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control solution is no longer available, as the open-loop solution becomes non-optimal. On
the other hand, the solution to the closed-loop problem is robust or stable because it is
defined over a time-space region that contains all possible optimal trajectories in the region.
Hence, the corresponding optimal control can still be determined without resolving the
problem even if disturbances are present in the state x. Therefore, optimal closed-loop
or feedback controllers are much preferred in practice than open-loop ones. However, the
above problem is usually not analytically solvable except for some trivial cases. Therefore,
numerical approximations are always sought in practice which requires efficient, stable and
accurate numerical methods.

Before further discussion, we firstly need to transform the problem into a first order par-
tial differential equation called the Hamilton-Jacobi-Bellman (HJB) equation. By defining
the value function

V (s, y) = inf
u∈U

J(s, y, u)

and using the Dynamic Programming approach, it is well known that the above optimal
feedback control problem can be written as the following HJB equation

∂V

∂t
+ inf

u∈U
[∇V · f(x, u, t) + L(x, u, t)] = 0 (1.1)

with terminal condition

V (tf , x) = ϕ(x(tf )). (1.2)

In this equation there are two unknowns, the value function V and the optimal control u.
Generally, the solution to HJB equation is continuous but nonsmooth. To deal with this

nonsmooth solution, the concept of viscosity solution was introduced by Lions et al [5], [6]
and [19]. In the presence of state constraints, Soner [29] broadened the definition of the
viscosity solution to the constrained viscosity solution. More detail about viscosity solutions
of HJB equations can be found in [3] and [7].

Although the HJB equation system (1.1)–(1.2) has theoretically a unique solution under
certain assumptions, it is in general impossible to solve (1.1) analytically. In practice,
numerical approximations to the solution of (1.1) is always sought as mentioned above.
Therefore, numerical methods are crucial for the accurate approximation of (1.1). There are
many numerical methods available in the literature for solving unconstrained HJB equations,
such as those in [1–3, 8, 9, 13, 14, 26, 35, 36] to name but a few. Among these methods, we
are interested in the upwind finite difference method introduced in [35] due to its simplicity.
For one dimensional problems, we let the spatial and time intervals be partitioned uniformly
into M and N subintervals, respectively, with respective mesh sizes ∆x and ∆t. Then, the
application of the method in [35] to (1.1) yields the following discrete system:

V k+1
i − V k

i

∆t
+

1 + signfki
2

fki
V k
i+1 − V k

i

∆x
+

1− signfki
2

fki
V k
i−1 − V k

i

∆x
+ Lk

i = 0

uk+1
i = arg inf

u

(
f(xi, u, tk+1)

V k+1
i − V k+1

i−1

∆x
+ L(xi, u, tk+1)

)
for k = 1, . . . , N and i = k, . . . ,M − k along with terminal condition (1.2), where signfki
denotes the sign of fki ,

fki = f(xi, tk, u
k
i ), Lk

i = L(xi, tk, u
k
i ), V k

i ≈ V (xi, tk), uki ≈ u(xi, tk),
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where xi and tk denote the mesh points in the x- and t-directions respectively. In the above
discretization scheme the upwind technique is used, that is if fki > 0 the scheme switches
to the forward-difference scheme and to backward-difference scheme for the opposite sign.

However, there is a drawback, namely trapezoidal propagation of the spatial domain
with each time step as discussed in [27,35]. This is because from the discretization one can
see that, for given i and k, V k+1

i is determined by the three previous values V k
i−1, V

k
i and

V k
i+1. This propagation causes a large initial spatial region so that it leads to expensive

computation due to a greater number of computed grid points. To address this problem
and to improve the speed and accuracy of the method, we introduce an Iterative Upwind
Finite Difference Method (inspired by Luus [20]) in combination with Completed Richardson
Extrapolation ( [24]).

