
2016



416 H. MAURER AND M. DO ROSARIO DE PINHO

variable is the rate of vaccination applied in the susceptible compartment. We shall consider
various control, mixed control-state and pure state constraints. Our L1 objective is the
integral over the weighted sum of the number of infectious individuals and the (linear) cost
of vaccines. We discuss the necessary optimality conditions of the Maximum Principle for
all classes of control and state constraints and present numerical solutions that satisfy the
necessary optimality conditions with high accuracy. In some cases, we are able to check
sufficient optimality conditions.

In Section 2, several optimal control problems for SEIR models are discussed with differ-
ent types of control and state constraints. In the following sections, we compare numerical
solutions for two different weights in the control cost. Section 3 gives a brief account of
numerical methods that we use in our computations. We focus on discretization and nonlin-
ear programming methods for which efficient implementations have been developed in the
last three decades. In Section 4, we consider the basic SEIR control problem with a simple
control constraint. Since the control variable appears linearly in the Hamiltonian, the Maxi-
mum Principle leads to either bang-bang or singular controls. We derive an expression of the
singular control in terms of the state and adjoint variable. The numerical solution furnishes
an optimal control with a bang-singular-bang structure. The solution exhibits a rather high
total number W of vaccines. For that reason, in Section 5 we consider a terminal constraint
for the total number W (T ) at the terminal time T . For a small weight in the control cost,
the control has a bang-singular-bang structure, whereas for a larger weight the control is
bang-bang with only one switch. Section 6 considers a mixed control-state constraint which
was introduced by Biswas et al. [1]. The constraint is motivated by the observation that it is
a more realistic scenario to consider a limited supply of vaccines at each instant of time than
to merely limit the total amount of vaccines. Finally, in Section 7 we study the basic control
problem with a pure state constraint, where an upper bound is imposed on the number of
susceptible individuals.

2 Optimal Control Problems for SEIR Models with L1–Objectives

In SEIR models, the population is divided into four compartments. An individual is in the
S compartment if susceptible (vulnerable) to the disease. Those infected, but not able to
transmit the disease, are in the E compartment of exposed individuals. Infected individuals
capable of spreading the disease are in the I compartment and those who are immune are in
the R compartment. In SEIR models, everyone is assumed to be susceptible to the disease
by birth and the disease is transmitted to the individual by horizontal incidence, i.e., a
susceptible individual becomes exposed when in contact with infectious individuals. Let
S(t), E(t), I(t), and R(t) denote the number of individuals in the susceptible, exposed,
infectious and recovered compartments at time t respectively. The total population is

N(t) = S(t) + E(t) + I(t) +R(t).

The disease transmission in a certain population is described by the parameters e, the rate at
which the exposed individuals become infectious, g, the rate at which infectious individuals
recover, and a, the death rate due to the disease. Also b is the natural birth rate and d
denotes the natural death rate. Let c be the incidence coefficient of horizontal transmission.
Then the rate of transmission of the disease is cS(t)I(t). For simplicity, the parameters are
assumed as constants although they may vary in reality if the time horizon is large. Recall
that the control u(t) represents the rate of vaccination per unit time. It is assumed that all
vaccinated susceptible individuals become immune.



OPTIMAL CONTROL OF SEIR MODELS WITH L1–OBJECTIVES 417

In the following, we consider the dynamical system of a SEIR model which is similar to
that in Neilan, Lenhart [29] and takes into account the variable population size N(t); cf.
the SIR model in Ledzewicz, Schättler [20]:

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)/N(t)− u(t)S(t), S(0) = S0, (2.1)

Ė(t) = cS(t)I(t)/N(t)− (e+ d)E(t), E(0) = E0, (2.2)

İ(t) = eE(t)− (g + a+ d)I(t), I(0) = I0, (2.3)

Ṅ(t) = (b− d)N(t)− aI(t), N(0) = N0 (2.4)

Since u(t) represents the rate of vaccination per unit time, it is reasonable to impose a
bound on the control which is chosen as

0 ≤ u(t) ≤ 1 for æ t ∈ [0, T ]. (2.5)

The recovered population is related to the total population by

R(t) = N(t)− S(t)− E(t)− I(t),

which gives the differential equation

Ṙ(t) = gI(t)− dR(t) + u(t)S(t), R(0) = R0. (2.6)

To keep track of the number of vaccinated individuals we introduce an extra variable W
that satisfies the equation

Ẇ (t) = u(t)S(t), W (0) = 0. (2.7)

