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case, Qi et al. [19] proposed a method to compute the largest Z-eigenvalue directly. Cui et
al. [5] proposed a Jacobian semidefinite relaxation approach to compute all real eigenvalues
for symmetric tensors.

Those existing methods, including algorithms and their convergence analysis, are mostly
for computing the eigenpair of symmetric tensors. However, there are very few methods for
computing the eigenpair of asymmetric tensors. The asymmetric tensors also have widely
applications in science and engineering, such as the velocity gradient tensor and the defor-
mation gradient tensors. In [4], the eigenvalue regions of the velocity gradient tensor denote
the place where the rotational component dominates the shear component of deformation.
In [24], the eigenvalue visualization of the deformation gradient tensors enables us to exam-
ine the relative strengths of fluid expansion (contraction), rotations, and the rate of shear
strain in one single plot. While it is possible to convert the asymmetric tensor field into a
symmetric one by multiplying with its transpose or simply removing the antisymmetric com-
ponent, such an approach can cause information loss. So direct analysis and visualization
of asymmetric tensor fields are highly desirable [1].

In this paper, we shall focus on the methods of computing a Z-eigenpair for any square
tensors, symmetric or not. First, we show the shifted power method [12] is convergent for any
square tensors under a weak assumption. Then, we reformulate the Z-eigenvalue problem
into a projection equation which is related to a projection operator on the unit ball. Finally,
we use a fixed point method to solve this equation and prove the linear convergence of the
proposed method for any square tensors.

The paper is organized as follows. In Section 2, we list some preliminaries. In Section
3, we prove that the shifted power method [12] is convergent for general square tensors
under a weak assumption. In Section 4, we propose a fixed point method and prove the
linear convergence of the proposed algorithm. Some preliminary numerical results are also
reported in Section 5.

2 Preliminaries

Let R be the real field, we consider an m-order n-dimensional tensor A consisting of nm

entries in R:
A = (ai1i2...im), ai1i2...im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n (2.1)

If aip(1)ip(2)...ip(m)
= ai1...im for all i1, i2, . . . im ∈ {1, 2, . . . , n} and p belongs to the set of

all permutations of {1, . . . ,m}, then tensor A is called to be symmetric.
A tensor is a natural generalization of a matrix. A matrix is simply a two-order tensor.

We denote the set of all m-order n-dimensional tensors by R[m,n] in the rest of this paper.
Let A ∈ R[m,n] and x = (x1, x2, . . . , xn)

T ∈ Rn. Let

Axm :=
n∑

i1,...,im=1

ai1i2...imxi1 . . . xim , (2.2)

Axm−1 :=
( n∑

i2,...,im=1

aii2...imxi2 . . . xim

)
1≤i≤n

, (2.3)

and

Axm−2 :=
( n∑

i3,...,im=1

aiji3...imxi3 . . . xim

)
ij
, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (2.4)

It is easy to see that Axm = xT (Axm−1) = xT (Axm−2)x.
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Various definitions of real eigenpairs for tensors have been introduced in the literature,
including H-eigenvalues [20], Z-eigenvalues [20], D-eigenvalues [21], and so on. In this paper,
we devote ourselves to find a Z-eigenpair for any square tensors.

Definition 2.1. Let A ∈ R[m,n]. (λ, x) ∈ C × Cn \ {0} is called an E-eigenpair of A if{
Axm−1 = λx
xTx = 1.

(2.5)

We call (λ, x) a Z-eigenpair if both x and λ are real.

2.1 Properties of f(x) = Axm and F (x) = Axm−1

Lemma 2.2. Let A ∈ R[m,n], the gradient of f(x) = Axm is

∇jf(x) =

n∑
i1,...,im=1

m∑
q=1

ai1i2...imxi1 . . . xiq−1δiq,jxiq+1 . . . xim , 1 ≤ j ≤ n. (2.6)

If A is symmetric, then
∇jf(x) = m(Axm−1)j , (2.7)

hence, ∇f(x) = mAxm−1. Moreover, for any square tensors, symmetric or not, we have

mf(x) = xT∇f(x). (2.8)

Proof. From the proof of Lemma 3.1 in [12], we have (2.6) and (2.7). Then,

xT∇f(x) =
n∑

j=1

xj∇jf(x)

=
n∑

j=1

n∑
i1,...,im=1

m∑
q=1

ai1...imxj · xi1 . . . xiq−1δiq,jxiq+1 . . . xim

=

m∑
q=1

n∑
j=1

n∑
{i1,...im}/iq=1

ai1...iq−1jiq+1...im(xj · xi1 . . . xiq−1xiq+1 . . . xim)

= mAxm.