Note that although Problem 1.1 contains constraints on the control variable u, it is not
state-constrained. Clearly, if state constraints are present in Problem 1.1, the resulting
optimal feedback control problem is much harder to solve numerically than Problem 1.1.
To our best knowledge, there are essentially no numerical methods in the open literature
for the approximation of the viscosity solutions Problem 1.1 with state constraints. On the
other hand, there are many such problems in practice as state constraints are very often
imposed for an optimal feedback control problem. In this work, we will develop an iterative
upwind finite difference method for an HJB equation governing a class of state-constrained
optimal feedback control problem, based on the above upwind finite difference scheme. The
iteration part of the method applies to the doubling of the number of discrete x-values in
order to gain better accuracy. Adjustments from iteration to iteration are designed to create
efficiencies. In order to iterate without a trapezoidal propagation of the spatial domain in
each time step, we impose artificial boundary conditions to be explained later.

As is commonly known, Richardson extrapolation is a technique for improving the order
of accuracy of numerical results. The main idea behind this technique is as follows. If the
rate of convergence of a discretization method with grid refinement is known and if discrete
solutions on two systematically refined grids (coarse and fine grids) are available, then this
information can be used to provide higher-order solution on the coarse grid. As a result, it
is easily implemented as a postprocessor to solutions regardless of the methods or equations
producing them (cf., for example, [23]). In this work, we will use this technique to improve
the accuracy of the approximate solutions from our method.

2 Iterative Upwind Finite Difference Method

Let us consider the following state-constrained optimal feedback control problem:

Problem 2.1.

min
u(t)∈Ω

J(u) =
∫ tf
s
L(x(t), u(t), t) dt+ ϕ(x(tf ))

subject to ẋ = f(x(t), u(t), t), for all t ∈ (s, tf ],

x(s) = y,

where
Ω = {u(t) ∈ Rq | g(x, u, t) ≤ 0}, for all t ∈ (0, tf ],

tf > 0 is a constant, (s, y) ∈ [0, tf )×Rn, x ∈ Rn, y ∈ Rn is a given point and L : Rn+q+1 →
R, ϕ : Rn → R, f : Rn+q+1 → Rn and g : Rn+q+1 → Rm are known functions.
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Clearly, the set Ω is determined by the constraints on both x and u. To develop our
numerical method for Problem 2.1, we first convert it to an unconstrained optimal control
problem by incorporating linear penalty terms in the objective function as given below.

Problem 2.2.

min
u(t)∈Rq

P (u, r) = J(u) +
∫ tf
s
rT (t)gρ(x(t), u(t), t)dt

subject to ẋ = f(x(t), u(t), t) for all t ∈ (s, tf ],

x(s) = y,

where r = (r1(t), r2(t), . . . , rm(t))T is a vector satisfying ri(t) > 0 for i=1,2,. . . ,m and
gρ : Rn+q+1 → R is the smoothed version of [g]+ = ([g1]+, [g2]+, . . . , [gm]+)

T defined as

gρ(x, u, t) =


0 if g < −ρ;
(g+ρ)2

4ρ if − ρ ≤ g ≤ ρ;
g if g > ρ.

,

where ρ is a chosen positive constant and [z]+ := max{0, z} for any z.

Penalty methods have been used very successfully for solving constrained optimization
problems and for optimal control and constrained optimization problems (cf., for exam-
ple, [12, 17, 18, 31, 33]). The r in Problem 2.2 represents a set of penalty constants which
are usually chosen to be large positive numbers. Note that in this case smoothing the sharp
corner of [g]+ at zero is necessary with the aim of applying standard gradient-based opti-
mization routines. Using a standard dynamic programming argument, it is easy to show
that the HJB equation corresponding to Problem 2.2 is as follows:

∂V

∂t
+ inf

u
[∇V · f(x, u, t) + L(x, u, t) + rgρ(x, u, t)] = 0 (2.1)

with the terminal condition (1.2)

Remark 2.3. For the convergence analysis of the linear penalty on constrained viscosity
solution of HJB equations, we refer to [3], [4] and [21].

Note that Richardson Extrapolation usually requires some assumptions such as smooth-
ness and asymptotic range of the solution. Smoothness of the solution is important because
the analysis of Richardson Extrapolation is based on Taylor series expansion. In order to
have a smooth solution as required by Richardson Extrapolation method, we need to change
equation (2.1) to the singularly perturbed convection-diffusion equation

∂V

∂t
+ inf

u∈Rq
[∇V · f(x, u, t) + L(x, u, t) + rgρ(x, u, t)] + ε∇2V = 0 (2.2)

with the terminal condition (1.2). The difference between (2.1) and (2.2) is only the diffusion
term ε∇2V , ε > 0, which represents a small perturbation parameter. As ε→ 0 the solution
of (2.2) converges to the solution (2.1) (see [3]).

