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benefit, which is over the sum of the benefits derived from each individual project, is ful-
filled [4]. Resource interdependency arises from sharing resources among various projects.
For example, the implementation of two or more related projects at the same time may
require less resources than if they are implemented separately [16].

The project interdependency can be modeled by the product of several binary variables,
each of which denotes whether a project is chosen or not. This leads to an integer polynomial
programming model for PPSP. For example, benefit and resource interdependency among
three projects A, B and C requires a cubic term xAxBxC , where xA, xB and xC are binary
variables. Due to the complexity of polynomial functions and integral constraints involved
in these models, heuristic algorithms are often chosen in most literatures for the purpose of
efficiency [2,21], although the quality of the solutions is not guaranteed. On the other hand,
in order to find global optimal solutions, Watters [20] developed a linearization technique to
reformulate these models into linear integer programming problems. Glover and Woolsey [5]
then extended Watters’ work by providing rules to replace the polynomial cross-product
terms with continuous variables instead of integer variables. This technique leads to a
mixed integer linear programming (MILP) reformulation [8]. To the best of our knowledge,
there is no other efficient linearization techniques than the one proposed in [5] to tackle this
type of models in general. One key objective of this paper is to propose a new and more
efficient linearization reformulation.

Cardinality constraint. Several researchers have pointed out that the failure of some
project portfolios is a consequence of that too many projects have been selected such that
their implementations exceed the capacity of a company [15]. Therefore, it is necessary
to limit the total number of projects in an optimal portfolio. The number of projects
consisted in a portfolio is called cardinality. Yu et al. [21] considered an equality constraint
on cardinality, while others imposed an inequality constraint on cardinality [7, 22].

To our best knowledge, few literatures consider both project interdependency and cardi-
nality constraint in PPSP at the same time. In these literatures, either a genetic algorithm
is applied to solve the problem [21], or the way of describing the project interdependency is
different [19, 22]. In this paper, we propose a new model for PPSP considering the benefit
and resource interdependency and cardinality constraint at the same time.

The rest of the paper is organized as follows. In Section 2, a new model of PPSP con-
sidering both project interdependency and cardinality constraint is presented. A reformu-
lation using linearization technique in [5] is derived in Section 3. Then, a new linearization
technique is presented for providing a new reformulation in Section 4. Computational ex-
periments are executed in Section 5 to highlight the efficiency of the proposed linearization
technique. Conclusions are given in Section 6.

2 A New PPSP Model

Suppose there are N projects to be selected from, and the decision variable xi denotes
whether project i is included in the portfolio (xi = 1) or not (xi = 0). In other words,
a project portfolio can be represented by the vector x = (x1, . . . , xN ) and the cardinality

of a portfolio x is I(x) =
∑N

i=1 xi. Let ri ≥ 0 be the benefit derived from implementing
project i alone, ri,j ≥ 0 be the additional benefit derived from implementing projects i
and j together, and ri,j,k ≥ 0 be the additional benefit derived from implementing projects
i, j and k together. In project portfolio selection, a decision-maker is often faced with the
problem of selecting a small subset of projects based on some certeria. Here, we assume the
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decision-maker only concerns the benefit of the project portfolio, i.e., to maximize

B(x) =

N∑
i=1

rixi +

N−1∑
i=1

N∑
j=i+1

ri,jxixj +

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

ri,j,kxixjxk, (2.1)

where the second and third terms in (2.1) account for the benefit interdependency of projects.
We also assume that there are S different types of resources required by the candidate
projects with bs > 0 being the available amount of resource s. Each project i, if selected,
requires an amount dsi ≥ 0 of resource s for s = 1, . . . , S. Let dsi,j ≥ 0 be the amount of
resource s shared by projects i and j, and dsi,j,k ≥ 0 be the amount of resource s shared by
projects i, j and k, if they are selected. Then, the resource s used by a project portfolio x
can be represented as (ref. [16])

Rs(x) =
N∑
i=1

dsixi −
N−1∑
i=1

N∑
j=i+1

dsi,jxixj +
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

dsi,j,kxixjxk (2.2)

for s = 1, . . . , S. By incorporating the interdependency and cardinality into the decision
modelling, a new model for PPSP can be formulated as

PPSPNew


Max B(x)

subject to Rs(x) ≤ bs, s = 1, . . . , S,

I(x) = (≤) m,

xi ∈ {0, 1}, i = 1, . . . , N,

(2.3)

(2.4)

(2.5)

where m is a positive integer representing the preassigned limit on cardinality. Note that,
in model PPSPNew, the cardinality constraint can be either an equality or inequality con-
straint. As pointed out in Section 1, both cases have appeared in the literature.