Similarly, we can obtain the Jacobian matrix of F (x) in the following.

Lemma 2.3. Let A ∈ R[m,n], the Jacobian of F (x) = Axm−1 is

[JF (x)]ij =
n∑

i2,...,im=1

m∑
q=2

aii2...imxi2 . . . xiq−1δiq,jxiq+1 . . . xim , 1 ≤ i, j ≤ n. (2.9)

If A is symmetric, then

[JF (x)]ij = (m− 1)(Axm−2)ij , 1 ≤ i, j ≤ n, (2.10)

hence, JF (x) = (m − 1)Axm−2. Moreover, for any square tensors, symmetric or not, we
have

(m− 1)f(x) = xTJF (x)x. (2.11)
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Proof. For any tensor A, the mapping F : Rn → Rn is defined by

F (x) = Axm−1 =

 n∑
i2,...,im=1

aii2...imxi2 . . . xim


1≤i≤n

. (2.12)

Then the Jacobian matrix of the mapping F is as follows:

[JF (x)]ij =
∂(
∑n

i2,...,im=1 aii2...imxi2 . . . xim)

∂xj

=

n∑
i2,...,im=1

∂(aii2...imxi2 . . . xim)

∂xj

=
n∑

i2,...,im=1

m∑
q=2

aii2...imxi2 . . . xiq−1δiq,jxiq+1 . . . xim

When A is symmetric, its entries ai1i2...im are invariant under any permutation of their
indices {i1, i2, . . . , im}, so it is easy to compute that

[JF (x)]ij =
m∑
q=2

n∑
i2,...,im=1

aii2...imxi2 . . . xiq−1δiq,jxiq+1 . . . xim

=
m∑
q=2

n∑
{i2,...im}/iq=1

aii2...j...imxi2 . . . xiq−1xiq+1 . . . xim

=
m∑
q=2

n∑
i3,...,im=1

aiji3...imxi3 . . . xim

= (m− 1)Axm−2.

Similar to the proof of (2.8), we get (2.11) by changing the order of the finite sum over j, q,
and im.

For the symmetric tensor A, Lim [17] observes the following result based on the result
∇Axm = mAxm−1.

Lemma 2.4. Any eigenpair (λ, x) of symmetric tensor A is a Karush-Kuhn-Tucker (KKT)
point of the nonlinear optimization problem

max
xT x=1,x∈Rn

Axm. (2.13)

When the tensor is not symmetric, we do not have ∇Axm = mAxm−1. So the Z-
eigenvalue problem for asymmetric tensor cannot be solved by the nonlinear optimization
problem. The above result can be extended to the weak symmetric tensor. A tensor A is
called to be a weak symmetric tensor if ∇Axm = mAxm−1 is satisfied.

In [2], D. Cartwright and B. Sturmfels studied the number of the E-eigenvalues of both
general square tensors and symmetric square tensors.

Lemma 2.5. The set of E-eigenvalues of a tensor is either finite or it consists of all complex
numbers in the complement of a finite set.

Lemma 2.6. Every symmetric tensor A has at most ((m − 1)n − 1)/(m − 2) distinct
eigenvalues.
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2.2 A Shifted Term

The idea of adding a “shift” term has been proposed in the context of independent component
analysis (ICA) by Regalia and Kofidis [22], and Erdogan [7]. It has also been used in [12]
to assure the convex or the concave of the underlying function. In [18], Liu et al. also used
this technique to assure that the underlying tensor is primitive. In this paper, we will add
a “shift” term to guarantee the positive definition of matrix JF (x) when ∥x∥ = 1. That
means that our method works with a suitably modified function

F̂ (x) = F (x) + αx. (2.14)

If (λ, x) is a Z-eigenpair of F̂ (x), then we have{
F̂ (x) = F (x) + αx = λx
xTx = 1.