We now present our numerical method for (2.2) and (1.2). To simplify notation, let
us consider an optimal control problem with one control u and one state variable x ∈
[a, b]. Extension to a multivariable optimal control problem can be easily done with some
adjustments to notation. In addition, without loss of generality and for the intention of
numerical tests later, we will set s = 0, y = x0 and tf = 1.
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2.1 Discretization of HJB

We start with constructions of spatial discretization and time stages. We select a positive
integer M and divide the space interval [a, b] into M equal partitions so that

xi = a+ (i− 1)∆x with ∆x =
b− a
M

for i = 1, . . . ,M + 1.
In order that this spatial discretization always contains the initial point, an appropriate

shifting might be necessary. Let j = argmin
i
|xi − x0| and make the adjustments

xi ← xi + (x0 − xj), a← a+ (x0 − xj), b← b+ (x0 − xj)

for i = 1, . . . ,M . Next, we impose a limit on control u(t) where t ∈ [0, 1], specifically, the
lower bound ul and the upper bound uu. This constraint is usually determined by physical
limits of the system control values.

The time interval [0, 1] is then divided into N equal partitions with ∆t = − 1
N so that

tk = 1 + (k − 1)∆t, k = 1, . . . , N + 1

is the backward partition. This means that t1 and tN+1 correspond to t = 1 and t = 0
respectively.

With notation V k
i ≈ V (tk, xi) and uki ≈ u(tk, xi) for the value function and control

variable at point xi and time tk, we split the equation (2.2) into 2 equations and discretize
it for i = 1, . . . ,M + 1 as follows

V k+1
i − V k

i

∆t
+

1 + signfki
2

fki
V k
i+1 − V k

i

∆x
+

1− signfki
2

fki
V k
i − V k

i−1

∆x
+ Lk

i

+ r gkρ,i + ε
V k
i−1 − 2V k

i + V k
i+1

(∆x)2
= 0 (2.3)

uk+1
i = arg inf

u

(
f(xi, u, tk+1)

V k+1
i − V k+1

i−1

∆x
+ L(xi, u, tk+1) + rgρ(xi, u, tk+1)

)
,

where fki = f(xi, tk, u
k
i ), L

k
i = L(xi, tk, u

k
i ), g

k
ρ,i = gρ(xi, tk, u

k
i ) and signfki denotes the sign

of f at point xi and time tk. In (2.3) the spatial derivative ∂V
∂x is approximated by the first-

order upwind finite difference scheme which has been widely used for convection-diffusion
and various types of HJB equations [11,16,18,28] Using η1 = ∆t

∆x and η2 = ∆t
(∆x)2 , (2.3) can

be rewritten as follows:

V k+1
i = (1 + η1|fki |+ 2εη2)V

k
i −

[
1 + signfki

2
η1f

k
i + εη2

]
V k
i+1

+

[
1− signfki

2
η1f

k
i − εη2

]
V k
i−1 −∆t(Lk

i + r gρ
k
i ) (2.4)

for i = 2, . . . ,M. Because the Upwind Finite-Difference Method is an explicit method, we
need to consider the stability of the scheme under some conditions on the step lengths ∆t
and ∆x. This is given in the following theorem.
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Theorem 2.4. Under the condition

N ≥ ∆x ∥f∥∞ + 2ε

(∆x)2
. (2.5)

the scheme (2.4) is stable.

Proof. It is known from [30], that the scheme (2.4) is stable if and only if with L+ rgρ = 0
it is also stable. The scheme (2.4) with L+ rgρ = 0 is equivalent to

V k+1
i =

[
1 +

1 + signfki
2

η1f
k
i −

1− signfki
2

η1f
k
i + 2εη2

]
V k
i

−
[
1 + signfki

2
η1f

k
i + εη2

]
V k
i+1 +

[
1− signfki

2
η1f

k
i − εη2

]
V k
i−1

Introduce the discrete maximum norm || · ||∞ defined by

∥V k∥∞ = max
1≤i≤M+1

|V k
i |

and let

αk
i = −1 + signfki

2
η1f

k
i − εη2, βk

i =
1− signfki

2
η1f

k
i − εη2.

