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• the total energy consumption is minimized.

We refer to this problem as the two train separation problem on level track and we solve
it in two stages. For the first stage we assume a given set of times 0 = h0 < · · · < hn+1

where h1 ≤ ∆T , hn = Tℓ and hn+1 = ∆T + Tf . At this stage we wish to solve two
problems—the leading train problem and the following train problem. That is we want to
find (x[ℓ], v[ℓ]) for the leading train so that x[ℓ](0) = 0, x[ℓ](hs) ≥ xs for each s = 1, . . . , n−1
and x[ℓ](Tℓ) = X in such a way that energy consumption is minimized. We also want to find
(x[f ], v[f ]) for the following train so that x[f ](∆T ) = 0, x[f ](hs+1) ≤ xs for s = 1, . . . , n− 1
and x[f ](∆T + Tf ) = X in such a way that energy consumption is minimized. For the

second stage we consider the set of all feasible prescribed times {hs}n+1
s=0 and find the set

that minimizes the total energy consumed.

1.1 Some General Remarks about the Model and the Objectives

We assume a point-mass model for each train and note that Howlett and Pudney [21] have
shown that any train control problem for a train with distributed mass can be replaced
by an equivalent problem for a point-mass train. We do not model internal forces and we
do not calculate the energy dissipated by these forces. Hence, in our analysis, an optimal
strategy is one that minimizes the energy required to move the train along the track from one
station to the next. For each train and each specified control function there is a uniquely-
determined speed profile. We do not take into account the lengths of the trains and hence
do not calculate the time taken for the trains to pass any particular signal location. Nor do
we allow any additional time for the signal system to record the train movements. These
considerations do not change the basic theoretical arguments.

1.2 Optimal Train Control

The modern theory is described in [2, 5, 7, 8, 11, 19, 20, 23, 24, 27] and references therein.
The fundamental problem is to minimize the energy required to drive a train from one
station to the next within a given time. The optimal strategy is generally a maximum
power–speedhold–coast–maximum brake strategy except that the singular speedhold phase
with a uniquely-determined optimal driving speed and positive power must be interrupted
by phases of maximum power to negotiate steep uphill sections and coast to negotiate steep
downhill sections. Thus the optimal strategy becomes an optimal switching strategy. If
regenerative braking is available there will be additional speedhold phases at a higher speed
using negative power for steep downhill grades [7, 8]. A similar theory of optimal control
applies to solar-powered racing cars [22]. By considering the necessary conditions for optimal
switching it has been shown [8,23] that optimal switching points can be determined for each
steep section by minimising an associated local energy functional. In [5, 8] the local energy
functional was used to find a new constructive proof that the optimal strategy is unique. In
practice the optimal strategy is also constrained by speed limits. As a general rule in such
cases it is best to follow an unconstrained optimal speed profile except where a speed limit
is violated in which case the speed limit is followed [7].

The use of optimal speed profiles allows a significant reduction in fuel consumption.
As a journey evolves and circumstances change it is necessary to continually recalculate
the optimal profile. Specialized numerical algorithms developed by the Scheduling and
Control Group (SCG) at the University of South Australia for Sydney-based company TTG
Transportation Technology are an essential component of the Energymiser R⃝ system. This
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system provides on-board advice to train drivers about energy-efficient driving strategies.
It is used by major rail operators in Australia and the United Kingdom and is currently
being implemented by a large European railway as a smartphone application for all drivers
of high-speed passenger trains. The algorithms can compute an optimal speed profile for a
journey of several hundred kilometres in a few seconds on a standard laptop or smartphone.
More information about Energymiser R⃝ can be obtained from the TTG website‡. General
methods of computational control are not suited to real-time calculation of optimal train
controls [23].

1.3 Scheduling and Control of Trains

There are many other studies related to the scheduling and control of trains. These include
integration of track maintenance and scheduling [1, 3], integration of optimal control and
scheduling [32], development of robust schedules [4], the study of in-train forces [12, 33, 35,
36] and route mapping and train position estimation using GPS technology [9, 10]. There
is extensive literature related to the planning and implementation of train schedules on
complex rail networks. The survey paper by Cordeau et al. [13] describes much of the early
work. Kraay et al. [25] and Kraay and Harker [26] used mathematical programming to find
strategies for optimal pacing of trains and real-time scheduling. Dorfman and Medanic [14]
used a discrete event model of railway traffic to define network schedules. The single-line
scheduling problem to determine the order in which trains cross at designated crossing
loops and the associated crossing times is an NP-hard problem. Higgins et al. [18] used
integer programming and heuristic search techniques while Liu and Kozan [28, 29] used a
job-shop scheduling approach. Some of the most successful methods for solution of realistic
rail scheduling problems use probabilistic search techniques. In particular we mention the
Problem Space Search (PSS) technique pioneered by Storer [34] for job-shop scheduling but
more recently applied to scheduling on single-line long-haul corridors [1, 3, 30,31].

1.4 Train Separation

It is common practice for railways to define different track segments using fixed signals. A
normal safety requirement for two trains travelling in the same direction on the same line
is that the following train must not enter any particular segment of track until the leading
train has left it. Although the structure of the uniquely-defined optimal driving strategy
for a single train is well established [2, 5, 7, 8, 11, 19, 20, 23, 24, 27] there is no corresponding
comprehensive theory to determine optimal driving strategies for the two train separation
problem on level track. Our purpose here is to justify and extend a solution proposed in [6].

2 The Single Train Control Problem on Level Track

We will begin by discussing the solution to the single train control problem on level track.
That is, we wish to find a strategy that drives a train from x = 0 to x = X on level track
within time T in such a way that energy consumption is minimized. The solution is well
known [20,24,27] but many of the algebraic intricacies are not easily found in the published
literature. If resistance due to track curvature is ignored then the equations of motion can

‡See www.ttgtransportationtechnology.com
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be written as

ẋ = v (2.1)

v̇ = p/v − q − r(v) (2.2)

where x = x(t) ∈ [0, X] is the distance travelled, v = v(t) ∈ [0,∞) is the speed and t is the
elapsed time, p = p(t) ∈ [0, P ] is the power per unit mass, q = q(t) ∈ [0, Q] is the braking
force per unit mass and r = r(v) is the resistive force per unit mass. We have used the
notation ẋ = dx/dt and v̇ = dv/dt to denote the respective derivatives. Define auxiliary
functions φ(v) = vr(v) and ψ(v) = v2r ′(v) for all v ≥ 0. As in [23] we assume that φ(v)
is non-negative, increasing and strictly convex in v and that ψ(v) is strictly increasing in v.
The cost per unit mass of the strategy is

J =

∫ T

0

p dt. (2.3)

We assume that the minimum-time journey [23] using a power-brake strategy is feasible.
More general models§ can be used but the basic method of analysis remains much the same
and similar results are obtained.

2.1 Pontryagin Analysis

For a full discussion of the Pontryagin principle we refer to [15–17]. Define the Hamiltonian
function

H = (−1)p+ µ1v + µ2(p/v − q − r(v)) (2.4)

and an associated Lagrangian function

L = H+ ν1(P − p) + ν2p+ ν3(Q− q) + ν4q (2.5)

where p = p(t) ∈ [0, P ] and q = q(t) ∈ [0, Q] are the controls, (µ1, µ2) = (µ1(t), µ2(t)) are
absolutely continuous adjoint variables satisfying the differential equations

µ̇1 = 0 (2.6)

µ̇2 = µ2p/v
2 + µ2r

′(v)− µ1 (2.7)

and ν1 ≥ 0, ν2 ≥ 0, ν3 ≥ 0 and ν4 ≥ 0 are Lagrange multipliers. To find necessary
conditions on the optimal controls (p, q) we must maximize the Hamiltonian subject to
the control constraints and the state space constraints. The Karush-Kuhn-Tucker (KKT)
conditions require ∂L/∂p = 0 and ∂L/∂q = 0 which gives

−1 + µ2/v − ν1 + ν2 = 0 (2.8)

−µ2 − ν3 + ν4 = 0. (2.9)

It is also necessary to impose the complementary slackness conditions ν1(P−p) = 0, ν2p = 0,
ν3(Q − q) = 0 and ν4q = 0. Since µ1(t) is absolutely continuous it follows from (2.6) that
µ1(t) = c ∈ R for all t ∈ [0, T ]. We identify the following optimal control modes.