The papers by Biswas et al. [1], Neilan and Lenhart [29], Gaff and Schaefer [12] consider
control quadratic cost functionals of L2–type. Schättler et al. [34] point out that a control
quadratic cost is rarely appropriate for problems with a biological or biomedical background.
Therefore, we consider a L1–cost functional that is linear with respect to the control variable
u (cf. also [34]):

J(x, u) =

∫ T

0

(I(t) +Bu(t)) dt (B > 0). (2.8)

Our basic optimal control problem then consists of determining a piecewise continuous control
function u : [0, T ] → R that minimizes the L1–type functional (2.8) subject to the dynamic
constraints (2.1)–(2.4) and control constraint (2.5). We shall consider several extensions of
the basic control problem. Firstly, as in Neilan and Lenhart [29] we impose the terminal
constraint

W (T ) ≤ WT with WT > 0. (2.9)

Biswas et al. [1] argue that it is more realistic to limit the supply of vaccines at each time t
rather than limiting the total number of vaccines as in the boundary condition (2.9). This
leads to a mixed control-state constraint of the form:

u(t)S(t) ≤ V0 for æ t ∈ [0, T ], (2.10)

where V0 > 0 is an upper bound on vaccines available at each instant t. The inequality (2.10)
is also known in the literature as state dependent control constraint. The constraint (2.9)
will be satisfied only at the terminal time T , whereas the mixed constraint (2.10) should
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hold at all times during the whole vaccination program. Furthermore, we shall consider the
following pure state inequality constraint

S(t) ≤ Smax ∀ t ∈ [0, T ]. (2.11)

Since the control u appears linearly in the system dynamics and the objective, the necessary
optimality condition of Pontryagin’s Maximum Principle show that any optimal control is a
concatenation of arcs that are either of bang-bang or singular type. The notion ”bang-bang
arc” or ”singular arc” even refers to the mixed constraint (2.10) itself which will be explained
in section 6.

Table 1 presents the values of the initial conditions, parameters and constants which we
use in our computations. Apart from the weight parameter B in the cost functional and
the incidence coefficient c they coincide with those in [29]. The higher value c = 1.3 results
from the fact that the value c = 0.001 in [29] has to be multiplied by an average value of
the population size N to account for the variable population size N in the denominator of
equations (2.1) and (2.2). In the following computations we shall keep the rather high birth

Table 1: Parameters with their clinically approved values and constants as in [1, 29].

Parameter Description Value

b natural birth rate 0.525
d natural death rate 0.5
c incidence coefficient 1.3
e exposed to infectious rate 0.5
g recovery rate 0.1
a disease induced death rate 0.2
B weight parameter ∈ [2, 10]
T number of years 20
S0 initial susceptible population 1000
E0 initial exposed population 100
I0 initial infected population 50
R0 initial recovered population 15
N0 initial population 1165
W0 initial vaccinated population 0

rate b = 0.525 and death rate d = 0.5. However, using smaller values of birth and death
rate we obtained the same optimal control structure, i.e., the same sequence of bang-bang
and singular arcs.

3 Numerical Methods: Verification of Necessary and Sufficient
Conditions

We obtain numerical solutions of the SEIR control problems by applying direct optimization
methods, i.e., we discretize the control problem and use nonlinear programming methods.
The discretized optimal control problem can be conveniently formulated as a nonlinear
pogramming problem (NLP) with the help of the Applied Modeling Programming Lan-
guage AMPL created by Fourer et al. [11]. AMPL can be interfaced to the Interior-Point
optimization solver IPOPT, which was developed by Wächter and Biegler [36] to solve
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large scale optimization problems. The task of formulating and solving the discretized con-
trol problem can be facilitated by employing the Imperial College London Optimal Control
Software ICLOCS [10]. This is an optimal control interface, implemented in Matlab, that
also calls the solver IPOPT. For a study of different optimal control solvers see [31].

In our computations, we mostly choose N = 10000 or N = 20000 grid points and the
Implicit Euler Scheme or the Trapezoidal Rule to compute the solution with an error tol-
erance less than 10−8. Alternatively, we use he control package NUDOCCCS developed
by C. Büskens [3] (cf. also [4]) which provides another approach to solving discretized con-
trol problems using nonlinear programming methods. Since high-order adaptive integration
methods are implemented in NUDOCCCS, one needs less than N = 1000 grid points to
obtain highly accurate solutions.