Then, we have the following two cases.

1. If fki > 0 then

αk
i = −η1fki − εη2 = −∆t

∆x

(
fki +

ε

∆x

)
> 0

βk
i = −εη2 = −∆t

∆x
ε > 0,

since ∆t < 0.

2. If fki ≤ 0 then

αk
i = −εη2 = −∆t

∆x
ε > 0

βk
i = η1f

k
i − εη2 = −∆t

∆x

(
|fki |+

ε

∆x

)
> 0.

Therefore, under the condition 0 < αk
i + βk

i ≤ 1, we have

|V k+1
i | = |(1− αk

i − βk
i )V

k
i + αk

i V
k
i+1 + βk

i V
k
i−1|

≤ (1− αk
i − βk

i )|V k
i |+ αk

i |V k
i+1|+ βk

i a|V k
i−1|

≤ ∥V k∥∞

for k = 0, 1, . . . , N . In particular, when k + 1 = N , taking the maximum on both sides of
the above with respect to i and using the recursive relationship, we get

∥V N+1∥∞ ≤ ∥V N∥∞ ≤ · · · ≤ ∥V 1∥∞.

Therefore, the scheme is stable under the condition αk
i + βk

i ≤ 1.
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From their definitions it is to see that

αk
i + βk

i = −η1|fki | − 2εη2 = − ∆t

∆x2
(
|fki |∆x+ 2ε

)
≤ 1

N∆x2
(||f ||∞∆x+ 2ε) ,

where N = −1/∆t and ||f ||∞ denotes the discrete maximum norm of f . Therefore, a
sufficient condition for the stability of the numerical scheme is given in (2.5). We have thus
proved the theorem.

Remark 2.5. Note that the stability condition (2.5) is the extension of the stability condi-
tion in [35] in the case for ε ̸= 0.

Next, we set the initial value function according to

V 1
i = ϕ(xi(1)), i = 1, . . . ,M + 1

and initial control value for i = 2, . . . ,M + 1

u1i = argmin

(
f(t1, xi, u)

V 1
i − V 1

i−1

∆x
+ L(t1, xi, u) + rgρ(t1, xi, u)

)
.

As mentioned before, the HJB problem (1.1)–(1.2) is a pure initial (or terminal) value
problem and the application of the upwind finite difference scheme to it requires a proper
trapezoidal region due to the propagation of the numerical scheme which is computationally
very expensive. The use of the artificial diffusion term in (2.2) can help to remedy this
problem because the effect of a trapezoidal propagation on the spatial domain for each
time stage can be avoided by setting up some artificial boundary conditions for control and
value function based on linear extrapolation of the closest known points. Theoretically, any
artificial boundary conditions can be used as we expect that when ε is sufficiently small,
the problem may display boundary layers so that the inaccuracy due the artificial boundary
conditions is only inside the layers [22,34]. Therefore, the linear extrapolation to boundaries
is chosen because it is simple to apply in computation. In this case, the boundary conditions
behave like uxx = 0 = Vxx or uyy = 0 = Vyy. Moreover, it gives freedom for the edge points
to flip following the line directed by the values of two closest points. Thereby, for i = 1

u11 = 2u12 − u13.

Next, we update the value function for k = 1, . . . , N and i = 2, . . . ,M according to (2.4)
and do extrapolations for both boundaries

V k+1
1 = 2V k+1

2 − V k+1
3 , V k+1

M+1 = 2V k+1
M − V k+1

M−1.

Moreover, to update control we set for k = 1, . . . , N and i = 2, . . . ,M + 1,

uk+1
i = argmin

u

(
f(tk+1, xi, u)

V k+1
i − V k+1

i−1

∆x
+ L(tk+1, xi, u) + r gρ(tk+1, xi, u)

)

and for the left boundary

uk+1
1 = 2uk+1

2 − uk+1
3 .

