
2016



400 E. MARDANEH AND L CACCETTA

In the economics literature, two kinds of price change costs are introduced, managerial costs
and physical costs. The managerial costs are defined as the time and attention required of
managers to gather the relevant information and to make and implement decisions. Physical
costs result from changing thousands of shelf prices or producing, printing, and distributing
price books and catalogues.

Despite the emphasis in the economics literature on the inclusion of price change costs
in the pricing strategies, very few integrated pricing and production / inventory systems
have explicitly incorporated such costs. There are only four papers [1,4,5,7] that are closely
related to our work in which cost of price change is considered in joint pricing and production
/ inventory planning.

Motivated by the phenomenon in practice of large periods without nominal price changes
and short periods with low prices, Aguirregabiria [1] proposes an inventory and pricing model
in retailing firms that incorporates both fixed ordering costs and fixed price change costs but
focuses more on empirical studies. The author considers a model where a monopolistically
competitive retailer decides price and inventories, and assumes lump-sum costs when placing
orders or changing nominal prices.

Celik et al. [4] focus on a continuous time revenue management problem with costly price
changes. They characterize the optimal pricing policies for the case of ample inventory and
develop several heuristics based on a corresponding fluid model. However, their model does
not take into account the inventory replenishment decision.

Chen et al. [5] consider a single product periodic review inventory model with both
fixed and variable price change costs. Demand was stochastic and price dependent. The
problem is to coordinate the pricing and inventory replenishment decisions in each period
to maximize the total discounted profit over a finite planning horizon. They develop a
general model and characterize the optimal policies for two special scenarios, a model with
backorders and no fixed price change costs and a model with fixed price change costs and
no backorders. For the general problem with fixed plus linear variable price adjustment
costs, they develop an intuitive heuristic policy to control inventory and set selling prices.
Compared with the optimal policy, which is difficult to compute, their heuristic policy is
amenable to implementation, as they showed for examples up to 12 periods in the planning
horizon.

Chen and Hu [7] assume that if price in a period is different from the previous period,
then a cost of changing the price tags, independent of the magnitude of the price change, is
incurred. Considering both fixed ordering cost and the price change cost makes their model
more complicated. However, under the assumption of no capacity constraint, they develop
exact algorithms to find the optimal order quantities and selling prices for the single product.
Their idea is to partition the planning horizon into some consecutive fixed priced periods.
The total profit is then appropriately allocated to each member of the partition. For each
member they solve a joint inventory and fixed pricing problem to find a single constant price
maximizing its allocated profit. Based on this result, authors develop an acyclic network so
that solving their inventory and pricing model with price change cost is equivalent to finding
a longest path in the acyclic network. However, all of the above named papers consider a
single product setting.

To our knowledge, there is no contribution in the literature dealing with the joint pric-
ing and production planning of multiple products with costly price change. We contribute
towards addressing this gap in the literature by incorporating price change costs into in-
tegrated production and pricing models for a multiple product setting. More specifically,
we consider a firm with a common production capacity shared amongst multiple products.
The system under study has a multi period planning horizon with both deterministic and



COSTLY PRICE-CHANGES IN PRODUCTION PLANNING 401

uncertain price dependent demand. The objective of the firm is to coordinate the pric-
ing and production planning decisions in each period to maximize its expected total profit
over a finite horizon. First, the case of deterministic demand is studied through developing
mathematical programming models for only variable or fixed and variable price change cost
components. The fixed cost component is independent of the price change magnitude and
the variable cost component relies on the amount of adjustment. We next bring into the
models the uncertainty of the price dependent demand.