Although we do not show in all cases that the numerical solution is indeed a (local)
optimum, we do however validate our findings. Using the Lagrange multipliers provided by
the optimization solver IPOPT or by NUDOCCCS, we can validate our numerical solution
by showing that it satisfies the necessary condition of optimality with high accuracy. In the
special case that the control is bang-bang, we can do better by showing that second-order
sufficient conditions (SSC) are satisfied. Here, we solve the so-called Induced Optimization
Problem, where switching times are directly optimized, and show that SSC are satisfied
for the Induced Optimization Problem and that the strict bang-bang property holds; cf.
Maurer, Büskens, Kim, Kaya [25] and Osmolovskii, Maurer [30]. The test of SSC can be
conveniently carried out by implementing the arc-parametrization method [25] in the control
package NUDOCCCS. This approach also allows to perform a sensitivity analysis of the
optimal solution with respect to changes in the parameters.

4 Solution of the Basic Optimal Control Problem

4.1 Necessary Optimality Conditions: Maximum Principle

The basic optimal control problem is written in a compact form as

(OCP )



Minimize J(x, u) =

∫ T

0

(I(t) +Bu(t)) dt

subject to

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)/N(t)− u(t)S(t), S(0) = S0,

Ė(t) = cS(t)I(t)/N(t)− (e+ d)E(t), E(0) = E0,

İ(t) = eE(t)− (g + a+ d)I(t), I(0) = I0,

Ṅ(t) = (b− d)N(t)− aI(t), N(0) = N0,
u(t) ∈ [0, 1] for æ t ∈ [0, T ],

The state vector is given by x = (S,E, I,N). Since the control variable appears linearly in
the dynamics, the right hand side of the ODEs has the form

ẋ = f(x) + g(x)u, f(x) =


bN − dS − cSI/N
cSI/N − (e+ d)E
eE − (g + a+ d)I
(b− d)N − aI

 , g(x) =


−S
0
0
0

 . (4.1)

The integrand of the objective is denoted by L(x, u) = I +Bu.
In the following, we shall evaluate the necessary optimality condition of the Maximum

Principle for problem (OCP ). Since we are maximizing −J(x, u), the standard Hamiltonian
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function is given by

H(x, p, u) = −λL(x, u) + ⟨p, f(x) + g(x)u⟩, λ ∈ R, (4.2)

where p = (pS , pE , pI , pN ) ∈ R4 denotes the adjoint variable.
Let (x∗, u∗) ∈ W 1,∞([0, T ],R4)×L∞([0, T ],R) be an optimal state and control pair. Then

the Maximum Principle (cf. [7,15,32]) asserts the existence of a scalar λ ≥ 0, an absolutely
continuous function p : [0, T ] → R4 such that the following conditions are satisfied almost
everywhere, where the time argument [t] denotes the evaluation along the optimal solution:

(i) max{|p(t)| : t ∈ [0, T ]}+ λ > 0,

(ii) (adjoint equation and transversality condition)

ṗ(t) = −Hx[t] = λLx[t]− ⟨p(t), fx[t] + gx[t]u∗(t)⟩,
p(T ) = (0, 0, 0, 0),

(iii) (maximum condition for Hamiltonian H)

H(x∗(t), p(t), u∗(t)) = max
u

{H(x∗(t), p(t), u) | 0 ≤ u ≤ 1 }.

The adjoint equations in (ii) for the adjoint variable p = (pS , pE , pI , pN ) are explicitly given
by

ṗS(t) = pS(t)(d+ cI∗(t)/N∗(t) + u∗(t))− pE(t) c I∗(t)/N∗(t), (4.3)

ṗE(t) = pE(t)(e+ d)− pI(t) e, (4.4)

ṗI(t) = 1 + (pS(t)− pE(t)) c S∗(t)/N∗(t) + pI(t)(g + a+ d) + pN (t) a, (4.5)

ṗN (t) = −pS(t) b+ (pE(t)− pS(t))c S∗(t) I∗(t)/N∗(t)
2 − pN (t)(b− d). (4.6)

To evaluate the maximum condition (iii) for the Hamiltonian H, we consider the switching
function

ϕ(x, p) = Hu(x, u, p) = −B − pS S, ϕ(t) = ϕ(x(t), p(t)). (4.7)

Then the condition (iii) is equivalent to the maximum condition

ϕ(t)u∗(t) = max
u

{ϕ(t)u | 0 ≤ u ≤ 1 }, (4.8)

which gives the control law

u∗(t) =


1 , if ϕ(t) > 0

0 , if ϕ(t) < 0

singular , if ϕ(t) = 0 ∀ t ∈ [t1, t2] ⊂ [0, T ]

 . (4.9)

Any isolated zero of the switching function ϕ(t) yields a switch of the control from 1 to 0 or
vice versa. The control u is called bang-bang on an interval [t1, t2] ⊂ [0, T ], if the switching
function ϕ(t) has only isolated zeros on [t1, t2]. The control u is called singular on an interval
[t1, t2] ⊂ [0, T ], if the switching function ϕ(t) vanishes identically on [t1, t2]. The optimal
control is a concatenation of arcs that are either bang-bang and singular.