So far we have obtained V k
i and uki for i = 1, . . . ,M + 1 and k = 1, . . . , N + 1. These

constitute the first iteration of the method.
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2.2 Finding Optimal Trajectory and Control

To iterate, we first need to determine the optimal trajectory from the first iteration. Starting
with the initial value, we integrate forward the state equation ẋ = f(t, x, u) using the
following predictor-corrector method. Let us name the resultant trajectory and control yp
and up for predictor, yc and uc for corrector with yp(1) = yc(1) = x0 and uc(1) = u(x0, tN+1)
respectively.

The control value used during the integration is the optimal control value corresponding
to the closest grid point to the resultant state as suggested in [32]. Thus, for l = 2, . . . , N+1

yp(l) = yc(l − 1)−∆tf(t−l+N+3, yp(l), uc(l − 1))

up(l) = u(xi∗(l), t−l+N+3)

where i∗ = argmin
i
|yp(l)− xi|, i = 1, . . . ,M + 1

yc(l) = yc(l − 1)− 1
2∆t(f(t−l+N+3, yc(l − 1), uc(l − 1))

+ f(t−l+N+3, yp(l), up(l)))

uc(l) = u(xi∗ , t−l+N+3)

where i∗ = argmin
i
|yc(l)− xi|, i = 1, . . . ,M + 1.

The resultant pair (yc(l), uc(l)) for l = 1, . . . , N +1 makes an optimal trajectory and control
for all time steps from the first iteration of the HJB. In addition, the value function along
the optimal trajectory can be determined by the value function of the corresponding closest
grid points. The penalty value and objective function value can also be evaluated by forward
integration along the optimal trajectory of corresponding terms.

2.3 Region Size Reduction

Now, we determine a procedure for region reduction based on the optimal trajectory and
control from previous iteration. This new region is applied to the next iteration in order to
improve computational speed and accuracy. What we need, first, is the maximum and the
minimum value of resultant control and trajectory. Thus, for l = 1, . . . , N + 1

xmax = max yc(l), xmin = min yc(l)

umax = maxuc(l), umin = minuc(l)

In view of the fact that for the next iteration the number of interval partitions M will be
doubled, we set the region for the next iteration as follows:

a = xmin − c∆x, b = xmax + c∆x, M = 2M

and the lower and upper bound for the control

ul = ⌊umin⌋, uu = ⌈umax⌉

where ul and uu are consecutively the lower bound and upper bound for the control and ⌊z⌋
means rounding the elements of z to the nearest integer less than or equal to z, ⌈z⌉ rounding
the elements of z to the nearest integer greater than or equal to z and c some given positive
integer. c is used to make the region larger so as to improve stability.

We repeat the above steps, i.e. discretization of the computation of the HJB equation,
forward integration of optimal trajectory and region reduction until iteration has nearly
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reached convergence. For that purpose, we may prescribe a lower bound for space interval
shrinkage factor in percentage, i.e. the ratio of latter space interval length to former. The
smaller the shrinkage factor is, the larger the reduction of the space interval length for the
next iteration. The shrinkage factor close to 1 indicates that the length of space interval
for the next iteration does not change much. By setting a lower bound for space interval
shrinkage factor high, for instance 95%, it will ensure that the asymptotic range requirement
for applying Richardson Extrapolation is satisfied. Afterwards, we run additional iteration
with Completed Richardson Extrapolation as described in the next subsection on the region
reduction from the last iteration. This improves the result accuracy from first-order to
second-order.

3 Completed Richardson Extrapolation

The Completed Richardson Extrapolation proposed by Roache and Knupp in [25] is an
extension of the original Richardson Extrapolation. They completed the method by giving
higher-order solution not only on the coarse grid but on the entire fine grid. In particular,
they presented application of the extrapolation on numerical solution of time-independent
partial differential equations as examples. Furthermore, Richards [24] modified it in order
to be used on time-dependent partial differential equation problems.