Remark 2.1. High-order polynomial terms can be used to account for the benefit and re-
source interdependency among over four projects. But these high-order polynomial terms
can be reduced to the third order by using a linearization technique proposed in [16]. There-
fore, we only consider the model with the highest order of three.

3 Model Reformulation using Glover and Woolsey’s Linearization
Technique

Model PPSPNew in Section 2 is a polynomial integer programming problem, thus difficult
to be solved directly. Glover and Woolsey proposed a linearization technique to transform
the polynomial binary programming problem into a mixed 0-1 integer linear programming
problem [5]. By introducing auxiliary variables yi,j = xixj and zi,j,k = xixjxk for i, j, k =
1, . . . , N and additional valid linear inequalities, functions B(x) and Rs(x) can be replaced
by functions

B̄(x, y, z) =
N∑
i=1

rixi +
N−1∑
i=1

N∑
j=i+1

ri,jyi,j +
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

ri,j,kzi,j,k (3.1)

and

R̄s(x, y, z) =
N∑
i=1

dsixi −
N−1∑
i=1

N∑
j=i+1

dsi,jyi,j +
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

dsi,j,kzi,j,k, (3.2)
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respectively, where y = (y1,2, . . . , y1,N , y2,3, . . . , yN−1,N ) ∈ R
N(N−1)

2 and z =

(z1,2,3, . . . , z1,N−1,N , z2,3,4, . . . , zN−2,N−1,N ) ∈ R
N(N−1)(N−2)

6 . Then the model PPSPNew

can be transformed into the following equivalently mixed 0-1 integer linear programming
problem:

PPSPR



Max B̄(x, y, z)

s.t. I(x) = (≤)m,

R̄s(x, y, z) ≤ bs, s = 1, . . . , S,

yi,j ≤ xi, yi,j ≤ xj , yi,j ≥ xi + xj − 1, i, j = 1, . . . , N, i < j,

zi,j,k ≤ xi, zi,j,k ≤ xj , zi,j,k ≤ xk, zi,j,k ≥ xi + xj + xk − 2,

i, j, k = 1, . . . , N, i < j < k,

xi ∈ {0, 1}, yi,j , zi,j,k ≥ 0, i, j, k = 1, . . . , N, i < j < k.

(3.3)

(3.4)

(3.5)

It is worthy to point out that y and z in the reformulation PPSPR are continuous vari-
ables instead of 0-1 binary variables. The equivalence between PPSPNew and PPSPR

is guaranteed by the linear constraints (3.4) and (3.5), which enforce yi,j = xixj and
zi,j,k = xixjxk when xi ∈ {0, 1}. Although the polynomial terms disappear, the reformu-
lation does not make PPSPR easy to solve. One main reason is that PPSPR introduces
3N(N−1)

2 + 2N(N−1)(N−2)
3 linear inequality constraints, which may increase the computa-

tional burden in the bounding process of an MILP solver. This motivates us to propose a
novel linearization technique that significantly reduces the number of linear constraints in
the reformulation for efficient computations.

4 A New Linearization Technique for Reformulation

The key idea of the new linearization technique is based on the following observation. In
order to guarantee that yi,j = xjxj and zi,j,k = xixjxk hold, two sets of linear constraints
(3.4) and (3.5) are involved in PPSPR to capture the relation between x and y, and x
and z, respectively. To reduce the number of linear constraints, we could use only one set
of linear constraints to enforce the relation of x, y and z simultaneously. The cardinality

constraint
N∑
i=1

xi = m and the binary constraint xi ∈ {0, 1} help us achieve this purpose.

Specifically, observing that

xi

N∑
j=1
j ̸=i

xj = (m− 1)xi (4.1)

and

xi

N∑
j=1
j ̸=i

xj

 N∑
k>j
k ̸=i

xk

 =
(m− 1)(m− 2)

2
xi, (4.2)

following from the fact that there are exact (m−1)(m−2)
2 ones in the summation

N∑
j=1
j ̸=i

xj

 N∑
k>j
k ̸=i

xk

.