It turns out that our problem is computationally difficult, because both continuous and
integer variables appear in a nonlinear objective function and some nonlinear constraints.
The problem falls into the category of mixed integer nonlinear programming (MINLP) Prob-
lems. There are two general strategies for dealing with MINLPs: (1) relaxation of integer
variables (by considering them as continuous or by fixing them) and (2) separation of the
nonlinearity (to obtain easier sub problems) which leads to upper and lower bounds of the
optimal objective value. Constructing linear or convex underestimations of overstated func-
tions at certain points results in mixed integer linear or convex problems. Applying these
strategies leads to algorithms such as Branch and Bound, Generalised Bender Decomposi-
tion, Outer Approximation and so forth (see [13,14]). The shortcoming of these mentioned
algorithms is that they, by their nature, do not tackle well optimisation problems that have
non convex objective functions. Unfortunately, some of the MINLPs encountered in the joint
pricing and production planning sector suffer from non convexity which makes it harder to
find even a suboptimal solution. In addition to the above mentioned difficulties, the concept
of large scale realistic size problems for MINLP is different from usual continuous program-
ming problems. To overcome these complexities, our strategy is a novel use and adaption
of the CE method.

The CE method was proposed by Rubinstein [16] for solving rare event simulation prob-
lems and extended to solving combinatorial problems. It has been successfully applied in
several engineering problem [9,17] and in this paper an extension of this approach for solv-
ing a MINLP is proposed and applied to solve the problem of joint pricing and production
planning with cost of price adjustment.

The CE approach is a variant of Monte Carlo methods, which use the importance sam-
pling (IS). Two of the main reasons why we use Monte Carlo methods are because of their
anti aliasing properties and their ability to approximate quickly an answer that would oth-
erwise be very time consuming. This last point refers to the fact that Monte Carlo methods
are used to simulate problems that are too difficult and time consuming when using other
methods. An example is the use of Monte Carlo techniques in integrating very complex
multidimensional integrals. This is a task that other techniques cannot handle well, but
which Monte Carlo can.

In our approach, we develop an effective computational methodology by using CE innova-
tively so as to eliminate either the nonlinearity or the integer restriction whilst maintaining
feasibility. Our developed algorithm has inherited the easy programmable characteristic of
CE with far few parameters compared to other random search methods. We incorporate
the uncertainty of demand into the problem and develop a chance constrained model. In-
terestingly, by using the chance constrained programming approach the uncertain demand
is treated without the creation of too much complexity into the model.

The rest of this paper is organized as follows. In Section 2, we describe the general
problem and introduce the notation and terminology used in our models. The problem
of joint pricing and production planning with deterministic demand is discussed first as
two possible cases, without or with fixed price-change cost. Uncertain demand is next
incorporated into the problem by developing a chance constrained model. Section 3 presents
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an overview of the CE method for optimisation. In Section 4 we bring the detail of the
adapted CE method for the problem of joint pricing and production planning with costly
price adjustments. Section 5 implements a numerical example for a range of algorithm
parameters.

2 Models

This section formulates mathematically the problem of coordinated pricing and produc-
tion planning of multiple products with costly price changes. Some important features of
the problem, which we model, are:

• The finite planning horizon consists of T discrete periods.

• The firm produces n non-perishable differentiated products.

• Demand of each product is dependent on its price.

• The production capacity is limited and shared among different products.

• Products use the same amount of capacity; here each product uses one unit of capacity.

Remark . This feature is not limiting as the case of different capacity use can only
change the coefficient of the related function and is still solvable with the proposed
algorithm.

• The production setup cost is negligible.

Remark . Note that this feature of the problem can be extended to the case in which
the setup cost is considerable. Our solution methodology can also cater for this category
of problems.

In this paper, settings with an initial product price are investigated, where a specific price
of each item either has been inherited from a previous planning horizon or obtained by
communication with the marketing decision makers. In this kind of settings, the firm has
the option of keeping the current price at the beginning of the new selling period, or changing
it to some other pricing level.

Because of the complexity of the problem we first present the deterministic demand /
price function. Then, randomness is added to the induced demand of each item in each
period.

2.1 Parameters and Decision Variables

We consider situations in which different products are presented to different market sectors.
Hence there is no interaction between the price of one product and the demand of one
another product or in other words, the cross price elasticity among various products is zero.
The firm controls the price and production amount of each item at all time periods. We
assume that backorders are not allowed.

We make use of the following parameters and decision variables in our models.