Our computations in the next section show indeed that singular control arcs may occur.
Hence, the singular case needs further analysis. To compute an expression for the singular
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control, we differentiate the relation ϕ(t) = −B − pS(t)S(t) = 0 holding on a time interval
[t1, t2] ⊂ [0, T ]. The derivatives can be computed using Lie-brackets; cf. Schättler, Ledzewicz
[33]. Here, we compute the derivatives directly using the state and adjoint equations. For
the first derivative we get omitting the time argument:

ϕ̇ = pE c I S/N − pS bN = 0. (4.10)

In agreement with the theory, the control variable u does not appear in the first derivative.
From ϕ = −B − ps S = 0 we get pS = −B/S . Substituting this expression into ϕ̇ = 0 and
multiplying with S, we obtain the relation

ϕ̇ · S = B bN + pE c I S2/N = 0. (4.11)

The total time derivative of this equation yields 0 = d(ϕ̇ S)
dt = ϕ̈ S, since ϕ̇(t) = 0 holds.

Using the state and adjoint equations again, we get an expression for the second derivative
ϕ̈ which contains the control variable u explicitly. Hence, the singular arc has order one.
Setting ϕ̈ = 0 we can solve for the control variable u which yields the singular control

using(x, p) = B bN((b− d)N − a I)/(pE c I S2) + eE/(2 I)− (g + a− e)/2

+bN/S − d− c I/N.
(4.12)

The elimination of u from ϕ̈ = 0 is possible, since the strict Generalized Legendre-Clebsch
Condition (GLC) holds:

∂ϕ̈

∂u
= −pE 2 c I S/N > 0 . (4.13)

This inequality follows from (4.11) in view of pEcIS/N = −BbN/S < 0, N(t) > 0 and
S(t) > 0.

4.2 Comparison of Solutions for B = 2 and B = 10

For both weights B = 2 and B = 10, AMPL/IPOPT and NUDOCCCS furnish the control
structure

u(t) =

 1 for 0 ≤ t < t1
using(x(t), p(t)) for t1 ≤ t ≤ t2
0 for t2 < t ≤ T

 . (4.14)

The optimal state and control variables are shown in Figure 1. We do not exhibit the
corresponding adjoint variables p = (pS , pE , pI , pN ) but only list the computed initial values
p(0).

Numerical results for B = 2 :

J = 211.498, t1 = 6.67, t2 = 10.98,

S(T ) = 1854.44, E(T ) = 0.533561, I(T ) = 0.375550,

N(T ) = 1861.07, R(T ) = 5.72302, W (T ) = 4379.26,

pS(0) = −0.031835, pE(0) = −0.92789, pI(0) = −1.9944,

pN (0) = 0.025736.

(4.15)
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Figure 1: State and control variables for basic control problem with control constraint
0 ≤ u(t) ≤ 1: comparison for weights B = 2 and B = 10. Top row: (left) susceptible
population S, (right) total population N . Row 2: (left) exposed population E, (right)
infectious population I. Row 3 (left) recovered population R, (right) vaccinated individuals
W . Bottom row: (left) B = 2. control u and (scaled) switching function ϕ satisfying the
control law (4.9), (right) B = 10: control u and (scaled) switching function ϕ satisfying the
control law (4.9).

Numerical results for B = 10 :

J = 262.395, t1 = 2.80, t2 = 8.25,

S(T ) = 1852.57, E(T ) = 1.60151, I(T ) = 1.12569,

N(T ) = 1856.71, R(T ) = 1.40908, W (T ) = 2815.38,

pS(0) = −0.036259, pE(0) = −1.0277, pI(0) = −2.1343,

pN (0) = 0.028828.

(4.16)

The bottom row of Figure 1 clearly exhibits a significant difference of the controls for B = 2
and B = 10, since the bang-bang arc with u(t) = 1 for B = 10 is much smaller than that
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for B = 2. Note, however, that the infectious population I(t) is nearly the same for both
weights and, hence, the total population N is nearly identical in view of equation (2.4).
We are not aware in the literature on epidemiological models that singular controls have
actually been computed, though a theoretical analysis of singular controls in SIR models
may be found in Ledzewicz, Schättler [20].