§The equation of motion (2.2) on level track can be written more generally in the form v̇ = u − r(v)
where the acceleration u = u(t) satisfies bounds of the form U−(v) ≤ u ≤ U+(v). If regenerative braking is
allowed then the cost per unit mass is given by

J =

∫ T

0
[(u+ |u|)v/2 + ρ(u− |u|)v/2] dt

where 0 ≤ ρ < 1 is an efficiency constant. Our model corresponds to the case where U+(v) = P/v,
U−(v) = −Q and ρ = 0. For an extended discussion of the modelling process see [7].
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Mode 1: µ2 > v. If this condition is maintained on a nontrivial time interval then (2.8)
gives µ2/v − 1 = ν1 − ν2 > 0. Since ν1, ν2 ≥ 0 it follows that ν1 = µ2/v − 1 > 0 and
ν2 = 0. Hence p = P . Now (2.9) gives µ2 = ν4 − ν3 > 0 and since ν3, ν4 ≥ 0 we know
that ν4 = µ2 > 0 and ν3 = 0. Therefore q = 0. This is a regular phase of maximum
power with (p, q) = (P, 0).

Mode 2: µ2 = v. If this condition is maintained on a nontrivial time interval then (2.8)
gives ν1 − ν2 = 0. Since ν1, ν2 ≥ 0 it follows that ν1 = ν2 = 0. At the same time
(2.9) gives v = ν4 − ν3 > 0 and since ν3, ν4 ≥ 0 we deduce that ν3 = 0 and ν4 = v.
Hence q = 0. To maintain this condition we must have µ̇2 = v̇ and so we have
p/v + vr ′(v) − c = p/v − r(v) ⇒ φ ′(v) = c. Since φ ′(v) is nonnegative and strictly
increasing there is a uniquely-defined speed v = V that solves this equation. Thus
c = φ ′(V ). Hence this is a singular phase of speedhold with v = V and partial power
(p, q) = (φ(V ), 0). We call V the optimal driving speed.

Mode 3: v > µ2 > 0. If this condition is maintained on a nontrivial time interval then
(2.8) gives 1 − µ2/v = ν2 − ν1 > 0. Since ν1, ν2 ≥ 0 it follows that ν1 = 0 and
ν2 = 1−µ2/v > 0. Hence p = 0. Now (2.9) gives µ2 = ν4−ν3 > 0 and since ν3, ν4 ≥ 0
we deduce that ν4 = µ2 > 0 and ν3 = 0. Therefore q = 0. This is a regular coast phase
with (p, q) = (0, 0).

Mode 4: µ2 = 0. If this condition is maintained on a nontrivial time interval then (2.8)
gives 1 = ν2 − ν1 > 0. Since ν1, ν2 ≥ 0 it follows that ν1 = 0 and ν2 = 1 > 0. Hence
p = 0. At the same time (2.9) gives ν4 − ν3 = 0 and since ν3, ν4 ≥ 0 we deduce that
ν3 = ν4 = 0. To maintain the condition µ2 = 0 we must have µ̇2 = 0 and so it follows
that µ1 = c = 0. This is a partial brake phase with (p, q) ∈ (0, [0, Q]). Since the
important speedhold phase with partial power requires c > 0 we may conclude that
partial brake does not occur.

Mode 5: µ2 < 0. If this condition is maintained on a nontrivial time interval then (2.8)
gives 1 − µ2/v = ν2 − ν1 > 0. Since ν1, ν2 ≥ 0 it follows that ν1 = 0 and ν2 =
1− µ2/v > 0. Hence p = 0. At the same time (2.9) gives ν3 − ν4 = −µ2 > 0 and since
ν3, ν4 ≥ 0 we deduce that ν3 = −µ2 > 0 and ν4 = 0. Therefore q = Q. Hence this is a
regular phase of maximum brake with (p, q) = (0, Q).

Thus an optimal strategy on level track involves only four possible modes—a regular
mode of maximum power, a singular speedhold mode where the optimal driving speed v = V
is maintained, a regular coast mode, and a regular mode of maximum brake. A strategy that
satisfies the necessary conditions for optimality will be called a strategy of optimal type.

2.2 Evolution of the Optimal Strategy During Regular Control

We define a modified adjoint variable η = η(t) by the formula η = µ2/v − 1 and consider
evolution of η during a phase of regular control in a strategy of optimal type on level track.

For a phase of maximum power with (p, q) = (P, 0) and η > 0 we have

η̇ = µ̇2/v − (µ2/v
2)v̇ = (φ ′(v)/v)η + [φ ′(v)− φ ′(V )]/v (2.10)

and hence using (2.2) we find that

dη/dv − [φ ′(v)/(P − φ(v))] η = [φ ′(v)− φ ′(V )]/(P − φ(v)) (2.11)
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from which it follows that

(P − φ(v))η = φ(v)− φ ′(V )v + C (2.12)

where C is a constant of integration. The adjoint variable is absolutely continuous and we
know that η → 0 when v → V . Therefore C = −φ(V ) + φ ′(V )V . Hence, finally, we have

η = [φ(v)− LV (v)]/[P − φ(v)] (2.13)

for v ̸= V where we have written LV (v) = φ(V )+φ ′(V )(v−V ) for the tangential approxima-
tion to φ(v) at v = V . The strict convexity of φ(v) means that φ(v) > LV (v) ⇐⇒ η > 1 for
all v ̸= V . Since (2.13) shows that η depends only on v we will now write η = η[v] = η[v(t)] if
we wish to highlight the dependence on v. On level track the speed always increases during
a phase of maximum power. Consequently if v0 = v(t0) > V at some time during an optimal
phase of maximum power then the phase must continue indefinitely with v(t) > v0 > V and
η[v] > η[v0] > 0 for all v > v0.

Remark 2.1. On an interval t ∈ [a, b] where v(a) < v(b) there exist strategies of optimal
type with optimal driving speed V ∈ (v(a), v(b)) in the form maximum power–speedhold–
maximum power. If so, the speed increases during the initial maximum power phase from
v = v(a) to v = V , then remains constant with v = V during the speedhold phase, and then
increases again during the finalmaximum power phase from v = V to v = v(b). The modified
adjoint variable decreases during the initial maximum power phase from η = η(a) > 0 to
η = 0 during the speedhold phase and then increases during the final maximum power phase
from η = 0 to η = η(b) > 0. We shall see later that on each segment a maximum power–
speedhold–maximum power strategy is typical for a following train.

For a phase of coast with (p, q) = (0, 0) and −1 < η < 0 we have

η̇ = µ̇2/v − (µ2/v
2)v̇ = (φ ′(v)/v)η + [φ ′(v)− φ ′(V )]/v (2.14)

and hence using (2.2) we can establish that

dη/dv + [φ ′(v)/φ(v)] η = [φ ′(V )− φ ′(v)]/φ(v) (2.15)

from which it follows that
φ(v)η = φ ′(V )v − φ(v) +D (2.16)

where D is a constant of integration. The adjoint variable is absolutely continuous and we
know that η → 0 when v → V . Therefore D = φ(V )− φ ′(V )V . Hence it follows that

η = (−1)[φ(v)− LV (v)]/φ(v) = LV (v)/φ(v)− 1 (2.17)

provided v ̸= 0. Once again (2.17) shows that η = η[v] = η[v(t)] depends only on v. The
strict convexity of φ(v) means that LV (v) < φ(v) ⇐⇒ η < 0 for all v ̸= V . We must have
η > −1 during coast and so LV (v) > 0 ⇐⇒ v > V −φ(V )/φ ′(V ) = ψ(V )/φ ′(V ) = U > 0.
Since η → −1 as v → U it follows that v = U must be the speed at which braking begins.