Parameters:
cjt = the production cost of one unit of item j in period t.
hjt = the holding cost of one unit of item j in inventory in period t.
ajt = the variable cost of price change of item j in period t.
aj = the fixed cost of price change of item j.
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Lj = the minimum acceptable price change of item j.
Uj = the maximum acceptable price change of item j.
Kt = the total amount of shared production capacity in period t.
I0j = the initial inventory of item j.

p0j = the initial price of item j.

Variables:
pjt = the price of item j in period t.
xjt = the amount of item j produced in period t.

Functions:
Djt(p)= correlation between demand and price of item j in period t.
Ijt= the inventory level of item j at the beginning of period t.
Note that, here only the relationship between demand and price is known, but demand is
the result of price decision.

2.2 Variable Price-Change Cost

In the economics literature, several forms of variable cost have been used, including piecewise
linear functions [21, 22] and quadratic functions [15]. In this paper, we assume a piecewise
linear function for the convex variable cost of price change. Defining

yjt =

{
1, if |pjt − pj,t−1| ̸= 0

0, if |pjt − pj,t−1| = 0

we express the problem of jointly determining the price and production plan for the case
of variable price change cost. We introduce X=(xjt), P=(pjt) and Y=(yjt) as the n × T
production amount, price and price change indicator matrix, respectively.

Model 1:

maxX,P,Y≥0f(X,P, Y ) =
T∑

t=1

n∑
j=1

pjtDjt(p)− cjtxjt − hjtIjt − ajt|pjt − pj,t−1| (2.1)

subject to
n∑

j=1

xjt ≤ Kt; t ∈ {1, 2, ..., T}, (2.2)

Ijt = I0j +
t−1∑
s=1

(xjs −Djs(p)); t ∈ {1, 2, ..., T} and j ∈ {1, ..., n}, (2.3)

I0j +

T∑
s=1

(xjs −Djs(p)) = 0; j ∈ {1, ..., n}, (2.4)

Ljyjt ≤ |pjt − pj,t−1| ≤ Ujyjt; t ∈ {1, 2, ..., T} and j ∈ {1, ..., n}, (2.5)

xjt, pjt, Ijt ≥ 0; yjt ∈ {0, 1}; t ∈ {1, ..., T} and j ∈ {1, ..., n}. (2.6)
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In (2.1) the objective is to maximise the profit consisting of sales revenue, production,
inventory holding and price change costs respectively. Constraint (2.2) ensures that capacity
in period t is sufficient to allow all of the production that is planned for the period for all
n items. Constraint (2.3) is a set of flow balance equations that ensure that all of the
induced demand is satisfied. We impose the zero inventories at the end of planning horizon
by Constraint (2.4). In Constraint (2.5), the bounds of price change of each item at all
time periods is incorporated into the model. The requirement in (2.6) that inventory be
nonnegative assures that demand is satisfied in all periods t = 1, 2, ..., T with no backorders.
We formulate the upcoming models with fixed price change component based on Model 1.

2.3 Fixed and Variable Price-Change Cost

Now, we bring into account the fixed price change cost which is independent of the price
change magnitude. In this case the convexity of the cost is not valid anymore. The cost of
price change of item j with magnitude |pjt − pj,t−1|in period t is denoted by Ajt, which is
given as:

Ajt = ajyjt + ajt|pjt − pj,t−1|.

Where the fixed cost aj represents the menu cost or physical cost associated with a price
change, and the variable cost ajt|pjt − pj,t−1| represents the managerial or customer cost
depending on the magnitude of the price change.
At the beginning of the planning horizon, given the problem parameters, initial inventory
level and price suggestion, the firm’s aim is to maximise the total profit. The mathematical
programming problem can be expressed as follows:

Model 2:

maxX,P,Y≥0f(X,P, Y ) =
T∑

t=1

n∑
j=1

pjtDjt(p)− cjtxjt − hjtIjt −Ajt (2.7)

subject to (2.2)− (2.6).

The objective function is again maximising the sales revenue minus production, inven-
tory holding and price change costs respectively. As can be seen both models formulate
their corresponding problem as a mixed integer nonlinear programming problem with the
nonlinearity in both objective function and absolute value terms in constraints.