Note that the correctness of the formula (4.12) for the singular control can be checked in
the following way: evaluate the singular control using(x(t), p(t)) by inserting the computed
state and adjoint variables (x(t), p(t)) into the formula (4.12) and then check whether the
obtained values are in complete agreement with the values of the directly computed control
u(t). In our problem, this is indeed the case.

For practical reasons it is convenient to approximate the bang-singular-bang by the
following simpler control protocol, where the singular arc is replaced by a constant control
uc :

u(t) =

 1 for 0 ≤ t < t1
uc for t1 ≤ t ≤ t2
0 for t2 < t ≤ T

 . (4.17)

Figure 2: Weight B = 10: Comparison of basic and approximate control problem for control
constraint 0 ≤ u(t) ≤ 1. Top row: (left) control u in (4.14), (right) susceptible population
S. Bottom row: (left) approximate control u in (4.17), (right) susceptible population S for
approximate control u.

To optimize the constant control uc and the switching times t1 and t2 we use the arc-
parametrization method [25] and implement the code NUDOCCCS with a Runge-Kutta
method of 7th order.

Numerical results for the approximating control with B = 10:

J = 262.590, uc = 0.414934,

t1 = 3.54707, t2 = 7.16272,

S(T ) = 1852.70, E(T ) = 1.62707, I(T ) = 1.14359,

N(T ) = 1856.73, R(T ) = 1.25718, W (T ) = 2782.16.

(4.18)
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It is remarkable that the optimal value J = 262.590 of the approximate control problem is
very close to the optimal value J = 262.395 in (4.16). Also it is noteworthy that second-
order sufficient conditions are satisfied for the induced optimization problem with respect to
the optimization variables t1, t2, uc. In Figure 2, the optimal and approximate control and
susceptible population S are compared for B = 10.

5 Solution with Terminal Constraints W (T ) = WT

For the basic optimal control problem (OCP ) we obtained the terminal value W (T ) =
4379.26 for B = 2 and W (T ) = 2815.38 for B = 10. In order to reduce the total number of
vaccinated individuals, we prescribe as in [29] the much smaller terminal valueW (T ) = 2500.
Then the necessary optimality conditions slightly change, since we have to take into account
the equation (2.7) for W ,

Ẇ (t) = u(t)S(t), W (0) = 0.

Now the state vector is x = (S,E, I,N,W ) ∈ R5, while the adjoint variable is p =
(pS , pE , pI , pN , pW ) ∈ R5. The adjoint equations ṗ(t) = −Hx[t] are explicitly:

ṗS(t) = pS(t)(d+ cI∗(t)/N∗(t) + u∗(t))− pE(t) c I∗(t)/N∗(t)− pW (t)u∗(t),

ṗE(t) = pE(t)(e+ d)− pI(t) e,

ṗI(t) = 1 + (pS(t)− pE(t)) c S∗(t)/N∗(t) + pI(t)(g + a+ d) + pN (t) a,

ṗN (t) = −pS(t) b+ (pE(t)− pS(t))c S∗(t) I∗(t)/N∗(t)
2 − pN (t)(b− d),

ṗW (t) = 0.

(5.1)

The transversality condition is (pS , pE , pI , pN )(T ) = (0, 0, 0, 0), whereas no terminal condi-
tion is prescribed for the (constant) adjoint variable pW . The modified switching function
ϕ becomes

ϕ(x, p) = Hu(x, u, p) = −B − pS S + pW S, ϕ(t) = ϕ(x(t), p(t)). (5.2)

Then the maximization of the Hamiltonian with respect to the control u gives the control
law

u∗(t) =


1 , if ϕ(t) > 0

0 , if ϕ(t) < 0

singular , if ϕ(t) = 0 ∀ t ∈ [t1, t2] ⊂ [0, T ]

 . (5.3)

For B = 10 we get the bang-singular-bang control

u(t) =

 1 for 0 ≤ t < t1
using(x(t), p(t)) for t1 ≤ t ≤ t2
0 for t2 < t ≤ T

 . (5.4)

Numerical results for B = 10 :

J = 263.135, t1 = 2.77, t2 = 6.61,
S(T ) = 1851.23, E(T ) = 1.95711, I(T ) = 1.37562,
N(T ) = 1855.53, R(T ) = 0.959596, W (T ) = 2500.0,
pS(0) = −0.040687, pE(0) = −1.0533, pI(0) = −2.1674,
pN (0) = 0.021094, pW (t) ≡ 0.011227.