Remark 2.2. On an interval t ∈ [a, b] where v(a) > v(b) there exist strategies of optimal
type in the form coast–speedhold–coast with optimal driving speed V ∈ (v(b), v(a)). In such
strategies the speed decreases during the initial coast phase from v = v(a) to v = V , remains
constant with v = V during the speedhold phase and then decreases during the final coast
phase from v = V to v = v(b). The adjoint variable increases during the initial coast phase
from η = η(a) < 0 to η = 0 during the speedhold phase and then decreases during the
final coast phase from η = 0 to η = η(b) < 0. We shall see later that on each segment a
coast–speedhold–coast strategy is typical for a leading train.
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For a phase of maximum brake with (p, q) = (0, Q) and η < −1 similar arguments can
be used to show that

η = (−1)[Qv + φ(v)− LV (v)]/[Qv + φ(v)] = LV (v)/[Qv + φ(v)]− 1 (2.18)

where we again use LV (v) = φ(V )+φ ′(V )(v−V ) for the tangential approximation to φ(v) at
v = V . Once again η = η[v] = η[v(t)] depends only on v. Note that LV (v) < 0 ⇐⇒ η < −1
for all v < U . On level track the speed will always decrease during a phase of maximum
brake. Consequently if an optimal phase of maximum brake begins at time t = a with
v(a) = U then v(t) < U for all t > a and hence η[v] < −1 for all v < U . Therefore the phase
must continue until the end of the journey.

Remark 2.3. If a strategy of optimal type on level track contains a phase of maximum
brake then it is always the final phase.

2.3 Convenient Notation and Key Formulæ

We will introduce some convenient notation and some key formulæ.

For a power phase with (p, q) = (P, 0) from v = 0 to v = V the distance travelled and
elapsed time are respectively

∆px(0, V ) =

∫ V

0

v2dv/(P − φ(v)) (2.19)

and

∆pt(0, V ) =

∫ V

0

vdv/(P − φ(v)) (2.20)

and the cost is given by ∆pJ(0, V ) = P∆pt(0, V ).

For a speedhold phase at speed v = V with (p, q) = (φ(V ), 0) from t = a to t = b the
distance travelled and elapsed time are

∆shx(a, b, V ) = V (b− a) and ∆sht(a, b) = b− a (2.21)

and the cost is given by ∆shJ(a, b, V ) = φ(V )(b− a).

For a coast phase with (p, q) = (0, 0) from v = V to v = U the distance travelled and
elapsed time are

∆cx(V,U) =

∫ V

U

vdv/r(v) and ∆ct(V,U) =

∫ V

U

dv/r(v) (2.22)

and the cost is ∆cJ(V,U) = 0.

For a brake phase with (p, q) = (0, Q) from v = U to v = 0 the distance travelled and
elapsed time are

∆bx(U, 0) =

∫ U

0

vdv/(Q+ r(v)) and ∆bt(U, 0) =

∫ U

0

dv/(Q+ r(v)) (2.23)

and the cost is ∆bJ(U, 0) = 0.
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3 The Leading Train Problem

We are now ready to begin our detailed discussion of the leading train problem. Recall that
for given intermediate times {hs}n−1

s=1 we wish to find position and speed profiles (x[ℓ], v[ℓ]) for
the leading train so that x[ℓ](0) = 0, x[ℓ](hs) ≥ xs for each s = 1, . . . , n− 1 and x[ℓ](Tℓ) = X
in such a way that energy consumption is minimized. For the optimal strategy we must
understand that only some of the intermediate position constraints are active. Thus we
define indices 0 = ℓ(0) < ℓ(1) < · · · < ℓ(k) = n such that x[ℓ](hℓ(i)) = xℓ(i) for i = 0, . . . , k
and x[ℓ](hs) > xs for s ̸= ℓ(i) for all 0 ≤ i ≤ k. In such cases we will say that the optimal
strategy is restricted. We have the following elementary but important result.

Theorem 3.1. Let (x[ℓ], v[ℓ]) be an optimal solution to the restricted leading train problem
with 0 = ℓ(0) < ℓ(1) < · · · < ℓ(k) = n such that x[ℓ](hℓ(i)) = xℓ(i) for i = 0, . . . , k and
x[ℓ](hs) > xs if s ̸= ℓ(i) for all i = 0, . . . , k. Then for each segment (xℓ(i), xℓ(i+1)) the profile
(x[ℓ], v[ℓ]) is an optimal unrestricted single train strategy subject to the initial and final speed
constraints v(hℓ(i)) = v[ℓ](hℓ(i)) and v(hℓ(i+1)) = v[ℓ](hℓ(i+1)) for i = 0, . . . , k − 1. 2

Thus we may solve the restricted leading train problem by solving a series of unrestricted
single train optimal control problems.

3.1 An Inductive Solution Process

Suppose the position constraints x(hs) ≥ xs for s = 1, . . . , n− 1 are not all satisfied for the
optimal unrestricted strategy. We assume the minimum-time power-brake strategy is feasible
and so the first violation cannot occur during the initial power phase. Let us assume—for
the sake of argument—that the first violation occurs at time t = hℓ(1) during the speedhold
phase with v = V . Thus we have

∆px(0, V ) + V
(
hℓ(1) −∆pt(0, V )

)
< xℓ(1).

We wish to find an optimal power-speedhold-coast strategy on the interval (0, hℓ(1)) with hold
speed V0 > V and final speed U1 = v(hℓ(1)) which satisfies the position constraint

∆px(0, V0) + ∆cx(V0, U1) + V0
(
hℓ(1) −∆pt(0, V0)−∆ct(V0, U1)

)
= xℓ(1)

and an optimal coast-speedhold-coast-brake strategy on the interval (hℓ(1), Tℓ) with initial
speed U1, hold speed V1 < V and brake speed U < V1 such that the position constraint

∆cx(U1, U) + ∆bx(U, 0) + V1
(
Tℓ − hℓ(1) −∆ct(U1, U)−∆bt(U, 0)

)
= X − xℓ(1)

is satisfied and so that the cost of the overall restricted strategy

J(V0, U1, V1, U) = P∆pJ(0, V0) + φ(V0)
[
hℓ(1) −∆pt(0, V0)−∆ct(V0, U1)

]
+φ(V1)

[
Tℓ − hℓ(1) −∆ct(U1, U)−∆bt(U, 0)

]
is minimized. Once the optimal values for V0, V1, U1, U are determined then we must check
to see if any subsequent constraints are violated. Let us assume, for the sake of argument,
that the next violated constraint occurs at time t = hℓ(2) when v = U2 during the coast
phase from v = V1 to v = U . Thus we have

∆cx(U1, U2) + V1
(
hℓ(2) − hℓ(1) −∆ct(U1, U2)

)
< xℓ(2) − xℓ(1).
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Now we seek an optimal power-speedhold-coast strategy on (0, hℓ(1)) with hold speed V0 and
final speed v(hℓ(1)) = U1 satisfying the position constraint

∆px(0, V0) + ∆cx(V0, U1) + V0
(
hℓ(1) −∆pt(0, V0)−∆ct(V0, U1)

)
= xℓ(1)

followed by an optimal coast-speedhold-coast strategy on (hℓ(1), hℓ(2)) with initial speed U1,
hold speed V1 and final speed v(hℓ(2)) = U2 satisfying the position constraint

∆cx(U1, U2) + V1(hℓ(2) − hℓ(1) −∆ct(U1, U2)) = xℓ(2) − xℓ(1)

and an optimal coast-speedhold-coast-brake strategy with initial speed U2, hold speed V2,
speed v = U at which braking begins and final speed v(Tℓ) = 0 on the interval (hℓ(2), Tℓ)
such that the position constraint

∆cx(U2, U) + V (Tℓ − hℓ(2) −∆ct(U2, U)−∆bt(U, 0)) + ∆bx(U, 0) = X − xℓ(2)

is satisfied. Subject to any given speeds U1 at xℓ(1) and U2 at xℓ(2) we can adjust the
hold speeds V0 > V1 > V2 and the speed U at which braking begins so that the single
train strategy on each segment is optimal. More generally we could also adjust the speeds
U1 > U2 to minimize the total cost of the overall restricted strategy¶ subject to the position
constraints x(hℓ(1)) = xℓ(1), x(hℓ(2)) = xℓ(2) and x(Tℓ) = X. Now we check the interval
(hℓ(2), Tℓ) to see if there are any subsequent violations of intermediate position constraints.
The process continues until there are no more violations.

