ≤ ϵ
Λ , we only need to choose

k2 = 2

√
Lu,v

v
ln

3Λ
(√

Lu,v +
√
v
)√

2
(
ϕ(0)− ϕ(λ∗) + ϵ

3

)
(3− 2

√
2)ϵ

. (4.17)

By (4.10), k2 can be written as

k2 = 2

√
Lu,v

v
ln

3Λ
(√

3E
ϵ + 2ϵ

3Λ2 +
√

2ϵ
3Λ2

)√
2
(
ϕ(0)− ϕ(λ∗) + ϵ

3

)
(3− 2

√
2)ϵ

= 2

√
Lu,v

v

ln(√3E +
2ϵ2

3Λ2
+

√
2ϵ2

3Λ2

)
+

1

2
ln

1

ϵ
+ ln

3Λ
√
2
(
ϕ(0)− ϕ(λ∗) + ϵ

3

)
(3− 2

√
2)ϵ

 ,

which means that k2 = O( 1ϵ ln
1
ϵ ). This completes the proof.

Next we show how an ϵ-optimal feasible solution of the primal problem (1.1) can be
constructed from the dual sequence {λk}k≥0 generated by Algorithm 1. For this purpose we
consider the following sequences {xk

i }k≥0, i = 1, . . . , N , which is the unique optimal solution
of the maximization problem (3.3) for a given λk, i.e.,

xk
i = arg max

xi∈Xi

{−gi(xi)− (λk)⊤(Aixi − b/N)− upi(xi)}, i = 1, . . . , N. (4.18)

Theorem 4.5. For any given ϵ > 0, let the sequences {λk}k≥0 and {xk
i }k≥0, i = 1, . . . , N ,

be generated by Algorithm 1 and (4.18), respectively. Suppose that (4.10) holds. Then, for
any k ≥ k0 = max{k1, k2}, it holds that∣∣∣∣ N∑

i=1

gi(x
k
i )− g∗

∣∣∣∣ ≤ 5ϵ and

∥∥∥∥ N∑
i=1

Aix
k
i − b

∥∥∥∥
∞

≤ ϵ

Λ
.

Proof. From (3.3) and (4.18), we have ϕu(λ
k) = −

∑N
i=1 gi(x

k
i )− (λk)⊤

(∑N
i=1 Aix

k
i − b

)
−

u
∑N

i=1 pi(x
k
i ). Note that g∗ = d∗ = −ϕ(λ∗) and

∇ϕu(λ
k) = −

( N∑
i=1

Aix
k
i − b

)
, (4.19)

it follows that

N∑
i=1

gi(x
k
i )− g∗ = (λk)⊤∇ϕu(λ

k)− u

N∑
i=1

pi(x
k
i )− ϕu(λ

k) + ϕ(λ∗).
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Since ϕu(λ
k)− ϕ(λ∗) ≤ ϕ(λk)− ϕ(λ∗) ≤ ϵ and

ϕu(λ
k)− ϕ(λ∗)

(3.4)

≥ ϕ(λk)− uD − ϕ(λ∗)
(4.10)

≥ ϕ(λk)− ϕ(λ∗)− ϵ

3
≥ − ϵ

3
,

we have |ϕu(λ
k)− ϕ(λ∗)| ≤ ϵ. Therefore,∣∣∣∣ N∑

i=1

gi(x
k
i )− g∗

∣∣∣∣ ≤
∥∥∥∥λk||||∇ϕu(λ

k)

∥∥∥∥+ uD + ϵ
(4.10)

≤ ||λk||||∇ϕu(λ
k)||+ 2ϵ.

In light of (4.15) and (4.16), it holds that∥∥∥∥λk

∥∥∥∥ ≤
√

2

v

(
ϕu(0)− ϕu(λ̃∗)

)
e
− k

2

√
v

Lu,v +
√
2Λ

(4.10)
= Λ

√
3

ϵ

(
ϕu(0)− ϕu(λ̃∗)

)
e
− k

2

√
v

Lu,v +
√
2Λ.

Due to the choice of k0 and the above estimates, we obtain∣∣∣∣ N∑
i=1

gi(x
k
i )− g∗

∣∣∣∣ ≤
√
3ϵ
(
ϕu(0)− ϕu(λ̃∗)

)
e
− k

2

√
v

Lu,v + (2 +
√
2)ϵ

(4.17)

≤ (3− 2
√
2)ϵ+ (2 +

√
2)ϵ ≤ 5ϵ.

Finally, using the facts that || · ||∞ ≤ || · ||, we get from (4.19) that∣∣∣∣ N∑
i=1

Aix
k
i − b

∣∣∣∣
∞

≤ ||∇ϕu(λ
k)||

(4.14)

≤ ϵ

Λ
.