Interestingly, the introduction of fixed price change cost does not change the size of
problem in Model 1 compared to Model 2 (both constraints and variables). The reason is
that the strict non zero lower bound on the price change (Lj) requires introduction of the
binary variable yjt for the constraints (2.5). A special case of Model 1 is with zero lower
bound (Lj = 0, ∀j) which leads to elimination of binary variables and the problem formula-
tions of Model 1 diminishes to the category of nonlinear programming problems instead of
mixed integer nonlinear programing problems. However, a zero lower bound does not seem
appropriate in practice because it may result in tiny insignificant price changes.

2.4 Uncertainty Consideration

We consider again a firm selling n differentiated products. The time horizon is finite and
time is viewed discretely. The firm controls the price pjt and production amount xjt of
each product at all times with fixed and variable cost of price change. We assume that
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no backorder is allowed and the uncertain demand model is additive. Given the uncertain
as well as the dynamic nature of the problem, we consider an open-loop approach to the
optimisation formulation. The model incorporates uncertainty not only in the objective
function but also in the constraints. In the stochastic framework, we deal with constraint
uncertainty by using the modelling tool of chance constrained.

We denote D̃jt(p) = Djt(p) + εjt as the realized demand, involving realized noise εjt
which follows normal distribution (0,σ2

jt). Normally distributed noises are frequently used
in the literature [3,12,18]. In a setting with uncertainty, notice that the inventory constraint

is on the realized inventory level Ĩjt = I0j +
∑t−1

s=1(xjs − D̃js(p)).
Similarly, realized holding costs involve the realized inventory levels, and realized profits

involve realized demand. Assuming that the probability distributions of the random vari-
ables εjt and the failure margins αjt are known, the following chance constrained model
arises:

Model 3:

maxX,P,Y≥0E[f(X,P, Y )] = E[
T∑

t=1

n∑
j=1

pjtD̃jt(p)− cjtxjt − hjtĨjt −Ajt] (2.8)

subject to (2.2), (2.5) and

Ĩjt = I0j +
t−1∑
s=1

(xjs − D̃js(p)); t ∈ {1, 2, ..., T} and j ∈ {1, ..., n}, (2.9)

I0j +

T∑
s=1

(xjs − D̃js(p)) = 0; j ∈ {1, ..., n}, (2.10)

Pr(Ĩjt ≥ 0) ≥ 1− αjt; t{1, 2, ..., T} and j ∈ {1, ..., n}, (2.11)

xjt, pjt ≥ 0, yjt ∈ {0, 1}; t ∈ {1, ..., T} and j ∈ {1, ..., n}. (2.12)

Because of the linearity of the uncertain data relating to the inventory levels and profit,
the expected profit (2.8) equals the nominal profit (the mean value which is the same as
deterministic case). Constraint (2.9) is a set of realised flow balance equations ensuring that
all of the induced demand is satisfied. We impose the zero realised inventories at the end
of planning horizon by Constraint (2.10). The requirement that the realised inventory be
nonnegative assures that the induced demand is satisfied in all periods with no backorders.
The complexity of solving this problem depends essentially on the structure of the chance
constraints (2.11). In particular, for this problem, these constraints involve the convolution
of distributions of uncertain parameters. Therefore, the problem becomes more complex if
εjts follow different distributions or if the probability distribution is not stable (i.e. a linear
combination does not necessarily follow the same type of distribution).Here, we investigate
the chance constrained:

Pr(Ĩjt ≥ 0) = Pr(I0j +
t−1∑
s=1

(xjs − D̃js(p)) ≥ 0) = Pr(
t−1∑
s=1

D̃js(p) ≤ I0j +
t−1∑
s=1

xjs).

With the assumption that the random parts of uncertain demands of different products
in any period are mutually independent and identically distributed (i.i.d), by using D̃jt ∼
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N(Djt(p), σ
2
jt) and the convolution of the normal distributions we have:

t−1∑
s=1

D̃js ∼ N(
t−1∑
s=1

Djs(p),
t−1∑
s=1

σ2
js).