3.2 The Leading Train Problem on Level Track

On the basis of the previous discussion we can formulate and solve the leading train problem
on level track in the following way.

Problem 3.2. We wish to find optimal position and speed profiles (x[ℓ](t), v[ℓ](t)) for a lead-
ing train to travel from (x[ℓ](0), v[ℓ](0)) = (0, 0) to (x[ℓ](Tℓ), v[ℓ](Tℓ)) = (X, 0) on level track
subject to additional intermediate position constraints x[ℓ](hs) ≥ xs for s = 0, . . . , n−1 where
the signal positions {xs}ns=0 with 0 = x0 < x1 < · · · < xn−1 < xn = X and corresponding
times {hs}ns=0 with 0 = h0 < h1 < · · · < hn−1 < hn = Tℓ are given. For the optimal
strategy we assume that only some of the intermediate position constraints are active—that
is we assume indices 0 = ℓ(0) < ℓ(1) < · · · < ℓ(k) = n such that x[ℓ](hℓ(i)) = xℓ(i) for
i = 0, . . . , k and x[ℓ](hs) > xs for s ̸= ℓ(i). We propose a strategy with (1) a power phase from
(x, v, t) = (0, 0, 0) to speed V0 followed by a speedhold phase at speed V0 and a coast phase to
(x, v, t) = (xℓ(1), U1, hℓ(1)), (2) a coast phase from (x, v, t) = (xℓ(i), Ui, hℓ(i)) to speed Vi fol-
lowed by a speedhold phase at speed Vi and a coast phase to (x, v, t) = (xℓ(i+1), Ui+1, hℓ(i+1))
for each i = 1, . . . , k − 2 and (3) a coast phase from (x, v, t) = (xℓ(k−1), Uk−1, hℓ(k−1)) to
speed Vk−1, a speedhold phase at speed Vk−1, a coast phase to speed U = Uk and a final
brake phase to (x, v, t) = (xℓ(k), 0, hℓ(k)) = (X, 0, Tℓ). The cost of the strategy per unit mass
is given by Jℓ = Jℓ(U ,V ) where U = (U1, . . . , Uk) and V = (V0, . . . , Vk−1) and where

Jℓ = P∆pt(0, V0) + φ(V0)
[
hℓ(1) −∆pt(0, V0)−∆ct(V0, U1)

]
+

k−1∑
i=1

φ(Vi)
[
hℓ(i+1) − hℓ(i) −∆ct(Ui, Ui+1)

]
. (3.1)

¶For an optimal strategy we shall see later that the speed Ui is uniquely determined by the speeds Vi

and Vi+1.
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The distance travelled during the time interval (hℓ(i), hℓ(i+1)) is given by

δ0 = ∆px(0, V0) + V0[hℓ(1) −∆pt(0, V0)−∆ct(V0, U1)] + ∆cx(V0, U1) (3.2)

for the first interval with i = 0, by

δi = ∆cx(Ui, Ui+1) + Vi[hℓ(i+1) − hℓ(i) −∆ct(Ui, Ui+1)] (3.3)

for each intermediate interval with i = 1, . . . , k − 2 and by

δk−1 = ∆cx(Uk−1, Uk) + ∆bx(Uk, 0)

+Vk−1[Tℓ − hℓ(k−1) −∆ct(Uk−1, Uk)−∆bt(Uk, 0)] (3.4)

for the final interval with i = k − 1. We wish to minimize Jℓ subject to the constraints
xℓ(i+1) − xℓ(i) ≤ δi for each i = 0, . . . , k − 1. 2

Define a Lagrangian function

Jℓ = Jℓ +

k−1∑
i=0

µi(xℓ(i+1) − xℓ(i) − δi) (3.5)

and solve the equations ∂Jℓ/∂Vi = 0 and ∂Jℓ/∂Ui+1 = 0 for each i = 0, . . . , k − 1. The
condition ∂Jℓ/∂Vi = 0 implies

(φ ′(V0)− µ0) [hℓ(1) −∆pt(0, V0)−∆ct(V0, U1)] = 0 (3.6)

when i = 0,
(φ ′(Vi)− µi) [hℓ(i+1) − hℓ(i) −∆ct(Ui, Ui+1)] = 0 (3.7)

for i = 1, . . . , k − 2, and

(φ ′(Vk−1)− µk−1) [Tℓ − hℓ(k−1) −∆ct(Uk−1, Uk)−∆bt(0, Uk)] = 0 (3.8)

when i = k − 1. The condition ∂Jℓ/∂Ui+1 = 0 implies

φ(V0)− φ(V1)− µ0(V0 − U1)− µ1(U1 − V1) = 0 (3.9)

when i = 0,

[φ(Vi)− φ(Vi+1) + (µi − µi+1)Ui+1 + µi+1Vi+1 − µiVi]/φ(Ui+1) = 0 (3.10)

for i = 1, . . . , k − 2 and

[φ(Vk−1)− φ(Vk) + (µk−1 − µk)Uk + µkVk − µk−1Vk−1]/φ(Uk) = 0 (3.11)

when i = k − 1. From (3.6), (3.7) and (3.8) it can be seen that

µi = φ ′(Vi) (3.12)

for each i = 0, . . . , k − 1. Hence it follows from (3.9), (3.10) and (3.11) that

Ui+1 = [ψ(Vi)− ψ(Vi+1)]/[φ
′(Vi)− φ ′(Vi+1)] (3.13)

for each i = 0, 1, . . . , k − 2. Finally we have

Uk = Vk−1 − φ(Vk−1)/φ
′(Vk−1) = ψ(Vk−1)/φ

′(Vk−1) (3.14)

when i = k − 1. The convexity of φ(v) means Vi ≥ Ui+1 ≥ Vi+1 for each i = 0, 1, . . . , k − 2.
From (3.14) it is clear that Uk < Vk−1.
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4 The Following Train Problem

We can formulate and solve the following train problem on level track by using an analogous
inductive argument to that for the leading train. However, rather than present the details
we will simply state the corresponding structural result. At this stage the solution of the
following train problem is not directly related to the solution of the leading train problem.
The only connection is that each problem is specified in terms of a common set of prescribed
times. For this reason—and because the resulting formulæ for the optimal speeds at the
signal positions are precisely the same—it is convenient to use the same notation for each
problem. In Section 8 when we discuss optimization of the prescribed times by considering
both trains simultaneously it will be necessary to use a more discerning notation.

Theorem 4.1. Let (x[f ], v[f ]) be an optimal solution to the restricted following train prob-
lem with 0 = f(0) < f(1) < · · · < f(m) = n such that x[f ](∆T ) = 0, x[f ](hf(j)+1) =
xf(j) for j = 1, . . . ,m − 1, x[f ](∆T + Tf ) = X and x[f ](hs+1) < xs if s ̸= f(j) for all
j = 1, . . . ,m. Then for each segment (xf(j), xf(j+1)) the profile (x[f ], v[f ]) is an optimal
unrestricted single train strategy subject to the initial and final speed constraints v(∆T ) =
v[f ](∆T ) = 0 and v(hf(1)+1) = v[f ](hf(1)+1) on the first interval, v(hf(j)+1) = v[f ](hf(j)+1)
and v(hf(j+1)+1) = v[f ](hf(j+1)+1) on the intermediate intervals for j = 1, . . . ,m − 2 and
v(hf(m−1)+1) = v[f ](hf(m−1)+1) and v(∆T + Tf ) = v[f ](∆T + Tf ) = 0 on the final interval.