In short, the formulas for Completed Richardson Extrapolation are as follows. Let φc,i

and φf,j denote respectively the first order approximate solution at node i on the coarse
and j on the fine grid. The fine grid here is formed by bisecting the coarse grid such that
the fine grid coincides with the coarse grid only when the indices are odd (j = 2i − 1)
where i = 1, 2, . . . , N + 1. Then the extrapolated second order approximate solution by the
Completed Richardson Extrapolation, φRE,j , is determined by

φRE,j = 2φf,j − φc,i for j = 2i− 1, (3.1)

φRE,j+1 = φf,j+1 + 0.5(φRE,j − φf,j + φRE,j+2 − φf,j+2) for j + 1 even (3.2)

From the last iteration, we choose M as the number of coarse grid points so that

Mc =M, ∆xc =
b− a
Mc

, Nc >
∆xc ∥f∥∞ + 2εc

(∆xc)2
, ∆tc = −

1

Nc
,

where εc is a chosen small positive number. Analoguously, we choose ∆xf and ∆tf so that
Mf = 2Mc and Nf = 2Nc and εf = εc for fine grids.

Remark 3.1. At this stage, an appropriate shifting in the spatial discretization might be
necessary to include the starting point x0.

Theorem 3.2. The conditions Mf = 2Mc, Nf = 2Nc and εf = εc/2 fulfill the stability
condition in (2.5).

Proof.

Nf = 2Nc > 2

[
∆xc ∥f∥∞ + 2εc

(∆xc)2

]
= 2

[
2∆xf ∥f∥∞ + 4εf

4(∆xf )2

]
=

[
∆xf ∥f∥∞ + 2εf

(∆xf )2

]
. (3.3)
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Then, we run an extra iteration as before and update the value function (VRE) and con-
trol (uRE) for the fine grids according to (3.1) and (3.2). The resultant pair of matrices
(VRE , uRE) is the solution of HJB equation which has a second order of accuracy.

Remark 3.3. We also comment that although it is required in Theorem 3.2 that εf = εc/2,
in practice, the perturbation parameter ε is usually chosen to be much smaller than any mesh
sizes. Therefore, in computations, we simple choose εf = εc and the sufficient condition (3.3)
still holds true.

4 Numerical Experiments

To test the effectiveness of this algorithm, we take two examples ranging from simple to
more complex. The first example contains 1 state, 1 control and 1 mixed (state-control)
inequality constraint from [37] and the second example from [31] has 2 states, 1 control and
1 purely state inequality constraint.

Example 4.1. The problem is to minimize

min

{∫ 1

0

(x2 + u2 − 2u) dt+ 1
2 (x(1))

2

}
subject to

ẋ = u x(0) = 0

g(x, u, t) = −(x2 + u2 − t2 − 1) ≤ 0

The analytic optimal solution for this open-loop problem is x∗(t) = t and u∗(t) = 1,
so that the constraint is active for all t ∈ [0, 1]. The value function for this solution is
−1

6 ≈ −0.166666667.

The corresponding HJB initial-value problem for this example is

Vt +min(uVx + (x2 + u2 − 2u) + rgρ(x, u, t)) = 0

V (1, x) = 1
2 (x(1))

2

The numerical simulation is done using MATLAB R2010A and MATLAB Optimization
Toolbox. We start with region −1 ≤ x ≤ 2 and −2 ≤ u ≤ 2 for the first iteration and then
reduce it progressively according to our proposed method. The problem has been resolved
for ε = 10−10 and various values of M . The first four iterations are purely computed
with Iterative Upwind Finite-Difference Method while the last iteration for M = 256 is the
result of implementation of the Completed Richardson Extrapolation. The summary of our
computations are given in Table 1.

The first, second and third columns are respectively the number of iterations, the number
of spatial and time partitions. The penalty value and objective function value along the
optimal trajectory for each iteration are shown in fourth and fifth columns. These values
are evaluated by forward integration of corresponding terms along the optimal trajectory
whereas the value function in sixth column is the value function at the initial point obtained
from the Upwind Finite Difference Method. The discrepancy between the objective function
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Table 1: Computational result for Example 4.1 (c = r = 2, ε = 10−10).