(2.15)

This means that (λ− α, x) is a Z-eigenpair of F (x).

For a matrix, we have the following property.

Lemma 2.7. For any matrix M ∈ Rn×n, there exists real numbers a > 0 and b > 0 such
that aA+ I and A+ bI are positive definite.

From the above lemma, we can choose a suitable α such that JF̂ (x) = JF (x) + αI is
positive definite for all x satifying ∥x∥ = 1.

3 The Shifted Power Method(SPM) and its convergence

Based on Lemmas 2.4 and 2.6, Kolda and Mayo [12] proposed a shifted symmetric higher-
order power method(SSHOPM) for computing a Z-eigenpair of symmetric tensors, and
proved that it is convergent for symmetric tensors. In this section, we will use this method
for computing a Z-eigenpair of general square tensors, and we call it as SPM.

Algorithm 3.1. Shifted Power Method (SPM)

Step 0. Choose x0 ∈ Rn with ∥x0∥ = 1. Let λ0 = A(x0)m. Set k := 0.

Step 1. If α ≥ 0, x̄k+1 = F (xk) + αxk; else x̄k+1 = −F (xk)− αxk.

Step 2. xk+1 = x̄k+1/∥x̄k+1∥, λk+1 = A(xk+1)m and k := k + 1; go to Step 1.

Lemma 3.2 ([12]). Let A ∈ R[m,n] be symmetric. For α > β(A), where β(A) := (m −
1)max

x∈Σ
ρ(Axm−2), the iterates {λk, x

k} produced by Algorithm 3.1 satisfy the following prop-

erties.

(a) The sequence {λk} is nondecreasing, and there exists λ∗ such that λk → λ∗.

(b) The sequence {xk} has an accumulation point.

(c) For every such accumulation point x∗, the pair (λ∗, x
∗) is an eigenpair of A.

(d) If A has finitely many real eigenvectors, then there exists x∗ such that xk → x∗.
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It is easy to see that Algorithm 3.1 can be used to compute a Z-eigenvalue of general
square tensors, including asymmetric tensors. However, the eigenvalue problem cannot be
reformulated as a nonlinear convex optimization problem when tensor A is not symmetric.
So we cannot obtain the convergence of Algorithm 3.1. It is nature to ask whether or not
we can show the convergence of Algorithm 3.1 for general square tensors. In the following,
we give a positive answer under an assumption that ∥xk+1 − xk∥ → 0.

Theorem 3.3. Let A ∈ R[m,n] be a general square tensor. For any α ∈ R, if the iterates
{λk, x

k} produced by Algorithm 3.1 satisfy ∥xk+1 − xk∥ → 0, then: (1) the sequence {xk}
has an accumulation point x∗; (2) for each accumulation point x∗, if we denote A(x∗)m as
λ∗, then the pair (λ∗, x

∗) is a Z-eigenpair of A; (3) If A has finitely many real eigenvectors,
then there exists x∗ such that xk → x∗.

Proof. (1). Suppose that {xk} is an infinite sequence on a compact set Σ = {x ∈ Rn|∥x∥ =
1}. So there is an accumulation point x∗ ∈ Σ by the Bolzano-Weierstrass theorem.

(2). From Step 2 in Algorithm 3.1, we have

xk+1 = F̂ (xk)/∥F̂ (xk)∥.

By the continuity of F , every accumulation point x∗ satisfies

x∗ = F̂ (x∗)/∥F̂ (x∗)∥,

that is

F̂ (x∗) = F (x∗) + αx∗ = ∥F̂ (x∗)∥x∗ and ∥x∗∥ = 1.