Problem 4.2. We wish to find optimal position and speed profiles (x[f ](t), v[f ](t)) for a fol-
lowing train to travel from (x[f ](∆T ), v[f ](∆T )) = (0, 0) to (x[f ](∆T +Tf ), v[f ](∆T +Tf )) =
(X, 0) on level track subject to additional intermediate position constraints x[f ](hs+1) ≤ xs
where the signal positions {xs}ns=0 with 0 = x0 < x1 < · · · < xn−1 < xn = X and corre-
sponding times {hs+1}ns=0 with 0 < h1 < · · · < hn−1 < hn < hn+1 where h1 ≤ ∆T and
hn+1 = ∆T+Tf are given. For the optimal strategy we assume that only some of the interme-
diate position constraints are active—that is we assume 0 = f(0) < f(1) < · · · < f(m) = n
such that x[f ](hf(j)+1) = xf(j) for each j = 1, . . . ,m and x[f ](hs+1) < xs for s ̸= f(j).
We propose a strategy with (1) a power phase from (x, v, t) = (0, 0,∆T ) to speed V0 fol-
lowed by a speedhold phase at speed V0 and a power phase to (x, v, t) = (xf(1), U1, hf(1)+1),
(2) a power phase from (x, v, t) = (xf(j), Uj , hf(j)+1) to speed Vj followed by a speed-
hold phase at speed Vj and a power phase to (x, v, t) = (xf(j+1), Uj+1, hf(j+1)+1) for each
j = 1, . . . ,m−2 and (3) a power phase from (x, v, t) = (xf(m−1), Um−1, hf(m−1)+1) to speed
Vm−1, a speedhold phase at speed Vm−1, a coast phase to speed Um and a final brake phase
to (x, v, t) = (xf(m), 0, hf(m)+1) = (X, 0,∆T + Tf ). The cost of the strategy per unit mass
is given by Jf = Jf (U ,V ) where U = (U1, . . . , Um) and V = (V0, . . . , Vm−1) and where

Jf = P∆pt(0, U1) + φ(V0)
[
hf(1)+1 −∆T −∆pt(0, U1)

]
+

m−2∑
j=1

P∆pt(Uj , Uj+1)

+
m−2∑
j=1

φ(Vj)
[
hf(j+1)+1 − hf(j)+1 −∆pt(Uj , Uj+1)

]
+ P∆pt(Um−1, Vm−1)

+ φ(Vm−1)
[
∆T + Tf − hf(m−1)+1 −∆tm−1

]
(4.1)
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where we have written

∆tm−1 = ∆pt(Um−1, Vm−1) + ∆ct(Vm−1, Um) + ∆bt(Um, 0)

for convenience. The distance travelled during (∆T, hf(1)+1) is

δ0 = ∆px(0, U1) + V0[hf(1)+1 −∆T −∆pt(0, U1)] (4.2)

on the first interval, the distance travelled during (hf(j)+1, hf(j+1)+1) is

δj = ∆px(Uj , Uj+1) + Vj [hf(j+1)+1 − hf(j)+1 −∆pt(Uj , Uj+1)] (4.3)

on each intermediate interval with j = 1, . . . ,m − 2 and the distance travelled during
(hf(m−1)+1, hf(m)+1) is

δm−1 = ∆px(Um−1, Vm−1) + Vm−1[∆T + Tf − hf(m−1)+1 −∆tm−1]

+∆cx(Vm−1, Um) + ∆bx(Um, 0) (4.4)

on the final interval, where we have again used the notation ∆tm−1 for convenience. We
wish to minimize Jf subject to the constraints δj ≤ xf(j+1)−xf(j) for each j = 0, . . . ,m−1
and the overall position constraint xn ≤ δ0 + δ1 + · · ·+ δm−1. 2

Define a Lagrangian function

Jf = Jf +

m−1∑
j=0

µj(δj − xf(j+1) + xf(j)) + µ

xn −
m−1∑
j=0

δj


= Jf +

m−1∑
j=0

(µj − µ)(δj − xf(j+1) + xf(j)) (4.5)

and solve the equations ∂Jf/∂Vj = 0 and ∂Jf/∂Uj+1 = 0 for each j = 0, 1, . . . ,m− 1. For
j = 0 we have ∂Jf/∂V0 implies

(φ ′(V0)− (µ− µ0)) [hf(1)+1 −∆T −∆pt(U0, U1)] = 0 (4.6)

and ∂Jf/∂U1 = 0 implies

φ(V1)− φ(V0)− (µ− µ0)(U1 − V0) + (µ− µ1)(U1 − V1) = 0. (4.7)

For j = 1, . . . ,m− 2 we have ∂Jf/∂Vj = 0 implies

(φ ′(Vj)− (µ− µj)) [hf(j+1)+1 − hf(j)+1 −∆pt(Uj , Uj+1)] = 0 (4.8)

and ∂Jf/∂Uj+1 = 0 implies

φ(Vj+1)− φ(Vj)− (µ− µj)(Uj+1 − Vj) + (µ− µj+1)(Uj+1 − Vj+1) = 0. (4.9)

For j = m− 1 we can see that ∂Jf/∂Vm−1 = 0 implies

(φ ′(Vm−1)− (µ− µm−1))

[
∆T + Tf − hf(m−1)+1 −∆tm−1

]
= 0, (4.10)
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where we have once again written

∆tm−1 = ∆p(Um−1, Vm−1)−∆ct(Vm−1, Um)−∆bt(Um, 0)

for convenience, and that ∂Jf/∂Um = 0 implies

φ(Vm−1) + (µm−1 − µ)(Vm−1 − Um) = 0. (4.11)

We can solve these equations in the same way we solved the corresponding equations for the
leading train to give

Uj+1 = [ψ(Vj+1)− ψ(Vj)]/[φ
′(Vj+1)− φ ′(Vj)] (4.12)

for each j = 0, . . . ,m − 2. It is easy to show that the convexity of φ(v) means that Vj ≤
Uj+1 ≤ Vj+1. Lastly we find that the optimal value of Um, the speed at which braking
begins, is given by

Um = ψ(Vm−1)/φ
′(Vm−1). (4.13)

5 An Important Note About the Optimal Speeds

For both the leading train and the following train we have assumed that only a subset of the
prescribed times involve active constraints. The active set was denoted by {ℓ(i)}ki=0 for the
leading train and by {f(j)}mj=0 for the following train. If the time constraint at a particular
signal point is active then for both the leading train and the following train the optimal
speed at this point is given by

U(V,W ) = [ψ(W )− ψ(V )]/[φ ′(W )− φ ′(V )] (5.1)

for W ̸= V where (V,W ) = (Vℓ,Wℓ) and (V,W ) = (Vf ,Wf ) are the respective optimal hold
speeds for the leading train and the following train before and after the signal point. Now
we note that

lim
W→V

U(V,W ) = lim
W→V

ψ ′(W )/φ ′′(W ) = lim
W→V

W = V. (5.2)

If the time constraint at a particular signal point is not active then for both the leading train
and the following train we know that the holding speed does not change and so U =W = V .
Thus we may interpret (5.1) more generally so that henceforth

U(V,W ) =

 [ψ(W )− ψ(V )]/[φ ′(W )− φ ′(V )] for W ̸= V

V for W = V.
(5.3)

This is important later in the paper where it will be convenient to allow degenerate phases.
By adopting the convention described in (5.3) we can use the formulæ derived earlier, even if
it turns out that a particular phase becomes degenerate in the search for optimal prescribed
intermediate times. For instance it is possible that a coast—speedhold—coast sequence on a
particular interval will degenerate into a single speedhold phase as the prescribed times are
changed. Nevertheless all relevant formulæ remain valid.
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6 The Two Train Separation Problem—an Example with Prescribed
Times

We consider two identical trains∥ with identical allowed journey times T = Tℓ = Tf . The
maximum power per unit mass is P = 3m2s−3 and the maximum braking force per unit
mass is Q = 0.3ms−2. The resistive force per unit mass is given by the formula

r(v) = 6.75× 10−3 + 5× 10−5v2 ms−2.

We take X = 144× 103 m with signal locations given by

x = (0, 20, 84, 132, 144)× 103 m.

We let T = 72× 102 s and ∆T = 12× 102 s. In the first instance we suppose the specified
times are

h = (0, 12, 36, 60, 72)× 102 s.