Let φ(z) be the cumulative distribution function of the standard normal random variable.
As a result we rewrite the chance constrained as

Pr(Ĩjt ≥ 0) = φ

I0j +
∑t−1

s=1(xjs −Djs(p))√∑t−1
s=1 σ

2
js

 ≥ 1− αjt.

Or equivalently:
t−1∑
s=1

(xjs −Djs(p)) ≥ φ−1(1− αjt)

√√√√t−1∑
s=1

σ2
js − I0j . (2.13)

Then a corresponding formulation of Model 3 is:
Model 4:

maxX,P,Y≥0f(X,P, Y ) =
T∑

t=1

n∑
j=1

pjtDjt(p)− cjtxjt − hjtIjt −Ajt (2.14)

subject to (2.2)− (2.5), (2.12) and (2.13).
As can be seen, by the above discussion we change the chance constrained (2.11) to

the linear constraint (2.13) by using the cumulative distribution function of the normal
distribution.
In the next Section we will present the main CE method for optimisation and its adaption
to handle our mentioned MINLP in Model 2 and Model 4.

3 The Cross Entropy Method for Optimisation

The cross entropy method was introduced by Rubinstein [16] as an adaptive algorithm
based on variance minimization for estimating the probabilities of rare events in complex
stochastic networks. It was soon realised that by implementing simple modifications, CE
could be used not only for estimating the probabilities of rare events, but also for solving
difficult combinatorial optimisation problems. This is done by transforming the deterministic
optimisation problem into a related stochastic optimisation problem and then using the rare
event simulation techniques proposed by [16]. Several recent applications demonstrate the
power of the CE method as a generic and practical tool for solving NP-hard problems [10,19].

The CE method is an iterative method involving the following two phases:

• Generation of a sample of random data (trajectories, vectors, etc.) according to a
specified random mechanism.

• Updating the parameters of the random mechanism, on the basis of the data collected,
to produce a better sample in the next iteration.

The main idea of CE in the optimisation setting is to start with an initial probability
distribution function over a feasible region (typically, a uniform distribution), and then
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update it adaptively based on a random sample collected from the feasible region. This
revision process should converge (ideally) to a discrete uniform distribution that assigns
equal positive probabilities to global optima and 0 elsewhere. Although the CE method is
still evolving, its performance has been promising in a variety of applications [10,19]. Useful
materials related to CE can be found in [17].

Now, let us consider a general optimisation where X ⊂ Rn and S(x) is a real value
objective function. The basic idea of CE for this problem is to use a stochastic approach
based on importance sampling in order to get a good evaluation of x̂

x̂ = argmaxx∈X(S(x)) (3.1)

We start from a priori probability distribution function (PDF) to draw samples and itera-
tively compute series of PDF that increase the probability to draw samples near the optimal
solutions. With respect to the main CE method the event that is used to iteratively compute
the PDF is not given by the problem but has to be chosen.
The PDF updating step translates into the following: Given a random sample of size M ,
the parameters are updated based on the Melite = ϱM best performing samples.These are
called the elite samples. The updated parameters are found to be the maximal likelihood
estimates (MLEs) of the elite samples [17].

In particular, for the normal distribution, the parameter updating is especially simple.
In the next section we will adapt the idea of using CE method in optimisation to solve the
MINLPs specified by Model 2 or Model 4 where X ⊂ R(3T−1)n × {0, 1}nT .

4 Adapted Cross Entropy method for Pricing and Production Plan-
ning

As we have seen earlier the problem of joint pricing and production planning of multiple
products becomes a mixed integer nonlinear programming problem, if we consider a non-zero
lower bound on the amount of price change. Our intention to simplify the above mentioned
problem with the nonlinearity in both objective function and some constraints is to use
CE method on a partial set of variables (price change indicators). By this adaption, for a
specific vector of price change indicator (Y ) the optimisation problem becomes a simplified
nonlinear programming problem instead of a large mixed integer nonlinear programming
problem, in which all constraints are linear.