it. M N pen. obj. value [a, b] [ul, uu] %x
1 16 11 0.2799 -0.2472 -0.1039 [-1.000, 2.000] [-2, 2] 0.56
2 32 38 0.0429 -0.1792 -0.1466 [-0.375, 1.319] [0, 2] 0.71
3 64 107 0.0039 -0.1646 -0.1570 [-0.106, 1.098] [0, 2] 0.89
4 128 238 0.0107 -0.1688 -0.1600 [-0.038, 1.039] [0, 2] 0.96
5 256 497 0.0040 -0.1659 -0.1623 [-0.017, 1.015] [0, 2] 0.98

value and the value function in each iteration is caused by the use of state and control values
of the corresponding closest grid points along the optimal trajectory in the evaluation of
the objective function value. However, from iteration to iteration this discrepancy becomes
smaller. This indicates that the use of the state and control values of the corresponding
closest grid points is a reasonable choice. It can be seen also that in general the penalty and
value function decrease as the number of iterations and M increase. Additional information
related to the space and control interval used during the iteration are in the seventh and
eighth columns. Last column contains the space interval shrinkage factor.

Tables 1, 2 and 3 indicate that the computed optimal control and state along the optimal
trajectory converge to the analytic solution as the error decreases significantly.

Table 2: Computed error for u in the maximum and L2 norm for Example 4.1.

M
Error 16 32 64 128 256
∥ · ∥∞ 0.1406 0.0296 0.0059 0.0068 0.0015
∥ · ∥2 0.2346 0.0776 0.0332 0.0420 0.0194

Table 3: Computed error for x in the maximum and L2 norm for Example 4.1.

M
Error 16 32 64 128 256
∥ · ∥∞ 0.0562 0.0083 0.0013 0.0016 0.0004
∥ · ∥2 0.1049 0.0250 0.0069 0.0094 0.0072

The computed results for the last iteration are plotted in Figures 1–3. It can be seen
that the value function and optimal control shown in Figures 1(a) and 2(a) are smooth in
the solution domain. This shows the success of the linear extrapolation used.

Example 4.2. The second problem is as follows.

min
u
J(u) =

∫ 1

0

(x21 + x22 + 0.005u2) dt
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Figure 1: Value functions for Example 4.1.

Figure 2: Optimal controls for Example 4.1
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Figure 3: Optimal state and constraint along optimal trajectory for Example 4.1

subject to the dynamics

ẋ1 = x2, x1(0) = 0,

ẋ2 = −x2 + u, x2(0) = −1,
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and the all-time state inequality constraint

h(t, x) = −8(t− 0.5)2 + 0.5 + x2 ≤ 0, for all t ∈ [0, 1]

Because the constraint is a purely state constraint, it does not give any direct information
on how to choose control that satisfies the constraint. For this reason, we need to replace
the constraint h(x, t) ≤ 0 with an equivalent constraint

ψh(x, t) + φh′(x, u, t) ≤ 0

where ψ,φ > 0 are two additional control variables, as mentioned in [10]. Here

h′(x, u, t) =
dh

dt
=
∂h

∂x
f(x, u, t) +

∂h

∂t
.

Further, to reduce the number of additional controls, we modify this new constraint as
follows

ψh(x, t) + (1− ψ)h′(x, u, t) ≤ 0,

where 0 < ψ < 1 is a constant close to 1. It is obvious that if h(x, t1) = 0 then h′(x, u, t1) ≤ 0
so that h(x, t) ≤ 0 for t ∈ [t1, t2], t2 > t1. On the other hand, when h(x, t1) ≤ 0, the
inequality implies h(x, t) < 0 for t ∈ [t1, t2], t2 > t1 due to the dominance of the first term
over the second term. For this numerical example we choose ψ = 0.9 and thus the constraint
becomes

g(t, u, x) = 0.9 h(t, x) + 0.1 h′(t, u, x).

Therefore, the equivalent problem in HJB form for this problem is

Vt + min
u

(x2Vx1 + (u− x2)Vx2 + (x21 + x22 + 0.005u2) + rgρ(t, x, u)) = 0,

V (1, x) = 0.

For the first iteration, we choose the region

−1 ≤ x1 ≤ 1, −3 ≤ x2 ≤ 1, −20 ≤ u ≤ 20.