The leading train must pass the point x1 = 20000 by time h1 = 1200, pass x2 = 84000 by
h2 = 3600, pass x3 = 132000 by h3 = 6000 and reach x4 = 144000 at time T = 7200. We
used Matlab to calculate the optimal values

V = (23.56, 23.56, 20.14, 10.90)ms−1, U = (23.56, 21.90, 15.98, 5.27)ms−1

for the key parameters. The cost of the optimal strategy is Jℓ = 4334 m2s−2.

x0 x1 x2 x3 x4
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20

10

0

U4

U3

U2

U1

Figure 1: Optimal speed profile for a leading train on level track with initial prescribed
times.

The following train must not leave the point x0 = 0 until time ∆T = h1 = 1200, must
not reach x1 = 20000 until h2 = 3600, x2 = 84000 until h3 = 6000, x3 = 132000 until
h4 = 7200 but must reach the final point x4 = 144000 by time ∆T + T = 8400. We used
Matlab to calculate the optimal values

V = (8.21, 26.48, 26.48, 26.48)ms−1, U = (18.95, 26.48, 26.48, 16.59)ms−1

∥In order to correctly compare costs we assume the trains have the same total mass.
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for the key parameters. The cost of the optimal strategy is Jf = 5414 m2s−2. If possible we
would like to reduce the total cost J = Jℓ + Jf = 9748 m2s−2 by changing the intermediate
times.

x4x3x2x1x0
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0

U1

U4

U2, U3

Figure 2: Optimal speed profile for a following train on level track with initial prescribed
times.

We note that the maximum holding speed of the leading train 23.56 ms−1 for the initial
prescribed times is significantly less than the maximum holding speed of the following train
26.48 ms−1. Since high speeds mean high resistance and high cost it would seem sensible—if
possible—to adjust the prescribed times in such a way that the maximum holding speed of
the leading train is increased and the maximum holding speed of the following train is
decreased.

7 The Two Train Separation Problem—an Example with Modified
Prescribed Times

We use the same train parameters, the same journey times and the same signal locations as
in the previous example. This time we suppose the specified times are

h = (0, 12, 34, 58, 72)× 102 s.

The leading train must pass the point x1 = 20000 by time h1 = 1200, pass x2 = 84000 by
h2 = 3400, x3 = 132000 by h3 = 5800 and must reach x4 = 144000 at T = 7200. We used
Matlab to calculate the optimal values

V = (25.01, 25.01, 20.20, 8.77)ms−1, U = (25.01, 22.69, 15.24, 3.69)ms−1

for the key parameters. The cost of the optimal strategy is Jℓ = 4602 m2s−2.
The following train must not leave the point x0 = 0 until time ∆T = h1 = 1200, must

not reach x1 = 20000 until h2 = 3400, x2 = 84000 until h3 = 5800, x3 = 132000 until
h4 = 7200 but must reach the final point x4 = 144000 by time ∆T + T = 8400. We used
Matlab to calculate the optimal values

V = (8.99, 25.40, 25.40, 25.40)ms−1, U = (18.50, 25.40, 25.40, 15.83)
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Figure 3: Optimal speed profile for a leading train on level track with modified prescribed
times.

for the key parameters. The cost of the optimal strategy is Jf = 5078 m2s−2. Hence the
total cost J = Jℓ + Jf = 9680 m2s−2 with the modified prescribed times is less than the
total cost with the original prescribed times.
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Figure 4: Optimal speed profile for a following train on level track with modified prescribed
times.

We can now see that the modified prescribed times have indeed forced an increase in the
maximum holding speed of the leading train to 25.01 ms−1 and have allowed a decrease in
the maximum holding speed of the following train to 25.40 ms−1. Although these modified
times have resulted in decreased energy usage they are still not optimal∗∗ and more work is
needed to find an efficient algorithm that will systematically determine the optimal set of
prescribed times.

∗∗Subsequent ad hoc calculations after acceptance of the original manuscript suggest that the times h ≈
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8 An Analytic Solution for the Optimal Prescribed Intermediate
Times

We consider the case where the track consists of only four segments†† and derive necessary
conditions on an analytic solution for the optimal prescribed times. Thus we have 0 = x0 <
· · · < x4 = X. We assume that the trains are identical, that the total journey time allowed
for each train is the same and that the relative starting times are fixed. Thus we assume
Tℓ = Tf = T and that the journeys are completed during t ∈ [0, T ] for the leading train and
t ∈ [∆T,∆T + T ] for the following train where ∆T > 0 is given.

The leading train uses a strategy of power–hold–coast on (x0, x1) followed by coast–hold–
coast on (xs, xs+1) for s = 1, 2 and coast–hold–coast–brake on (x3, x4). The hold speeds are
Vs on (xs, xs+1) for s = 0, . . . , 3. The speed at xs+1 is Us+1 = U(Vs, Vs+1) given by (5.3)
for s = 0, 1, 2 and the speed at which braking begins is U4 = U4(V3) = ψ(V3)/φ

′(V3).
The following train uses a strategy of power–hold–power on (xs, xs+1) for s = 0, 1, 2

followed by power–hold–coast–brake on (x3, x4). The hold speeds are Ys on (xs, xs+1) for
s = 0, . . . , 3. The speed at xs+1 is Zs+1 = Zs+1(Ys, Ys+1) = U(Ys, Ys+1) given by (5.3) for
s = 0, 1, 2 and the speed at which braking begins is Z4 = Z4(Y3) = ψ(Y3)/φ

′(Y3).

Remark 8.1. In this formulation we note that degenerate phases are allowed. See the
earlier remarks in Section 5.

Our first task is to define the main constraints. For the leading train we calculate the
time taken to traverse the various segments as

f0(V0, V1) = ∆pt(0, V0) + ∆ct(V0, U1)

+(1/V0) [(x1 − x0)−∆px(0, V0)−∆cx(V0, U1)] (8.1)

for the segment (x0, x1),

fs(Vs−1, Vs, Vs+1) = ∆ct(Us, Us+1)

+(1/Vs) [(xs+1 − xs)−∆cx(Us, Us+1)] (8.2)

for the segments (xs, xs+1) when s = 1, 2 and

f3(V2, V3) = ∆ct(U3, U4) + ∆bt(U4, 0)

+(1/V3) [(x4 − x3)−∆cx(U3, U4)−∆bx(U4, 0)] (8.3)

for the segment (x3, x4).
For the following train the times taken to traverse the various segments are given by

g0(Y0, Y1) = ∆pt(0, Z1) + (1/Y0) [(x1 − x0)−∆px(0, Z1)] (8.4)

for the segment (x0, x1),

gs(Ys−1, Ys, Ys+1) = ∆pt(Zs, Zs+1)

+(1/Ys) [(xs+1 − xs)−∆px(Zs, Zs+1)] , (8.5)

(0, 12, 32.65, 59.76, 72)× 102 s are close to optimal. The corresponding optimal values for the key speeds are

V ≈ (26.134, 26.134, 17.660, 10.985)ms−1, U ≈ (26.134, 22.170, 14.582, 5.334)ms−1

for the leading train and

V ≈ (9.624, 23.653, 25.920, 25.920)ms−1, U ≈ (17.624, 24.804, 25.920, 16.196)ms−1

for the following train. The total cost is J = Jℓ + Jf ≈ 4633.83 + 4900.66 = 9534.49 m2s−2.
††A general argument could be expected to proceed along similar lines.
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for the segments (xs, xs+1) when s = 1, 2 and

g3(Y2, Y3) = ∆pt(Z3, Y3) + ∆ct(Y3, Z4) + ∆bt(Z4, 0)

+(1/Y3) [(x4 − x3)−∆px(Z3, Y3)−∆cx(Y3, Z4)−∆bx(Z4, 0)] (8.6)

for the segment (x3, x4).
The following train must start at time ∆T and so the time taken for the leading train

to traverse the segment (x0, x1) is at most ∆T . Therefore

f0 ≤ ∆T. (8.7)