(5.5)
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Figure 3: State and control variables for the basic control problem with control constraint
0 ≤ u(t) ≤ 1 and terminal constraint W (T ) = 2500: comparison for weights B = 2 and
B = 10. Top row: (left) susceptible population S, (right) total population N . Row 2: (left)
exposed population E, (right) infectious population I. Row 3 (left) recovered population
R, (right) vaccinated individuals W . Bottom row: (left) B = 2: control u and (scaled)
switching function ϕ satisfying the control law (5.3), (right) B = 10: control u and (scaled)
switching function ϕ satisfying the control law (5.3).

However, for B = 2 the control does not possess a singular arc and is bang-bang with one
switch:

u(t) =

{
1 for 0 ≤ t < t1
0 for t1 < t ≤ T

}
. (5.6)

Thus, the Induced Optimization Problem has only one optimization variable t1.
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Numerical results for B = 2 using the arc-parametrization method [25] :

J = 223.682, t1 = 5.11953,
S(T ) = 1852.48, E(T ) = 1.89232, I(T ) = 1.32995,
N(T ) = 1856.51, R(T ) = 0.810966, W (T ) = 2500.0,
pS(0) = −0.049169, pE(0) = −1.0282, pI(0) = −2.1236,
pN (0) = −0.0042893, pW (t) ≡ −0.019887.

(5.7)

A comparison of optimal state and control variables is presented in Figure 3.

6 Solution for Mixed Control-State Constraint uS ≤ 125

In this section, we consider the pointwise mixed control-state constraint (2.10),

u(t)S(t) ≤ V0 for æ t ∈ [0, T ], (6.1)

instead of the terminal condition W (T ) = WT = 2500. Since the time horizon is T = 20,
a convenient choice of the bound is V0 = WT /20 = 125. We write the mixed control-state
constraint in the form

m(x, u) = uS − V0 ≤ 0. (6.2)

On every boundary arc of the mixed constraint withm(x(t), u(t)) = 0, the following regularity
condition holds:

mu(x(t), u(t)) = S(t) ̸= 0. (6.3)

6.1 Evaluation of the Maximum Principle

Let the pair (x∗, u∗) be a local minimum. We shall evaluate the necessary optimality condi-
tion of the Maximum Principle as given in [7] (cf. also [15,27]). We use again the standard
Hamiltonian function (4.2) defined by

H(x, p, u) = −λL(x, u) + ⟨p, f(x) + g(x)u⟩, λ ∈ R, p ∈ R4,

where p = (pS , pE , pI , pN ) ∈ R4 denotes the adjoint variable. Then the augmented Hamilto-
nian is obtained by adjoining the mixed constraint by a multiplier q ∈ R to the Hamiltonian:

H(x, p, q, u) = H(x, p, u)− q m(x, u).

Here, the minus sign is due to the fact that theMaximum Principle assumes that the control-
state constraint is written in the form −m(x, u) = V0 − uS ≥ 0. In view of the regularity
condition (6.3), Theorem 7.1 in [7] (cf. also [15, 27]) asserts the existence of a scalar λ ≥ 0,
an absolutely continuous function p : [0, T ] → R4 and an integrable function q : [0, T ] → R
such that the following conditions are satisfied almost everywhere:

(i) max{|p(t)| : t ∈ [0, T ]}+ λ > 0,

(ii) (adjoint equation and transversality condition)

ṗ(t) = −Hx[t] = λLx[t]− ⟨p(t), fx[t] + gx[t]u∗(t)⟩+ q(t)mx[t],

p(T ) = (0, 0, 0, 0),
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(iii) (maximum condition for Hamiltonian H)

H(x∗(t), p(t), u∗(t)) = max
u

{H(x∗(t), p(t), u) | 0 ≤ u ≤ 1, m(x∗(t), u) ≤ 0 },

(iv) (local maximum condition for augmented Hamiltonian H)

µ(t) = Hu[t] = −Lu[t] + ⟨p(t), g[t]⟩ − q(t)mu[t] ∈ N[0,1](u∗(t)),

(v) (complementarity condition)

q(t)m(x∗(t), u∗(t)) = q(t) (u∗(t)S∗(t)− V0) = 0 and q(t) ≥ 0.