Then, the product terms of xixj and xixjxk can be linearized by auxiliary variables yi,j and
zi,j,k according to the next theorem.
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Theorem 4.1. For vectors x = (x1, x2, . . . , xN ) ∈ {0, 1}N , y = (y1,2, y1,3, . . . , y1,N ,

y2,3, . . . , yN−1,N ) ∈ [0, 1]
N(N−1)/2

, and z = (z1,2,3, z1,2,4, . . . , z1,2,N , z2,3,4, . . . , zN−2,N−1,N )

∈ [0, 1]
N(N−1)(N−2)/6

, if
N∑
i=1

xi = m, (4.3)

N∑
j>i

yi,j +
N∑
j<i

yj,i +
N∑
j>i

N∑
k>j

zi,j,k +
N∑
j<i

N∑
k>i

zj,i,k +
N∑

j<k

N∑
k<i

zj,k,i

=
m(m− 1)

2
xi for i = 1 . . . , N, (4.4)

then xixj = yi,j and xixjxk = zi,j,k for i, j, k = 1, . . . , N and i < j < k.

Proof. We prove this theorem by examining three cases.

C1: (N > 1, m = 1) In this case, only one of xi’s, i = 1, ..., N , is equal to 1, while others
are equal to zero. Hence xixj = xixjxk = 0 for i, j, k = 1, . . . , N and i < j < k. Note
that all yi,j and zi,j,k’s are nonnegative and the right-hand side of (4.4) is 0, hence
yi,j = zi,j,k = 0. Consequently, yi,j = xixj and zi,j,k = xixjxk.

C2: (N > 2, m = 2) Without loss of generality, assume xi′ = xj′ = 1 for some i′ < j′ and
other xi’s are zero. According to the discussion in C1, it follows that zi,j,k = xixjxk = 0
for all i < j < k and i, j, k = 1, ..., N , because at lease one of i, j and k is not in

{i′, j′}. Then equation (4.4) can be further simplified as
N∑
j>i

yi,j +
N∑
j<i

yj,i = xi. Similar

discussion leads to yi,j = xixj = 0 for all i < j, except that i = i′ and j = j′, and
yi′,j′ = xi′xj′ = 1.

C3: (N > 3, m ≥ 3) Denote A = {i|xi = 1} ⊆ {1, 2, . . . , N}. By (4.3), there are m elements
in A. Similar to the discussion in C2, we have yi,j = xixj = 0 if any one of i, j is not in
A. zi,j,k = xixjxk = 0 if any one of i, j and k is not in A. For any i′ ∈ A, the value of

the right-hand side of (4.4) is m(m−1)
2 . Since there are m−1 possible nonzero terms like

yi′,j′ , yj′,i′ and
(m−1)(m−2)

2 possible nonzero terms like zi′,j′,k′ , zj′,i′,k′ and zj′,k′,i′ for
j′, k′ ∈ A on the left-hand side, and all yi,j ’s and zi,j,k’s are no more than 1, it follows
that yi′,j′ = xi′xj′ = 1 and zi′,j′,k′ = xi′xj′xk′ = 1 for i′, j′, k′ ∈ A and i′ < j′ < k′.

Referring to Theorem 4.1, Model PPSPNew with the equality cardinality constraint
I(x) = m can be reformulated as

PPSPREQ


Max B̄(x, y, z)

s.t. (3.3), (4.3)− (4.4),

xi ∈ {0, 1}, 0 ≤ yi,j , zi,j,k ≤ 1, i, j, k = 1, . . . , N, i < j < k.

In order to address the case of inequality cardinality constraint, we introduce a new
auxiliary integer variable Q defined as

Q =
m∑
t=1

utt, (4.5)
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where ut ∈ {0, 1} for t = 1, . . . ,m and

m∑
t=1

ut = 1. (4.6)

In fact, Q represents the cardinality of a portfolio since Q is an integer between 1 and m,
and Q = t when ut = 1 for some 1 ≤ t ≤ m. By replacing m in (4.4) with Q, the right-hand

side of (4.4) becomes Q(Q−1)
2 xi, which is a nonlinear term. The following theorem shows

that this nonlinear term can also be linearized by introducing some linear inequalities.