The time taken for the leading train to traverse the combined segment (x0, xs+1) is at most
equal to the initial delay for the following train plus the time taken for the following train
to traverse the combined segment (x0, xs). Thus we have

f0 + f1 + · · ·+ fs+1 ≤ ∆T + g0 + · · ·+ gs (8.8)

for each s = 0, 1, 2. However, for both trains, the maximum allowed journey time is T .
Therefore

f0 + · · ·+ f3 ≤ T (8.9)

and
g0 + · · ·+ g3 ≤ T. (8.10)

We will also impose the speed constraints

0 ≤ V3 ≤ V2 ≤ V1 ≤ V0 (8.11)

and
0 ≤ Y0 ≤ Y1 ≤ Y2 ≤ Y3. (8.12)

Our next task is to define the cost for each train. For the leading train the cost Jℓ = Jℓ(V )
is given by

Jℓ = P∆pt(0, V0) + r(V0) [(x1 − x0)−∆px(0, V0)−∆cx(V0, U1)]

+
2∑

s=1

r(Vs) [(xs+1 − xs)−∆cx(Us, Us+1)]

+r(V3) [(x4 − x3)−∆cx(U3, U4)−∆bx(U4, 0)] (8.13)

and for the following train the cost Jf = Jf (Y ) is given by

Jf = P∆pt(0, Y3) + r(Y0) [(x1 − x0)−∆px(0, Z1)]

+
2∑

s=1

r(Ys) [(xs+1 − xs)−∆px(Zs, Zs+1)]

+r(Y3) [(x4 − x3)−∆px(Z3, Y3)−∆cx(Y3, Z4)−∆bx(Z4, 0)] . (8.14)

To find the minimum total cost subject to the required constraints we form a Lagrangian
function

J = Jℓ + Jf + κ0[f0 −∆T ] + κ1[f0 + f1 − (∆T + g0)]

+κ2[f0 + f1 + f2 − (∆T + g0 + g1)]

+κ3[f0 + f1 + f2 + f3 − (∆T + g0 + g1 + g2)]

+λℓ(f0 + · · ·+ f3 − T ) + λf (g0 + · · ·+ g3 − T )

+µ1(V1 − V0) + µ2(V2 − V1) + µ3(V3 − V2)− µ4V3

−ν1Y0 + ν2(Y0 − Y1) + ν3(Y1 − Y2) + ν4(Y2 − Y3) (8.15)
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and apply the usual Karush–Kuhn–Tucker (KKT) equations and complementary slackness
conditions.

First we differentiate with respect to V0 to give

∂Jℓ
∂V0

= r ′(V0) [(x1 − x0)−∆px(0, V0)−∆cx(V0, U1)]

+[r(V0)− r(V1)]
U1

r(U1)

∂U1

∂V0
, (8.16)

∂f0
∂V0

= − 1

V 2
0

[(x1 − x0)−∆px(0, V0)−∆cx(V0, U1)]

+

[
1

V0
− 1

U1

]
U1

r(U1)

∂U1

∂V0
, (8.17)

∂f1
∂V0

=

[
1

U1
− 1

V1

]
U1

r(U1)

∂U1

∂V0
. (8.18)

Second we differentiate with respect to V1 to give

∂Jℓ
∂V1

= r ′(V1) [(x2 − x1)−∆cx(U1, U2)]

+
1∑

s=0

[r(Vs)− r(Vs+1)]
Us+1

r(Us+1)

∂Us+1

∂V1
, (8.19)

∂f0
∂V1

=

[
1

V0
− 1

U1

]
U1

r(U1)

∂U1

∂V1
, (8.20)

∂f1
∂V1

= − 1

V 2
1

[(x2 − x1)−∆cx(U1, U2)]

+

[
1

U1
− 1

V1

]
U1

r(U1)

∂U1

∂V1
+

[
1

V1
− 1

U2

]
U2

r(U2)

∂U2

∂V1
, (8.21)

∂f2
∂V1

=

[
1

U2
− 1

V2

]
U2

r(U2)

∂U2

∂V1
. (8.22)

Third we differentiate with respect to V2 to give

∂Jℓ
∂V2

= r ′(V2) [(x3 − x2)−∆cx(U2, U3)]

+
2∑

s=1

[r(Vs)− r(Vs+1)]
Us+1

r(Us+1)

∂Us+1

∂V2
, (8.23)

∂f1
∂V2

=

[
1

V1
− 1

U2

]
U2

r(U2)

∂U2

∂V2
, (8.24)
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∂f2
∂V2

= − 1

V 2
2

[(x3 − x2)−∆cx(U2, U3)]

+

[
1

U2
− 1

V2

]
U2

r(U2)

∂U2

∂V2
+

[
1

V2
− 1

U3

]
U3

r(U3)

∂U3

∂V2
, (8.25)

∂f3
∂V2

=

[
1

U3
− 1

V3

]
U3

r(U3)

∂U3

∂V2
. (8.26)

Fourth we differentiate with respect to V3 to give

∂Jℓ
∂V3

= r ′(V3) [(x4 − x3)−∆cx(U3, U4)−∆bx(0, U4)]

+[r(V2)− r(V3)]
U3

r(U3)

∂U3

∂V3

+r(V3)

[
U4

r(U4)
− U4

Q+ r(U4)

]
∂U4

∂V3
, (8.27)

∂f2
∂V3

=

[
1

V2
− 1

U3

]
U3

r(U3)

∂U3

∂V3
, (8.28)

∂f3
∂V3

= − 1

V 2
3

[(x4 − x3)−∆cx(U3, U4)−∆bx(0, U4)]

+

[
1

U3
− 1

V3

]
U3

r(U3)

∂U3

∂V3

+

[
1

V3
− 1

U4

] [
U4

r(U4)
− U4

Q+ r(U4)

]
∂U4

∂V3
. (8.29)

Fifth we differentiate with respect to Y0 to give

∂Jf
∂Y0

= r ′(Y0) [(x1 − x0)−∆px(0, Z1)]

+[r(Y1)− r(Y0)]
Z2
1

P − φ(Z1)

∂Z1

∂Y0
, (8.30)

∂g0
∂Y0

= − 1

Y 2
0

[(x1 − x0)−∆px(0, Z1)]

+

[
1

Z1
− 1

Y0

]
Z2
1

P − φ(Z1)

∂Z1

∂Y0
, (8.31)

∂g1
∂Y0

=

[
1

Y1
− 1

Z1

]
Z2
1

P − φ(Z1)

∂Z1

∂Y0
. (8.32)

Sixth we differentiate with respect to Y1 to give

∂Jf
∂Y1

= r ′(Y1) [(x2 − x1)−∆px(Z1, Z2)]

+
1∑

s=0

[r(Ys+1)− r(Ys)]
Z2
s+1

P − φ(Zs+1)

∂Zs+1

∂Y1
, (8.33)
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∂g0
∂Y1

=

[
1

Z1
− 1

Y0

]
Z2
1

P − φ(Z1)

∂Z1

∂Y1
, (8.34)

∂g1
∂Y1

= − 1

Y 2
1

[(x2 − x1)−∆px(Z1, Z2)]

+

[
1

Y1
− 1

Z1

]
Z2
1

P − φ(Z1)

∂Z1

∂Y1

+

[
1

Z2
− 1

Y1

]
Z2
2

P − φ(Z2)

∂Z2

∂Y1
, (8.35)

∂g2
∂Y1

=

[
1

Y2
− 1

Z2

]
Z2
2

P − φ(Z2)

∂Z2

∂Y1
. (8.36)

Seventh we differentiate with respect to Y2 to give

∂Jf
∂Y2

= r ′(Y2) [(x3 − x2)−∆px(Z2, Z3)]

+

2∑
s=1

[r(Ys+1)− r(Ys)]
Z2
s+1

P − φ(Zs+1)

∂Zs+1

∂Y2
, (8.37)

∂g1
∂Y2

=

[
1

Z2
− 1

Y1

]
Z2
2

P − φ(Z2)

∂Z2

∂Y2
, (8.38)