So (∥F̂ (x∗)∥ − α, x∗) is a Z-eigenpair of A. According to the definition of λ∗, we have

λ∗ := A(x∗)m = ⟨x∗, F (x∗)⟩

=
⟨ F̂ (x∗)

∥F̂ (x∗)∥
, F̂ (x∗)− αx∗

⟩
= ∥F̂ (x∗)∥ − α

⟨F̂ (x∗), x∗⟩
∥F̂ (x∗)∥

= ∥F̂ (x∗)∥ − α.

So (λ∗, x
∗) is an eigenpair of A.

(3). By the result of (1), there exists a subsequence {xki} ⊂ {xk} such that ∥xki −x∗∥ →
0. Associated with the condition ∥xk+1 − xk∥ → 0 and the assumption that A has finitely
many real eigenvectors, we know that the whole sequence {xk} is convergent to x∗. The
proof is similar to the proof of Theorem 4.4(d) in [12].

The above theorem stated that the SSHOPM is convergent for general square tensors
under the assumption of ∥xk+1 − xk∥ → 0. In next section, we will propose a fixed point
algorithm and show that it is convergent for general square tensors without this assumption.

4 A Fixed Point Algorithm and its Convergence

First, we reformulate the Z-eigenvalue problem as a projection equation. Then we use a
fixed point algorithm to solve this projection equation.
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Lemma 4.1. For any τ > 0, suppose x∗ is a solution of x = ΠB(x − τF (x)), where
B = {s ∈ Rn : ∥s∥ ≤ 1} is an unit ball and ΠB(s) is the projection operator onto B defined
as:

ΠB(s) =

{ s
∥s∥ if ∥s∥ > 1,

s if ∥s∥ ≤ 1.
(4.1)

(i) if ∥x∗ − τF (x∗)∥ > 1, then (λ, x∗) is a Z-eigenpair of tensor A, where λ = (1− ∥x∗ −
τF (x∗)∥)/τ .

(ii) if ∥x∗ − τF (x∗)∥ ≤ 1 and x∗ ̸= 0, then (0, x∗

∥x∗∥ ) is a Z-eigenpair of tensor A.

Proof. (i) Suppose that ∥x∗ − τF (x∗)∥ > 1. From the definition of ΠB, we have x∗ =
x∗−τF (x∗)

∥x∗−τF (x∗)∥ . Consequently,

∥x∗∥ = 1

and

x∗∥x∗ − τF (x∗)∥ = x∗ − τF (x∗).

According to Definition 2.1, we know that (λ, x∗) is a Z-eigenpair of tensor A.
(ii) If ∥x∗ − τF (x∗)∥ ≤ 1, then ΠB(x

∗ − τF (x∗)) = x∗ − τF (x∗). So we have x∗ =
x∗ − τF (x∗). Consequently, F (x∗) = 0. Associated with x∗ ̸= 0, it is easy to see that
(0, x∗

∥x∗∥ ) is a Z-eigenpair of tensor A.

From Lemma 4.1, we present the following fixed point method to find a Z-eigenpair of
tensor A.

Algorithm 4.2. Fixed Point Method (FPM)

Step 0. Choose x0 ∈ B. Set k := 0.

Step 1. If xk = ΠB(x
k − τF (xk)), stop.

Step 2. xk+1 = ΠB(x
k − τF (xk)) and k := k + 1; go to Step 1.

The following result gives sufficient conditions on the mapping F to ensure the conver-
gence of the above algorithm.

Theorem 4.3. Let F : B → Rn, suppose L and µ are such that for any x and y in B,

(F (x)− F (y))T (x− y) ≥ µ∥x− y∥22 (4.2)

and

∥F (x)− F (y)∥2 ≤ L∥x− y∥2. (4.3)

If

τ ∈

{
(0,

µ−
√

µ2−L2

L2 ) ∪ (
µ+

√
µ2−L2

L2 , 2µ
L2 ), µ ≥ L,

(0, 2µ
L2 ), µ < L.

(4.4)

Then the mapping ΠB(x− τF (x)) is a contraction from B to B.
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Proof. For any x and y in B, since B is a closed convex set, we have

∥ΠB(x− τF (x))−ΠB(y − τF (y))∥2

≤ ∥x− τF (x)− y + τF (y)∥2

≤ ∥x− y∥2 + τ2∥F (x)− F (y)∥2 − 2τ(F (x)− F (y))T (x− y)

≤ (1 + τ2L2 − 2τµ)∥x− y∥2.