4.2 Improving iteration complexity under strong convexity

Now we show that an additional assumption on the primal objective function g can be used
to improve the iteration complexity. More specifically, for each i = 1, . . . , N , if the function
gi is σi-strongly convex, then the iteration complexity for achieving an ϵ-optimal solution
can be reduced from O( 1ϵ ln

1
ϵ ) to O( 1√

ϵ
ln 1

ϵ ).

Since for each i = 1, . . . , N , gi is σi-strongly convex, ϕ(λ) is already differentiable. Thus,
the first smoothing of the dual problem can be omitted. Now Algorithm 1 is applied to the
minimization problem:

min
λ∈Rm

ϕv(λ), (4.20)

where ϕv(λ) = ϕ(λ) + v
2 ||λ||

2 with v > 0. Clearly, ϕv(λ) is a v-strongly convex and differen-

tiable. The Lipschitz constant of its gradient is Lv =
∑N

i=1
||Ai||2

σi
+ v.

Denote λ̃∗ as the unique optimal solution of problem (4.20). Algorithm 1 yields a se-
quence {λk}k≥0 satisfying

ϕv(λ
k)− ϕv(λ̃

∗) ≤ (ϕ(0)− ϕ(λ̃∗))e−k
√

v
Lv . (4.21)

||∇ϕv(λ
k)||2 ≤ 2Lv(ϕ(0)− ϕ(λ̃∗))e−k

√
v

Lv . (4.22)

||λk − λ̃∗||2 ≤ 2

v
(ϕ(0)− ϕ(λ̃∗))e−k

√
v

Lv . (4.23)
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In addition, we have

||λ̃∗|| ≤
√

1

v
(ϕ(0)− ϕ(λ̃∗)), (4.24)

and

||λ̃∗||2 − ||λk||2
(4.23),(4.24)

≤ 2 + 2
√
2

v
(ϕ(0)− ϕ(λ̃∗))e−

k
2

√
v

Lv . (4.25)

Combining with the relations obtained above, we have

ϕ(λk)− ϕ(λ̃∗)
(4.21),(4.25)

≤ (2 +
√
2)(ϕ(0)− ϕ(λ̃∗))e−

k
2

√
v

Lv .

Let λ∗ be an optimal solution to the dual optimization problem (3.2). Since ϕ(λ̃∗) ≤
ϕu(λ̃

∗) ≤ ϕu(λ
∗) = ϕ(λ∗) + v

2 ||λ
∗||2 and ϕ(λ∗) ≤ ϕ(λ̃∗), we obtain, for any k ≥ 0,

ϕ(λk)− ϕ(λ∗) ≤ (2 +
√
2)(ϕ(0)− ϕ(λ∗))e−

k
2

√
v

Lv +
v

2
Λ2.

In order to guarantee ϵ-accuracy, we force both terms in the above estimate to be less than
or equal to ϵ/2. To achieve this task, we only need to take v = v(ϵ) = ϵ/Λ2 and set

k = 2

√
Lv

v
ln

2(2 +
√
2)(ϕ(0)− ϕ(λ∗))

ϵ
,

i.e., k = O( 1√
ϵ
ln 1

ϵ ). Thus, after k iterations, we can obtain that ϕ(λk)− ϕ(λ∗) ≤ ϵ.

On the other hand, the relation ϕ(λ∗) + v
2 ||λ̃

∗||2 ≤ ϕu(λ̃
∗) ≤ ϕu(λ

∗) = ϕ(λ∗) + v
2 ||λ

∗||2

yields ||λ̃∗|| ≤ ||λ∗|| ≤ Λ. Thus, we have

||∇ϕ(λk)||
(4.22),(4.23)

≤ (
√
Lv +

√
v)
√

2(ϕ(0)− ϕ(λ∗))e−
k
2

√
v

Lv +
ϵ

Λ
.

Therefore, in order to guarantee ||
∑N

i=1 Aix
k
i − b||∞ ≤ ||∇ϕu(λ

k)|| ≤ 2ϵ/Λ, we need to take

k = 2

√
Lv

v
ln

Λ(
√
Lv +

√
v)
√
2(ϕ(0)− ϕ(λ∗))

ϵ
,

i.e., k = O( 1√
ϵ
ln 1

ϵ ), which has the same order as that of ϕ(λk) to ϕ(λ∗).