Theorem 4.2. For a set of binary variables xi ∈ {0, 1}, i = 1, . . . , N , such that
N∑
i=1

xi ≤ m

where 0 < m < N , a set of positive continuous variables Φi for i = 1, . . . , N , a set of binary

variables ut for t = 1, . . . ,m, and an integer variable Q =
m∑
t=1

tut, the nonlinear product

term Q(Q−1)
2 xi can be linearized as Φi by the following linear system:

N∑
i=1

xi =
m∑
t=1

tut, (4.7)

m∑
t=1

ut = 1, (4.8)

m∑
t=1

t(t− 1)

2
ut +

m(m− 1)

2
(xi − 1) ≤ Φi ≤

m∑
t=1

t(t− 1)

2
ut +

m(m− 1)

2
(1− xi), (4.9)

Φi ≤
m(m− 1)

2
xi. (4.10)

Proof. From (4.7) and (4.8), we know that 1 ≤
N∑
i=1

xi ≤ m. Since there exists a unique ut′

being active (i.e., ut′ = 1), the product term Q(Q−1)
2 can be re-expressed as

m∑
t=1

t(t−1)
2 ut.

Moreover,

(i) If xi = 1, then Φi =
m∑
t=1

t(t−1)
2 ut follows from (4.9);

(ii) If xi = 0, then Φi = 0 follows from (4.10).

Therefore, the nonlinear product term Q(Q−1)
2 xi can be represented by Φi via the linear

system (4.7)-(4.10).

It is important to note that the binary variables ut for t = 1, . . . ,m in (4.8) can be
relaxed as non-negative variables by applying the technique in [9] and [10]. It helps us
reduce the computational burden by using only ⌈log2m⌉, the largest integer no bigger than
log2 m binary variables.

Lemma 4.3. Given a positive integer m where 0 < m < N , let gw,t be the binary number

satisfying the equations of 1+
h∑

w=1
2w−1gw,t = t for t = 1, ...,m where h = ⌈log2m⌉. Also let

vector u = (u1, . . . , um) ∈ [0,∞]m and a binary vector λ = (λ1, . . . , λh), if

m∑
t=1

ut = 1, (4.11)
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and

λw =
m∑
t=1

gw,tut for w = 1, . . . , h, (4.12)

then ut ∈ {0, 1} for t = 1, ...,m.

(Proof follows Theorem 1 of [9]).

Theorem 4.4. For a given integer m (0 < m < N), let M = m(m−1)
2 , h = ⌈log2m⌉ and

the values of gw,t are binary numbers satisfying 1 +
h∑

w=1
2w−1gw,t = t for t = 1, ...,m. For

a set of positive variables Φi, i = 1, . . . , N , binary vectors x = (x1, x2, . . . , xN ) ∈ {0, 1}N

with
N∑
i=1

xi ≤ m, λ = (λ1, . . . , λh) ∈ {0, 1}h, a non-negative vector u = (u1, . . . , um) ∈

[0,∞]
m
, bounded vectors y = (y1,2, y1,3, . . . , y1,N , y2,3, . . . , yN−1,N ) ∈ [0, 1]

N(N−1)/2
and

z = (z1,2,3, z1,2,4, . . . , z1,2,N , z1,3,4, . . . , zN−2,N−1,N ) ∈ [0, 1]
N(N−1)(N−2)/6

, if

N∑
j>i

yi,j +

N∑
j<i

yj,i +

N∑
j>i

N∑
k>j

zi,j,k +

N∑
j<i

N∑
k>i

zj,i,k +

N∑
j<k

N∑
k<i

zj,k,i = Φi

for i = 1, . . . , N, (4.13)

λw =
m∑
t=1

gw,tut for w = 1, . . . , h, (4.14)

m∑
t=1

ut = 1, (4.15)

N∑
i=1

xi =

m∑
t=1

tut, (4.16)

m∑
t=1

t(t− 1)

2
ut +M(xi − 1) ≤ Φi ≤

m∑
t=1

t(t− 1)

2
ut +M(1− xi)

for i = 1, . . . , N, (4.17)

and
Φi ≤ Mxi for i = 1, . . . , N, (4.18)

then xixj = yi,j and xixjxk = zi,j,k for i, j, k = 1, . . . , N and i < j < k.

Proof. From equations (4.14) and (4.15), it follows that the vector u is binary according to
Lemma 4.3. Then the conditions in Theorem 4.2 hold, and expressions (4.15)-(4.18) imply

Φi = Q(Q−1)
2 xi for i = 1, . . . , N . Consequently, equation (4.13) leads to xixj = yi,j and

xixjxk = zi,j,k for i, j, k = 1, . . . , N and i < j < k according to Theorem 4.1.