∂g2
∂Y2

= − 1

Y 2
2

[(x3 − x2)−∆px(Z2, Z3)]

+

[
1

Y2
− 1

Z2

]
Z2
2

P − φ(Z2)

∂Z2

∂Y2

+

[
1

Z3
− 1

Y2

]
Z2
3

P − φ(Z3)

∂Z3

∂Y2
, (8.39)

∂g3
∂Y2

=

[
1

Y3
− 1

Z3

]
Z2
3

P − φ(Z3)

∂Z3

∂Y2
. (8.40)

Eighth we differentiate with respect to Y3 to give

∂Jf
∂Y3

= r ′(Y3) [(x4 − x3)−∆px(Z3, Y3)

−∆cx(Y3, Z4)−∆bx(Z4, 0)]

+[r(Y3)− r(Y2)]
Z2
3

P − φ(Z3)

∂Z3

∂Y3

+r(Y3)

[
Z4

r(Z4)
− Z4

Q+ r(Z4)

]
∂Z4

∂Y3
, (8.41)

∂g2
∂Y3

=

[
1

Z3
− 1

Y2

]
Z2
3

P − φ(Z3)

∂Z3

∂Y3
, (8.42)
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∂g3
∂Y3

= − 1

Y 2
3

[(x4 − x3)−∆px(Z3, Y3)

−∆cx(Y3, Z4)−∆bx(Z4, 0)]

+

[
1

Y3
− 1

Z3

]
Z2
3

P − φ(Z3)

∂Z3

∂Y3

+

[
1

Y3
− 1

Z4

] [
Z4

r(Z4)
− Z4

Q+ r(Z4)

]
∂Z4

∂Y3
. (8.43)

We can write the KKT equations in vector form as ∂J /∂V = 0 and ∂J /∂Y = 0. For
the first vector equation we have

κ0
∂f0
∂V

+ κ1
∂(f0 + f1)

∂V
+ κ2

∂(f0 + f1 + f2)

∂V

+(κ3 + λℓ)
∂(f0 + f1 + f2 + f3)

∂V
−∆µ = − ∂Jℓ

∂V
(8.44)

where we have defined the vector ∆µ = µ1e1 +(µ2 −µ1)e2 +(µ3 −µ2)e3 +(µ4 −µ3)e4 and
e1, . . . , e4 ∈ R4 are the usual unit vectors. If we define σq = κq−1 + · · · + κ3 + λℓ for each
q = 1, . . . , 4 then this becomes

σ1
∂f0
∂V

+ σ2
∂f1
∂V

+ σ3
∂f2
∂V

+ σ4
∂f3
∂V

−∆µ = − ∂Jℓ
∂V

. (8.45)

Equivalently we may write [
∂f

∂V

]
σ = −

(
∂Jℓ
∂V

−∆µ

)
(8.46)

where we note that the coefficient matrix in (8.46) is the Jacobian matrix of the transfor-
mation V ∈ V 7→ f ∈ f(V) = F where V = {V | V0 ≥ V1 ≥ V2 ≥ V3 ≥ 0} is the feasible set.
Since there is a one–to–one correspondence between the traversal times f ∈ F and the hold-
ing speeds V ∈ V for the leading train it follows that the Jacobian matrix is non-singular
on the interior of the feasible set V◦ = {V | V0 > V1 > V2 > V3 > 0}. At the same time we
observe that the complementary slackness conditions from the minimization of (8.15) show
that µ = 0 and hence also that ∆µ = 0 for V ∈ V◦. Therefore, for each V ∈ V◦, the unique
solution is defined by the equation [

∂f

∂V

]
σ = − ∂Jℓ

∂V
. (8.47)

We may extend our analysis to the entire set V by taking appropriate limits. Thus we may
express the unique solution σ = σ(V ) in the form

σ = −
[
∂f

∂V

]†
∂Jℓ
∂V

(8.48)

for all V ∈ V. The coefficient matrix on the right-hand side of (8.48) is written as a Moore–
Penrose generalized inverse because it is possible that the Jacobian matrix may be singular
on the boundary of V.

For the second vector equation we have

κ1
∂g0
∂Y

+ κ2
∂(g0 + g1)

∂Y
+ κ3

∂(g0 + g1 + g2)

∂Y

−λf
∂(g0 + g1 + g2 + g3)

∂Y
−∆ν =

∂Jf
∂Y

(8.49)
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where we have defined ∆ν = (ν2 − ν1)e1 + (ν3 − ν2)e2 + (ν4 − ν3)e3 − ν4e4. If we define
τq = κq + · · ·+ κ3 − λf for each q = 1, 2, 3 and τ4 = −λf then this becomes

τ1
∂g0
∂Y

+ τ2
∂g1
∂Y

+ τ3
∂g2
∂Y

+ τ4
∂g3
∂Y

−∆ν =
∂Jf
∂Y

. (8.50)

Equivalently we may write [
∂g

∂Y

]
τ =

∂Jf
∂Y

+∆ν (8.51)

where we note that the coefficient matrix in (8.51) is the Jacobian matrix of the transfor-
mation Y ∈ Y 7→ g ∈ g(Y) = G where Y = {Y | 0 ≤ Y0 ≤ Y1 ≤ Y2 ≤ Y3} is the feasible set.
Since there is a one–to–one correspondence between the traversal times g ∈ G and the hold-
ing speeds Y ∈ Y for the following train it follows that the Jacobian matrix is non-singular
on the interior of the feasible set Y◦ = {Y | 0 < Y0 < Y1 < Y2 < Y3}. At the same time we
observe that the complementary slackness conditions from the minimization of (8.15) show
that ν = 0 and hence also that ∆ν = 0 for Y ∈ Y◦. Therefore, for each Y ∈ Y◦, the unique
solution is defined by [

∂g

∂Y

]
τ =

∂Jf
∂Y

. (8.52)

We may extend our analysis to the entire set Y by taking appropriate limits. Thus we may
express the unique solution τ = τ (Y ) in the form

τ =

[
∂g

∂Y

]†
∂Jf
∂Y

(8.53)

for each Y ∈ Y. Once again the Moore–Penrose generalized inverse is used because the
Jacobian matrix may be singular on the boundary of Y.

Since ∂fs/∂Vt = 0, ∂gs/∂Yt = 0 for t ̸= s − 1, s, s + 1 the coefficient matrices in (8.46)
and (8.51) are tridiagonal. Hence for given (V ,Y ) numerical calculation of the generalized
inverse matrices is straightforward. If we define the elementary permutation matrix P =
[e4, e1, e2,e3] ∈ R4×4 then it follows from the definitions of σ, τ above that

−Pσ + τ + κe4 + λ1 = 0 (8.54)

where we have written κ = κ0 + · · · + κ3 and λ = λℓ + λf . Thus we obtain the necessary
conditions for optimality (8.48), (8.53) and (8.54).

If intermediate times are prescribed it is relatively straightforward to set up simple
iterations that allow us to determine V and Y as we did in the earlier examples. Hence we
can easily use a package such as Matlab to solve (8.47) and (8.52) and find σ(V ) and τ (Y ).
If (8.54) is satisfied then the prescribed times are optimal. If not we must try another set of
prescribed times. Of course our ultimate aim is to find an algorithm which can be used to
calculate the optimal values for V and Y . In this regard we hope to exploit our knowledge of
the marginal cost rates and the implicit relationship between V and Y embodied in (8.54).

9 Conclusions and Future Work

We have developed a theoretical methodology that could ultimately provide rail operators
with a framework that will enable them to better understand the principles of energy-efficient
train separation. Our particular contribution is to show how prescribed intermediate times
can be used to find the most energy-efficient speed profiles for both a leading train and a
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following train while maintaining adequate train separation. Our next task is to develop
an efficient numerical algorithm for optimization of the prescribed times. We would also
like to extend the methods used in this paper to separation of a fleet of trains travelling in
the same direction. In general we expect that trains in a fleet, other than the first and the
last, will sometimes be constrained as leading trains and sometimes as following trains. We
would also like to solve the corresponding problems on tracks with steep grades. There is
much to be done!
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