To explain our approach, note that any of the objective functions (2.1), (2.7) and (2.14)
can be written as:

maxX,P,Y≥0f(X,P, Y ) = maxY≥0maxX,P≥0f(X,P, Y ) (3.2)

where maximizations are taken with respect to the related constraints to each problem
setting. For any fixed and feasible vector Y , the inner maximization on the right-hand side
of (3.2) can be performed using any nonlinear programming algorithm and results in the
accompanying X and P variables. The outer maximization is performed by the proposed
adapted CE method. Our approach is to develop an algorithm that involves a sequence of
generating random vectors of yjt variables ( j ∈ {1, ..., n} and t ∈ {1, ..., T}) and solving the
corresponding nonlinear programming problem. Through CE, we construct a sequence of
transition probability matrices whose entries will, ultimately, be concentrated on the optimal
pricing strategies. It is likely to encounter infeasibility in nonlinear programming problems
for some Y candidates, which we will explain later how to overcome this difficulty.
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We assume that the kth binary variable, the kth entry of Y , is a discrete random variable
with a PDF defined by Pr{Yk = 0} = Pr{Yk = 1} = 0.5 for k = 1, ..., nT . These PDF’s
define a nT × 2 initial distribution matrix P 0 as

P 0 =


0.5 0.5
0.5 0.5
...

...
0.5 0.5

 .

At the end of each iteration of the algorithm, the maximum of objective function value at
the points (Yi, Xi, Pi) becomes a lower bound for the optimal value of the problem. At
each point (Yi, Xi, Pi), Yi is a sampled binary variable vector, Xi and Pi are accompanying
production and price vectors found by solving the corresponding nonlinear programming
problem. The stop criterion for the algorithm is to find a probability distribution matrix
very close to a certainty matrix (this defines a very high probability to one possible value of
0 or 1). This is specified by the Euclidian norm of the distribution matrix. In each iteration
k, we check if |∥C∥2 − ∥PK∥2| ≤ ε, where C represents the certainty distribution matrix
and ε is a given tolerance.

In matrix C each row has two components, one of them one and the other one zero,
because it tells by certainty each yjt is zero or one, for instance:

C =


0 1
1 0
...

...
0 1

 ,

∥C∥2 =
√
02 + 12 + 12 + 02 + ...+ 02 + 12 =

√
nT

It can be easily demonstrated that among those matrices we consider for the probability
distribution of yjts, matrix P 0 has the minimum Euclidian norm whilst matrix C has the
maximum Euclidian norm. As mentioned earlier, one possible difficulty that arises is when
the current Y vector is infeasible with respect to the nonlinear programming problem’s
constraints. If this occurs, we search neighbourhood of Y to find a feasible binary vector. As
our problem consists of only binary variables for the integer part, we limit our neighbourhood
search to those points which bask in {−1, 0, 1} apart from Y . The resulting vector should
remain binary, so we keep track of original problem’s feasibility by projection of newly
generated vector to the nearest binary values before going any further. The Adapted Cross
Entropy algorithm is detailed in Table 1.

Step 1 As suggested in [17], we have used the discrete uniform distribution for the initial
probability matrix.

Step 2 When the yjt vector is fixed, integer restrictions of the problem disappear. The
degree of nonlinearity in the objective function and constraints reduces. As a result
the main mixed integer nonlinear programming problem is simplified to a nonlinear
programming problem with xjt and pjt variables and mostly linear constraints. If the
resulting nonlinear programming problem is infeasible for a Yi candidate, we conduct
a local search to find a feasible neighbour. Assume that Y0 is an infeasible candidate,
we generate a random vector of size nT , called U0 with entries in −1, 0, 1 . A new
Y vector is calculated as Y1 = U0 + Y0 , if Y1 is not feasible again, another vector U1
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Table 1: Adapted Cross Entropy (ACE) for Costly Price-Change Pricing and Production
Planning.

is generated with entries in −1, 0, 1 and then the vector Y2 = U1 + Y1 is checked for
feasibility. This process continues until a feasible vector of binary variables is found.
As the U vectors are generated randomly, we don’t get trapped in a sick loop. Also,
the feasible region for binary variables is finite which assures getting the feasible vector
in finite number of steps.