Theorem 4.4 indicates that if the cardinality of a project portfolio is restricted by
N∑
i=1

xi ≤ m, then the product terms of xixj and xixjxk can be linearized as yi,j and zi,j,k

by using ⌈log2m⌉ binary variables (i.e., λw), N(N − 1)/2 + N(N − 1)(N − 2)/6 bounded
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variables (i.e., yi,j and zi,j,k) and N non-negative variables (i.e., Φi) in 2 + 4N + ⌈log2m⌉
linear constraints (i.e.,(4.13)-(4.18)).

Referring to Theorem 4.4, modelPPSPNew with inequality cardinality constraint I(x) ≤
m can be reformulated as

PPSPRIEQ



Max B̄(x, y, z)

s.t. (3.3), (4.13)− (4.18),

0 ≤ Φi, i = 1, . . . , N,

xi, λw ∈ {0, 1}, i = 1, . . . , N, w = 1, . . . , h,

0 ≤ yi,j , zi,j,k ≤ 1, i, j, k = 1, . . . , N, i < j < k.

Table 1 summarizes the required numbers of binary variables, continuous variables and
linear constraints in reformulations PPSPR, PPSPREQ and PPSPRIEQ. These three
reformulations require about the same number of binary variables and continuous variables,
while the proposed reformulations PPSPREQ and PPSPRIEQ involve much fewer linear
constraints than PPSPR. Hence, it is expected that the proposed reformulations have the
potential to solve large-size instances.

Table 1: Comparison of problem sizes for PPSPR, PPSPREQ and PPSPRIEQ.

Reformulation
# of 0-1 # of continuous # of linear
variables variables constraints

PPSPR N
N(N − 1)/2+ 1 + S + 3N(N − 1)/2+

N(N − 1)(N − 2)/6 4N(N − 1)(N − 2)/6

PPSPREQ N
N(N − 1)/2+ 1 + S + N + N(N − 1)/2+

N(N − 1)(N − 2)/6 N(N − 1)(N − 2)/6

PPSPRIEQ N + ⌈log2m⌉ m + N + N(N − 1)/2+ 2 + S + 4N + ⌈log2m⌉+
N(N − 1)(N − 2)/6 N(N − 1)/2 + N(N − 1)(N − 2)/6

5 Computational Experiments

In this section, we first discuss the procedure to generate test instances and describe all in-
stances with various combinations of N andm. In order to compare the efficiency of different
reformulations, each test instance is first solved by the commercial software Lingo [13] and
then by the mixed-integer linear programming solver Gurobi [6] with default options for the
reformulations PPSPR, PPSPREQ and PPSPRIEQ, sequentially. All the experimental
tests are conducted on a PC equipped with the Intel Core 2 Duo CPU 1.87GHz, 4GB RAM
and Windows 7 (64 bit) operating system. The running time for all instances are limited to
3 CPU hours.

5.1 Generation and description of instances

We set S = 5 for all instances. Other parameters, including resource limit (bs), resource
requirements (dsi , d

s
i,j , d

s
i,j,k) and benefits (ri, ri,j , ri,j,k), are randomly generated as follows.

(i) bs is a random integer uniformly distributed over [0.05Gs, 0.1Gs], where Gs =
∑
i

dsi −∑
i

∑
j>i

dsi,j+
∑
i

∑
j>i

∑
k>j

dsi,j,k for s = 1, . . . , 5.

(ii) dsi , d
s
i,j , d

s
i,j,k are random integers uniformly distributed over [1, 10], [5, 20] and [10, 50],

respectively, for i, j, k = 1, . . . , N , i < j < k and s = 1, . . . , 5, such that dsi < dsi,j <
dsi,j,k (ref. [16]).
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(iii) ri, ri,j and ri,j,k are random integers uniformly distributed over [10, 100], [50, 200] and
[100, 500], respectively, for i, j, k = 1, . . . , N and i < j < k.

We generate three types of instances using the above procedure. The first type, called
Small-PPSP, has 50 random instances with (N,m) = (16, 3). The second type, called
Medium-PPSP, includes 50 random instances with (N,m) = (32, 5). The third type, called
Large-PPSP, has 50 random instances with (N,m) = (64, 7). Table 2 describes the details
of these three types of instances.