4.3 Fast dual gradient algorithm

Interestingly, while Algorithm 1 handles the smoothed dual problem (3.5), it directly yields
the primal optimal solution of problem (1.1). Assuming that the minimizations over xi, i =
1, . . . , N in (4.18) can be easily carried out, we rewrite Algorithm 1 as follow:

Algorithm 2: Fast dual gradient algorithm (FDGA)

Initialization: Given u > 0, v > 0 by (4.10) and α = (1−
√

v
Lu,v

)/(1 +
√

v
Lu,v

). Set

µ0
j = λ0

j = 0 ∈ R, j = 1, . . . ,m.

Iteration: For k ≥ 0, execute
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Step 1. Receive µk and update primal variables in parallel : for i = 1, . . . , N

xk+1
i = arg max

xi∈Xi

{−gi(xi)− µk⊤(Aixi − b/N)− upi(xi))}.

Step 2. Receive xk+1 and update dual variables in parallel : for j = 1, . . . ,m

∇jϕu,v(µ
k) = −

( N∑
i=1

Aix
k+1
i − b

)
j

+ vµk
j , (4.26)

λk+1
j = µk

j − 1

Lu,v
∇jϕu,v(µ

k), (4.27)

µk+1
j = λk+1

j + α(λk+1
j − λk

j ). (4.28)

Step 3. If a given stopping criterion is satisfied, then terminate.

Remark 4.6. (1) The parallel computation appearing in Steps 2 and 3 of Algorithm 2 is
helpful for solving large-scale separable convex optimization. We can see this from numerical
experiments given in Section 5.

(2) Based on Theorem 4.5, a terminating criterion that does not involve unknown quan-
tities, such as the optimal value g∗, can be established. More specifically, since g∗ = −ϕ∗

and 0 ≤ ϕ(λk)− ϕ∗ ≤ ϵ, it follows from Theorem 4.5 that −5ϵ ≤
∑N

i=1 gi(x
k
i ) + ϕ(λk) ≤ 6ϵ,

where d(λk+1) can be computed during the course of the algorithm. Therefore, at each iter-

ation, one can test ϵ-optimality and ϵ-feasibility by examining whether −5ϵ ≤
∑N

i=1 gi(x
k
i )+

ϕ(λk) ≤ 6ϵ and ||[
∑N

i=1 Aix
k
i −b]+||∞ ≤ ϵ/Λ are satisfied or not. If both of them are satisfied,

the algorithm terminates.
(3) In Algorithm 2, the intermediate variables µk

j are adopted so as to achieve fast

convergence. Clearly, if µk+1
j = λk+1

j is taken to replace (4.28), then the expected step

number to achieve an ϵ-optimal solution will increase to O(1/ϵ2). In addition, if the equality

constraints are replaced by inequalities
∑N

i=1 Aixi ≤ b in (1.1), we can still obtain the results
through similar arguments as given above.

(4) In Algorithm 2, the main computational cost is consumed in Step 1 which is dependent
on the choice of prox-function. The simplest prox-function is pi(xi) = ||xi − xi

c||2/2 for a
given proximal center xi

c ∈ Xi, which is adopted from the one considered in [10]. However,
in some applications, through choosing a customized prox-function for the given feasible set
Xi, we can reduce the computational complexity of Step 1 in Algorithm 2 (see [24] for more
details).

5 Application to Network Utility Maximum Optimization

The separable convex optimization problems with linear coupled constraints have an interest-
ing application to network utility maximization (NUM) problem considered in [4,17]. More
specifically, a network is modeled as a set of links L with finite capacities C = (Cl, l ∈ L).
They are shared by a set of sources S indexed by s. Each source s uses a set L(s) ⊂ L
of links. Let S(l) = {s ∈ S|l ∈ L(s)} be the set of sources using link l. The set {L(s)}
defines an |L| × |S| routing matrix A with entries given by Als = 1 if l ∈ L(s), Als = 0
otherwise. Each source s is associated with a utility function Us : R+ → R, i.e., source
s gains a utility Us(xs) when it sends data at rate xs that satisfies 0 ≤ ms ≤ xs ≤ Ms.
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Let Is = [ms,Ms]. Notice that the local utility function Us is private, only known by the
source s. Since the aggregate source rate at any link utilizes the available link capacity, we
assume that the aggregate source rate at each link is equal to the link capacity. Then, the
NUM problem is to determine the source rates that minimize the sum of disutilities with
link capacity constraints:

(NUM) min
xs∈Is

gN (x) =
∑
s∈S

−Us(xs)

s.t. Ax = C.