For simplicity, we choose the same number of grid points, M , in both x1 and x2-directions.
The computational results for various M are summarized in Tables 4 and 5 in which the
first, second and third columns are respectively the number of iterations and the numbers
of spatial and time partitions.

Like in the previous example, the values of the penalty parameter and the objective
function along the optimal trajectory for each iteration are listed in the fourth and fifth
columns whereas the value function at the initial point is listed in the sixth column of
Table 4. We can see that from iteration to iteration, objective function value increases
while at the same time the value function and penalty decrease significantly. The difference
between the value function and objective function is getting smaller. The lower and upper
bounds of the control used in each iteration are in the last column.

Table 5 provides information on the interval reduction for the state variables x1 and x2
in each iteration and the last two columns contain the spatial interval shrinkage factors, i.e.
the ratio of two consecutive spatial interval sizes. From the table we also see the convergence
of our method.

The computed results for M = 128 are plotted in Figures 4–6. In particular, Figure
4 contains the cross-sections of the value function and optimal control corresponding to
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it. M N pen. obj. value [ul, uu]
1 8 46 0.2049 0.1763 0.4378 [-20,20]
2 16 92 0.0686 0.1869 0.2595 [-6,14]
3 32 268 0.0320 0.1897 0.2182 [-3,14]
4 64 728 0.0048 0.2021 0.2093 [-3,14]
5 128 1654 0.0055 0.2007 0.2072 [-3,14]

Table 4: Computational result for Example 4.2 (c = r = 2, ρ = 10−2).

it. M N [a1, b1] [a2, b2] %x1 %x2
1 8 46 [-1.000, 1.000] [-3.000, 1.000] 0.60 0.83
2 16 92 [-0.708, 0.500] [-2.000, 1.306] 0.46 0.61
3 32 268 [-0.402, 0.151] [-1.413, 0.587] 0.60 0.66
4 64 728 [-0.297, 0.034] [-1.125, 0.190] 0.91 0.84
5 128 1654 [-0.290, 0.010] [-1.041, 0.067] 0.96 0.95

Table 5: Computational result for Example 4.2 (c = r = 2, ρ = 10−2).

x2 = −1 and x1 = 0. The value function and optimal control along the optimal trajectory
are depicted in Figure 5. Since the analytical solution to this example is unknown, we
use the results from the open-loop optimal control solver, MISER 3.3 [15], as our reference
solution. The optimal value of the objective function resulted from MISER 3.3 is 0.1736
(see [31]) which is slightly different from our optimal results in Table 4, i.e. 0.2072 and 0.2007
for value and objective functions respectively resulted from forward integration along the
open-loop optimal trajectory. We also plot the optimal states from MISER 3.3 in Figure 5
which confirm that optimal solutions from both methods are close to each other. In addition,
from Figure 5(d), it is clear that the optimal solution satisfies the constraint, i.e. x2 is below
the quadratic function 8(t− 0.5)2 − 0.5 for all t.

Figures 6(a) and 6(b) show the difference between the original constraint h(t, x) and the
modified one g(t, u, x), in particular when 0 ≤ t < 0.7. During that period the constraint
h(t, x) is inactive, whereas g(t, u, x) is active. However, this does not affect the computation
that much as validated by the small value of penalty in Table 4 and Figure 6(c). From
Figures 6(b) and 6(c) we see that, when 0 ≤ t < 0.7, the violation of the modified constraint
introduces small positive penalty values. On the other hand when t ≥ 0.7 the modified
constraint is inactive and thus the penalty becomes zero.

5 Concluding Remarks

In this work we proposed the Iterative Upwind Finite-Difference Method for the approxima-
tion of constrained viscosity solutions to Hamilton-Jacobi-Bellman Equations. Stability of
the numerical scheme is analysed. We have also proposed an algorithm for computational
domain reduction and the completed Richardson extrapolation technique for increasing the
accuracy of approximate solutions. Numerical experimental results have been presented to
demonstrate the accuracy and efficiency of the method.
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Figure 4: Cross-sections of optimal control for Example 4.2.

Figure 5: Value function, control and states along optimal trajectory for Example 4.2.
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Figure 6: Constraint, modified constraint and penalty along optimal trajectory for Exam-
ple 4.2.
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