Step3 As the objective function (profit) is maximized, we sort the performance of each
sample by the value found for the nonlinear programming problem’s objective function.
Now in this step, the elite sample can be derived for the current iteration, which
consists of the best performing samples.

Step4-6 In these steps the stop criterion is checked. If the value of the best performing
objective function is better than the current lower bound, lower bound will be updated,
otherwise it remains the same. Then, lower bound is compared to some previous
iteration’s lower bounds, if any improvement has been made, more investigation is
needed, so the algorithm proceeds to step 6. If lower bound has not changed for the
last r iterations, stop.

Step7 Based on elite sample, the probability matrix is updated. For each yjt variable, a
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secondary PDF, P̃ = Pr{yjt = (x)} is calculated by evaluating the fraction that the
variable took the x value (x = 0 or 1). Then, the main probability matrix is obtained
by using a smoothing parameter to incorporate the historical matrices into play. One
desirable consequence of using smoothing parameter is to reduce the probability that
some components of the probability matrix will be zero or one in the early iterations.

Step8 The next iteration of the algorithm starts here. A new sample is generated based on
the updated matrix which is closer to the optimal solution. To obtain a new binary
vector at the iteration z , as a single member of the new sample, we use the matrix P z

in the following manner. First, the cumulative probability matrix, Cz
nT×2, is calculated

using the probability matrix P z as follows:
czi0 = P z

i (0); ∀ i ∈ {yjt; j = 1, ..., n and t = 1, ..., T},
czi1 = P z

i (0) + P z
i (1) = 1; ∀ i ∈ {yjt; j = 1, ..., n and t = 1, ..., T}.

In other words, Cz
(nT×2) is a matrix in the following form:

C =


P z
y11

(0) 1
P z
y12

(0) 1
...

...
P z
ynT

(0) 1

 =


Pr{y11 = 0} 1
Pr{y12 = 0} 1

...
...

Pr{ynT = 0} 1


Next, a random vector (u1, ..., unT ), where each ui is sampled from U [0, 1] is generated.

A new binary vector Ỹ = (ỹ11, ỹ12, ..., ỹnT ) is constructed by applying the rule: For each
i ∈ {yjt; j = 1, ..., n and t = 1, ..., T} if ui ≤ czi0 , then [Ỹ ]i = 0; otherwise [Ỹ ]i = 1. This
process is repeated M times to produce the next sample, which is likely to be better than
previous samples, as it has more knowledge about high values of the objective function that
was inherited from the previous elite samples.

Remark. A similar approach that fixes the continuous part (price variable) and finds the
integer part of each feasible solution is also investigated. A big difference between the two
approaches is that in the latter one, a linear programming problem needs to be solved at
each sample point rather than a non-linear program. In fact, the linear sub-problem is a
simple production planning problem. Moreover, more options are available to choose as the
probability distributions such as the normal, beta, or some others. However, because of the
infinite set of selections for the price variables, the joint pricing and production planning
problem is not successful in converging to an optimal solution.

5 Numerical Results

To investigate the performance of the proposed method, we have chosen a series of problems
with n = 5 products and T = 12 periods. As we consider situations in which different class
of products are presented to different market sectors, selection of n = 5 products over a
horizon of T = 12 periods (seasonal: 3 years, monthly: 1 year, weekly: 3 months) can cover
a good range of realistic size problems.

We developed a set of test problems using uniformly distributed random parameters.
The problems vary in complexity based on the chosen parameters, as the feasible area
may become very tight. The solving time of generated examples is calculated by using a
standard personal computer with an Intel 2 Core’ CPU and 2.00 GB of RAM. So, even a
small improvement in the computation time can be significant for tight problems which take
a long time to be solved. We used MAPLE 14 software to code the algorithm and implement
its NLPSolve procedure to solve nonlinear sub problems.
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In order to compare the efficiency of the ACE method with the commercial MINLP
solvers, we used the commercial software AIMMS in which, the algorithm used in handling
the MINLP is Outer Approximation (see [14]). For Nonlinear sub-problems, the solver
CONOPT and for the master Mixed-Integer Linear problems the solver CPLEX is called.
By comparing the AIMMS results and our developed algorithm in MAPLE, we found out
that there is at least 11% improvement in the local optimal objective value if we choose the
ACE algorithm.