For numerical simulation, the α-fair utility function is taken as Us(xs) = ws log(xs+0.1)
from [4]. Setting Cl = 1 for all l ∈ L and ws = 10,ms = 0,Ms = 1, s ∈ S. Then, the
disutility function −10 log(xs+0.1) is σs-strongly convex on [0,1] with σs = 10/(1 + 0.1)2 =
σ. Therefore, the first smoothing is omitted and u is set as 0 in Algorithm 2. As it has
been proven, the estimate of the number of iterations to achieve an ϵ-optimal solution is
O((1/

√
ϵ) ln(1/ϵ)).

We compare the performance of our proposed method with the dual gradient algorithm
(DGA) in [17]. The following numerical procedure is motivated by [4], but the optimization
method proposed in this paper is different from [4].

We first generate a random routing matrix A with elements 0 and 1, with the number of
links L = 50 and the number of resources S = 20. Figure 1 (a) depicts the objective function
values versus the number of iterations. Figure 1 (b) depicts the constraint violations in terms
of the iterations. Figure 1 (a) shows that Alg. FDGA achieves a faster convergence than
Alg. DGA. More specially, after 1000 iterations, the objective function values obtained by
Alg. FDGA is very close to the optimal value of the primal problem. In order to achieve a
similar accuracy, Alg. DGA requires at least 3000 steps. Figure 1 (b) shows similar results
for algorithms FDGA and DGA. Furthermore, it also shows that the constraint violations
always exist even after 10000 iterations for Alg. DGA. However, this problem seems to
unhappen in Algorithm FDGA.

We further test and compare the performances of the two algorithms over general net-
works. We generated 50 random networks, with number of links being a random integer
taking values between 20 to 50, and number of sources being another independent random
integer taking values between 10 and 20. Each routing matrix A is a random matrix with
elements either 0 or 1. Both algorithms are terminated when either k ≥ 10000 or the follow-
ing three conditions are satisfied: (1) maxl∈L |λk+1

l − λk
l | ≤ ϵ, (2) maxl∈L[Axk+1 − C]l ≤ ϵ,

(3) maxs∈S |[Us(x
k+1
s )− Us(x

k
s)]/Us(x

k
s)| ≤ ϵ, where ϵ = 0.01. We record the number of

iterations upon termination for both algorithms. The results are depicted in Figure 2 which
clearly shows that the number of iterations of Alg. FDGA is much less than that required
by Alg. DGA. The mean number of iterations to convergence from the 50 trials is 4826.4
for Alg. DGA and 2564.7 for Alg. FDGA. Thus, Alg. FDGA achieves a better performance
than Alg. DGA.

We generate a set of 50 random trials, with the number of links L = 100 and the number
of resources S = 40 for studying the scaling properties of both algorithms with respect to
the network size. Under the same computational environment and parameters setting, the
results obtained are reported in Figure 3. For all 50 trials, Alg. DGA cannot achieve the
targeted accuracy ϵ = 0.01 while Alg. FDGA are successful for all the trials. The average
number of iterations to achieve convergence for Alg. FDGA is 6022.5. Compared Figure 2
with Figure 3, we observe that the number of iteration to achieve a given accuracy becomes
larger as the size of network is increasing. But the increasing rate of Alg. FDGA is far less
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Figure 1: Objective value and maximum value of constraint violations versus number of
iterations on a random network with S = 20 and L = 50.
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than that of Alg. DGA. This is because Alg. FDGA is based on an accelerated gradient
method without any stepsize tuning, while Alg. DGA is only based on (sub)gradient method.
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Figure 2: Number of iterations for both algorithms implemented over 50 randomly generated
networks with L ∈ [20, 50] and S ∈ [10, 20].
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Figure 3: Number of iterations for both algorithms implemented over 50 randomly generated
networks, each with 40 sources and 100 links.

We next test the problem NUM for larger sizes using our algorithm and report the
average number of iterations and CPU time by solving 10 random NUM problems with
different sizes. The results of Table 1 shows that Alg. FDGA has the potential to solve
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the large-scale problem NUM. It can be observed from Table 1 that the average number of
iterations and CPU time is increasing as the size of the problem NUM become larger.

Table 1: Average number of iterations and CPU time (s) with different sizes

(S,L) (100,200) (200,400) (300,600) (400,800) (500,1000)
Alg. FDGA: Iter 7310 9157 10981 12701 14896

CPU 0.9011 1.1458 1.2701 2.2791 3.5400

6 Conclusions

Based on a smoothing technique and a fast gradient algorithm, we proposed a simple dual
fast dual gradient algorithm for solving separable convex optimization problems with linear
coupled constraints. Our proposed algorithm can achieves a very fast convergence. The
iteration complexity is established. The theoretical results established in the paper are
validated by numerical experiments.
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