In (iv), N[0,1](u∗(t)) stands for the normal cone from convex analysis to [0, 1] at the optimal
control u∗(t) (see e.g. [5]) and it reduces to {0} when u∗(t) ∈]0, 1[. Since the terminal state
x(T ) is free, it is easy to prove that the above necessary conditions hold with λ = 1; for
a complete discussion see [1]. Hence, our problem is normal. We can further prove the
existence of a constant K1

q such that

|q(t)| ≤ K1
q |p(t)| (6.4)

for almost every t ∈ [0, T ] (see [7]).
Now we want to extract information from the conclusions (i)–(v) with λ = 1 which will

be used later to validate our numerical solution. The adjoint equations in (ii) for the adjoint
variable p = (pS , pE , pI , pN ) read explicitly:

ṗS(t) = pS(t)(d+ cI∗(t)/N∗(t) + u∗(t))− pE(t) c I∗(t)/N∗(t) + q(t)u∗(t), (6.5)

ṗE(t) = pE(t)(e+ d)− pI(t) e, (6.6)

ṗI(t) = 1 + (pS(t)− pE(t)) c S∗(t)/N∗(t) + pI(t)(g + a+ d) + pN (t) a, (6.7)

ṗN (t) = −pS(t) b+ (pE(t)− pS(t))c S∗(t) I∗(t)/N∗(t)
2 − pN (t)(b− d). (6.8)

Next, we evaluate the maximum condition (iii) for the Hamiltonian H. As in (4.7) the
switching function ϕ is given by

ϕ(x, p) = Hu(x, u, p) = −B − pS S, ϕ(t) = ϕ(x(t), p(t)). (6.9)

Then the condition (iii) is equivalent to the maximum condition

ϕ(t)u∗(t) = max
u

{ϕ(t)u | 0 ≤ u ≤ 1, u S∗(t) ≤ V0 }, (6.10)

which yields the control law

u∗(t) =

 min

{
1 ,

V0

S∗(t)

}
, if ϕ(t) > 0

0 , if ϕ(t) < 0.

 . (6.11)

Any isolated zero of the switching function ϕ(t) yields a switch of the control from
min{1, V0/S∗(t)} to 0 or vice versa. If ϕ(t) = 0 holds on an interval [t1, t2] ⊂ [0, T ],
then we have a singular control. However, due to the small bound V0 we did not obtain
singular controls. Moreover, we always have 0 < u∗(t) < 1 on a boundary arc of the mixed
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constraint uS ≤ V0, i.e., whenever u∗(t) = V0/S∗(t) holds. Hence, the control is determined
by

u∗(t) =

{
V0/S∗(t) , if ϕ(t) > 0

0 , if ϕ(t) < 0.

}
. (6.12)

Due to 0 < u∗(t) < 1 the multiplier µ(t) in (iv) vanishes, which yields the relation

0 = µ(t) = Hu[t] = −B − pS(t)S∗(t)− q(t)S∗(t).

This allows us to compute the multiplier q(t) for which we get in view of the complementarity
condition (v):

q(t) =

 − B

S∗(t)
− ps(t) = ϕ(t)/S∗(t) , if u∗(t) = V0/S∗(t)

0 , if u∗(t) < V0/S∗(t)

 . (6.13)

6.2 Comparison of Optimal Solutions for Weights B = 2 and B = 10

For both weights B = 2 and B = 10 we find the following control structure with one
boundary arc u(t)S(t) = V0 in [0, t1]:

u∗(t)S∗(t) =

{
V0 , for 0 ≤ t ≤ t1
0 , for t1 < t ≤ T

}
. (6.14)

Thus the new control variable v defined by v = uS is a bang-bang control with a single switch
at t1. This transformation of control variables has been studied in Maurer, Osmolovskii [26].
Hence, the Induced Optimization Problem for the bang-bang control problem (cf. [25, 30])
has the single optimization variable t1 and the cost functional becomes a function J = J(t1).
The arc-parametrization method in [25] and the code NUDOCCCS provide the following
results for B = 2,

J = 342.909, t1 = 16.8862,
S(T ) = 1763.12, E(T ) = 3.21607, I(T ) = 2.31859,
N(T ) = 1821.98, R(T ) = 53.3217, W (T ) = 2110.77
pS(0) = −0.13858, pE(0) = −1.5728, pI(0) = −3.1689,
pN (0) = 0.026592,

(6.15)

and for B = 10,

J = 356.793, t1 = 13.3784,
S(T ) = 1805.01, E(T ) = 3.95907, I(T ) = 2.79733,
N(T ) = 1821.60, R(T ) = 9.82591, W (T ) = 1672.31,
pS(0) = −0.13797, pE(0) = −1.5855, pI(0) = −3.1919,
pN (0) = 0.038863.