To report the numerical potential of the ACE method in solving Costly Price Adjust-
ments in Joint Pricing and Production Planning, we run the algorithm with different settings
to solve a randomly generated problem. Here, the algorithm is tested with different values
for α, the parameter that determines how much information we extract from the history,
different values for the elite sample size, Melite and different value for the sample size M .
Figure 1 presents the performance of the ACE with different values of α. The parameter
plays a critical role in the performance of the algorithm by influencing the probability matrix
used at each iteration:

P z+1
yjt

(x) = (1− α)P z
yjt

(x) + αP̃ z+1
yjt

(x)

In this equation, the quantity α ∈ [0, 1] is the coefficient of the most recent probability
matrix, and (1 − α) is for the previous probability matrix which captures, to some extent,
the history of searches among feasible points. Therefore, by assigning a smaller α, the
method concentrates more on the old matrix, and hence behaving as a global search. In
contrast, by assigning higher values for α, the algorithm uses less of the history and, thereby
plays more of a role of a local search.

Figure 1: ACE performance for different α values

We run the ACE method for values of α from {0.1, 0.3, 0.5, 0.7, 0.9} while the sample
size was fixed at M = 100 and the elite sample size was fixed at Melite = 10. The main
observation to be drawn from Figure 1 is that the algorithm rapidly increases the objective
functions value. Another important observation is that as the value of α decreases, the
algorithm needs to evaluate more points with more iteration and hence takes longer to
converge.

Another important parameter which has considerable impact on ACE performance is the
size of the elite sample. Using elite sample, the algorithm decides how much information
it should use from the best solutions found so far. We run the ACE method for different
values of Melite = {10, 20, 50}while we have already chosen the best value for α = 0.9 and
fixed the sample size at M = 100. In Figure 2, the algorithm’s performance is demonstrated
with different choices of elite sample size.

As can be observed, for a larger elite sample, the number of iterations needed to converge
to the optimal solution is more, the performance gets worse with larger values of elite sample
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Figure 2: ACE performance for different elite sample size, Melite

size. This should be the case, as intuitively is clear that by having more contribution from
the not great solutions we actually postpone reaching to the optimal solution.
We also investigated the impact of the sample size on the performance of the ACE method.
We test the algorithm for different sample sizes M = {100, 200, 500, 700, 1000} while α = 0.9
and fixed the elite sample size at Melite = 10. Figure 3 illustrates the performance of the
algorithm.

Figure 3: ACE performance for different sample size, M

As expected, the greater the sample size, the more of the feasible region is explored at
each iteration. It is important to note that we may have to compromise between the sample
size and the running time, generally larger samples need more of the CPU time. But, in our
example, the greater the sample size, the less iteration needed to converge to the solution.
Interestingly in our problem, each iteration is not highly affected by the sample size, so it’s
recommended to choose a bigger sample size to benefit from the less number of iterations.

The numerical results for 5 products, 12 periods problem may suggest an acceptable
tuning for the ACE method. Our computational experiments suggest that the best choice
of parameters for the problem under study are α = 0.9, Melite = 10 and M = 1000.

6 Conclusion

In this paper we incorporated price-change costs into integrated production and pricing
models for a multiple-product setting. More specifically, we considered a firm with a common
production capacity shared amongst multiple products. We showed that by using a chance
constrained approach we can convert the computationally difficult case of uncertain price-
dependent demand to a model similar to the deterministic case. Both systems of fixed and
variable price-change costs were studied, and we focussed our effort on the adaption of the
CE method to the more difficult model. Our developed Adapted Cross Entropy (ACE)
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algorithm tackles the formulated Mixed Integer Nonlinear Program in an iterative manner
until a good optimal solution is found. The ACE method has a strong search property,
and in a small number of iterations approached the optimal solution much better than the
existing commercial packages. As numerical results showed, there is promise in the CE
method to solve such large optimisation problems.
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