It is easy to see that 1 + τ2L2 − 2τµ ∈ (0, 1) when τ satisfies (4.4), so the mapping ΠB(x−
τF (x)) is contract.

Next, we analyse that the strong monotonicity (4.2) and the Lipschitz continuity (4.3)
can be satisfied for general tensors by adding a shifted term αx into the mapping F (x).

Lemma 4.4. For a general square tensor A and F̂ (x) = Axm−1 + αx, if α > β(A), where
β(A) is defined by

β(A) = (m− 1)
n∑

i1,i2,...,im=1

|ai1i2...im |. (4.5)

Then F̂ is strong monotone, i.e.

(F̂ (x)− F̂ (y))T (x− y) ≥ µ∥x− y∥22,

where µ = α− β(A).

Proof. For any x, y ∈ B, we have

(F̂ (x)− F̂ (y))T (x− y) = (F (x)− F (y))T (x− y) + α∥x− y∥2

≥ −∥F (x)− F (y)∥ · ∥x− y∥+ α∥x− y∥2

= −∥JF (ξ)(x− y)∥ · ∥x− y∥+ α∥x− y∥2

≥ −∥JF (ξ)∥ · ∥x− y∥2 + α∥x− y∥2

≥ (α− β(A))∥x− y∥2,

where the first inequality comes from the Hölder inequality, ξ = tx+(1− t)y ∈ B, 0 < t < 1,
and the last inequality is because of the definition of JF and β(A).

Lemma 4.5. For a general square tensor A and F (x) = Axm−1, F is Lipschitz continuous,
i.e.

∥F (x)− F (y)∥2 ≤ L∥x− y∥2.

where L = β(A).

Proof. For any x, y ∈ B, we have

∥F (x)− F (y)∥2 = ∥JF (ξ)(x− y)∥2 ≤ β(A)∥x− y∥2,

where ξ = tx + (1 − t)y ∈ B, 0 < t < 1, and the last inequality is because of the definition
of JF and β(A).

From Lemma 4.5, we can easily obtain that F̂ (x) = F (x) + αx is Lipschitz continuous
with the Lipschitz constant L = α + β(A). Then we find that the Lipschitz constant L is
bigger than the strong monotonicity constant µ. Associated with Theorem 4.3, Lemma 4.4,
and Lemma 4.5, we have the following convergence result for any square tensor.
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Theorem 4.6. For any square tensor A, if α > β(A) and τ ∈ (0, 2µ
L2 ), then Algorithm

4.2 imposed on F̂ (x) = Axm−1 +αx either finds a Z-eigenvector of tensor A or generates a
sequence {xk}. Moreover, the whole sequence {xk} is convergent to x∗. Suppose that x∗ ̸= 0,
then x∗ is a Z-eigenvector of A.

Proof. If the Algorithm 4.2 stopped at step 1, then there exists a k0 ∈ Z+ such that

xk0 = ΠB(xk0 − τF̂ (xk0)).

We consider two cases.
Case 1: xk0 ̸= 0. A Z-eigenpair of A is obtained from Lemma 4.1.
Case 2: xk0 = 0. This means that xk0−1 ̸= 0, xk0−1 ∈ B and

ΠB(x
k0−1 − τ F̂ (xk0−1)) = 0.

From the definition of ΠB, we have

xk0−1 − τF̂ (xk0−1) = xk0−1 − τ(F (xk0−1) + αxk0−1) = 0,

then it implies

F
( xk0−1

∥xk0−1∥

)
= ∥xk0−1∥1−mF (xk0−1) = ∥xk0−1∥2−m

(1
τ
− α

)( xk0−1

∥xk0−1∥

)
.

So (∥xk0−1∥2−m( 1τ − α), xk0−1

∥xk0−1∥ ) is a Z-eigenpair of A.