Table 2: Details of the three types of test instances

Instance Type # Instances (N,m)

Small-PPSP 50 (16, 3)
Medium-PPSP 50 (32, 5)
Large-PPSP 50 (64, 7)

5.2 Numerical Results

In this section, we display the numerical results for different reformulations. It turns out that
LINGO can not solve any type of instance for the original formulation PPSPNew within
3 CPU hours. Hence, we do not show the results for PPSPNew here. This fact shows
that the randomly generated instances, even the type of Small-PPSP, are not easy to solve.
On the other hand, the main purpose of the experiment is to compare the performance of
MILP solver on the reformulations PPSPR, PPSPREQ and PPSPRIEQ. We show these
results based on two cases: with equality cardinality constraint or with inequality cardinality
constraint.

5.2.1 Test results for PPSPR with I(x) = m and PPSPREQ

The computational results for reformulations PPSPR with equality cardinality constraint
and PPSPREQ are reported in Table 3. GUROBI is unable to solve any instance of type
Large-PPSP within 3 CPU hours for PPSPR while it solves all instances within 100 seconds
for PPSPREQ. The running time for solving PPSPREQ is much shorter than that for
PPSPR, especially for the instances of types of Medium-PPSP and Large-PPSP. This is
reasonable because the number of linear constraints for PPSPREQ, as shown in the column
“# of linear constraints” of Table 3, is one order of magnitude less than PPSPR while the
number of variables are the same for these two reformulations.

Table 3: Computational results for PPSPR with I(x) = m and PPSPREQ.

(N,m) Reformulation
# of 0-1 # of continuous # of linear Avg. CPU Std. dev. CPU
variables variables constraints time (sec.) time(sec.)

(16, 3)
PPSPR 16 680 2,606 3.10 0.95
PPSPREQ 16 680 702 2.90 0.70

(32, 5)
PPSPR 32 5,456 21,334 1587.34 395.79
PPSPREQ 32 5,456 5,494 52.73 17.90

(64, 7)
PPSPR 64 43,680 172,710 - -
PPSPREQ 64 43,680 43,750 73.45 19.71
“-”: indicates the running time for GUROBI exceeds 3 CPU hours for all instances.
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5.2.2 Test results of PPSPR with I(x) ≤ m and PPSPRIEQ

The computational results for reformulations PPSPR with inequality cardinality constraint
and PPSPRIEQ are reported in Table 4. Similar to the results in Table 3, none of the
instances of type Large-PPSP can be solved by GUROBI within 3 hours. Large-PPSP
cannot be solved within 3 hours only ”for reformulation PPSPR”. While it takes about
half an hour on average to solve instances of type Large-PPSP for reformulationPPSPRIEQ,
the average running time for instances of types Small-PPSP and Medium-PPSP is less than
20 seconds. Moreover, the running time for PPSPRIEQ is at least one order of magnitude
smaller than PPSPR because the number of linear constraints in PPSPRIEQ is much fewer
than the one in PPSPR.

Table 4: Computational results for PPSPR with I(x) ≤ m and PPSPRIEQ.

(N,m) Reformulation
# of 0-1 # of continuous # of linear Avg. CPU Std. dev. CPU
variables variables constraints time (sec.) time(sec.)

(16, 3)
PPSPR 16 680 2,606 7.34 1.71
PPSPRIEQ 18 699 772 0.29 0.09

(32, 5)
PPSPR 32 5,456 21,334 931.45 234.51
PPSPRIEQ 35 5,493 5,631 13.56 4.15

(64, 7)
PPSPR 64 43,680 172,710 - -
PPSPRIEQ 67 43,751 44,017 1,756.32 580.18

“-”: indicates the running time for GUROBI exceeds 3 hours for all instances.

6 Conclusion

In this paper, we have proposed a new project portfolio selection model which considers
both of the project interdependency and cardinality constraints simultaneously. The model
is first reformulated as a mixed integer linear programming problem by using the linearization
technique in [5]. To further enhance the computational efficiency, we have developed a new
linearization technique to construct new reformulations involving significant fewer linear
constraints. In terms of the running time and the ability to solve instances of relativly
large size, our computational results indicate that the new reformulations derived from the
proposed linearization technique have the potential to solve PPSP with large number of
project candidates.
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