If the Algorithm 4.2 did not stop at step 1, then an infinite sequence {xk} can be
generated. From Theorem 4.3, Lemma 4.4, Lemma 4.5 and the Brouwer’s Fixed-point
theorem, we know that the whole sequence {xk} is convergent to x∗. By Lemma 4.1, x∗ is
a Z-eigenvector of tensor A when x∗ ̸= 0.

5 Numerical Results

In this section, we are going to test the performance of Algorithm 4.2. All experiments are
conducted using a PC with 2.33GHz CPU and 0.99G memory. The operating system is
Windows XP and the implementation is done by using MATLAB 7.0.1.

The parameters used in this test were as follows:

MaxIter = 1000, T olx = 10−6.

The stop criterion is
∥xk+1 − xk∥ < Tolx.

We use some randomly generated 3th order n-dimensional tensors to test Algorithm 4.2
and SPM [12]. The nonnegative tensor A is generated by A = rand(n, n, n). The general
tensor A is generated by B = rand(n, n, n) and C = 1/2∗ ones(n, n, n); then A = B + C.

Two groups of experiments were done by us: First, comparing the SPM with Algorithm
4.2 for randomly generated nonnegative tensors from a randomly generated start point.
Second, testing the successful times of Algorithm 4.2 for one randomly generated tensor
from 100 randomly generated start point.

The results of the first experiment are shown in Tables 1-2, where CPU Time and
Accuracy denote the averages of 100 trials of CPU times in seconds and accuracy. Accuracy
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is the final value of ∥F (x)−λx∥. The results of the second experiment are shown in Table 3,
where kk denotes the number of tests to find a Z-eigenpair of A and ko denotes the number
of tests in which the convergent point is x∗ = 0.

The parameters used in the first experiment were α = 1, τ = 2 and in the second
experiment were α = 3, τ = 1.

Table 1: Numerical results of Algorithm 4.2 and SPM for small size problems
Problem Algorithm 2 SPM
n m CPU Time Accuracy CPU Time Accuracy
10 3 1.54e-002 4.69e-007 1.92e-002 5.46e-007
15 3 1.50e-002 6.18e-007 1.93e-002 5.70e-007
20 3 1.86e-002 4.37e-007 2.26e-002 2.65e-007
25 3 2.11e-002 2.08e-007 2.26e-002 7.30e-007
30 3 2.26e-002 1.23e-007 2.40e-002 6.26e-007
35 3 2.06e-002 3.30e-007 1.97e-002 3.62e-007
40 3 2.34e-002 8.68e-007 3.09e-002 1.90e-007
50 3 3.39e-002 7.44e-007 3.82e-002 9.27e-008

Table 2: Numerical results of Algorithm 4.2 and SPM for big size problems
Problem Algorithm 2 SPM
n m CPU Time Accuracy CPU Time Accuracy
60 3 4.59e-002 5.52e-007 5.29e-002 8.74e-008
80 3 9.89e-002 2.61e-007 9.83e-002 8.74e-007
100 3 1.84e-001 1.54e-007 1.81e-001 5.92e-007
120 3 2.97e-001 9.90e-008 2.97e-001 3.66e-007
140 3 4.61e-001 6.80e-008 4.62e-001 2.32e-007
160 3 1.14e+000 5.03e-008 1.14e+000 1.67e-007
180 3 9.65e-001 3.88e-008 9.70e-001 1.24e-007
200 3 1.29e+000 3.37e-008 1.29e+000 9.09e-008

Table 3: Numerical results of Algorithm 4.2
Problem Algorithm 2

n m kk ko
3 3 99 0
5 3 99 0
10 3 83 12

From the numerical results given in Tables 1-3, we see that the efficiency of Algorithm
4.2 is almost the same as that of SPM, including the CPU time and accuracy. However, we
know that the convergence result of Algorithm 4.2 can be obtained under a weaker condition
than that of SPM; See Theorem 3.1 and Theorem 4.3.

It is worth to note that although the reformulation of Z-eigenpair problem, used in
Algorithm 4.2, enlarge the feasible region of the original problem, numerical results for
nonnegative asymmetric tensors show that we can obtain the solution of the original problem.
For the general square asymmetric tensors, Algorithm 4.2 can find a Z-eigenpair of A in most
cases.
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