(6.16)

The optimal state variables for B = 2 and B = 10 are shown in Figure 4. Figure 5 displays
the controls u and switching functions ϕ as well as the constraint functions u(t)S(t) in
relation to the multiplier q in (6.13). It can be seen from Figure 5 that the following strict
bang-bang property (cf. the definition in [25,30]) holds for B = 2 and B = 10:

ϕ(t) > 0 for 0 ≤ t < t1, ϕ̇(t1) < 0, ϕ(t) < 0 for t1 < t ≤ T.
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Figure 4: State variables for basic control problem with mixed control-state constraint
u(t)S(t) ≤ 125: comparison for weights B = 2 and B = 10. Top row: (left) susceptible
population S, (right) total population N . Middle row: (left) exposed population E, (right)
infectious population I. Bottom row: (left) recovered population R, (right) vaccinated
individuals W .

Recall that the objective J = J(t1) is a function of the single optimization variable t1. The
second derivative of J(t1) is computed as:

B = 10 : J ′′(t1) = 0.3530 > 0 ; B = 2 : J ′′(t1) = 0.1787 > 0 .

Hence, it follows from [30], Chapter 7, and [25] that the solutions shown in Figures 4 and 5
provide a strict strong minimum.

7 Optimal Solution for State Constraint S(t) ≤ Smax = 1300 and
Terminal Constraint W (T ) ≤ WT

We infer from Figure 1 that the susceptible population S(t) assumes rather large values,
when only control constraints u(t) ∈ [0, 1] are present. Imposing a smaller terminal value
S(T ) does not prevent the solution from reaching large intermediate values S(t). For that
reason we require the point-wise state constraint (2.11),

S(t) ≤ Smax ∀ t ∈ [0, T ], (7.1)

with an appropriate value Smax that will be specified below. Let use first write the state
constraint in the form

s(x) = S − Smax ≤ 0. (7.2)
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Figure 5: State and control variables for basic control problem with mixed control-state
constraint u(t)S(t) ≤ 125: comparison for weights B = 2 and B = 10. Top row: Weight
B = 2: (left) control u and (scaled) switching function ϕ, (right) function uS and multiplier
q in (6.13). Bottom row: Weight B = 10: (left) control u and (scaled) switching function ϕ,
(right) function uS and multiplier q in (6.13).

This is a state constraint of order one, since the control variable u appears in the first total
time derivative of s(x), cf. [14, 24]:

s(1)(x, u) =
d

dt
s(x) = Ṡ = bN − dS − cSI/N − uS.

The state constraint satisfies the regularity condition

∂

∂u
s(1)(x(t), u(t)) = S(t) ̸= 0 (7.3)

on every boundary arc [t1, t2] ⊂ [0, T ] with S(t) = Smax. Then the boundary control u =
ub(x) is determined by the equation s(1)(x, u) = 0 as the feedback control

u = ub(x) = bN/S − d− cI/N. (7.4)

When we choose small values for the upper bound Smax ≥ S(0), the terminal value W (T )
can attain rather large values. For that reason we impose, as in Section 5, the constraint
(2.9),

W (T ) ≤ WT ,

and take into account the equation

Ẇ (t) = u(t)S(t), W (0) = 0.

7.1 Evaluation of the Maximum Principle

Now we shall evaluate the necessary optimality condition of the Maximum Principle as given
in [14,24]. In view of the regularity condition (7.3), the multiplier associated with the state
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constraint has a density q which is a differentiable function on the boundary arc [24]. The
Hamiltonian function is given by

H(x, p, u) = −λL(x, u) + ⟨p, f(x) + g(x)u⟩, λ ∈ R, p = (pS , pE , pI , pN , pW ) ∈ R5.

The augmented Hamiltonian is defined by adjoining the state constraint

−s(x) = Smax − S ≥ 0

to the Hamiltonian H by a multiplier q, cf. [14]:

H(x, p, q, u) = H(x, p, u)− q s(x) = H(x, p, u)− q(S − Smax).

Let the pair (x∗, u∗) be a local minimum. In view of the regularity condition (7.3), the
Maximum Principle in [14,24] asserts the existence of a scalar λ ≥ 0, an absolutely continuous
function p : [0, T ] → R5, an absolutely continuous function q : [0, T ] → R, and jump
parameters γs at any junction or contact time ts with the state boundary, such that the
following conditions are satisfied almost everywhere:

(i) max{|p(t)| : t ∈ [0, T ]}+ λ > 0,

(ii) (adjoint equation, jump conditions and transversality condition)

ṗ(t) = −Hx[t] = λLx[t]− ⟨p(t), fx[t] + gx[t]u∗(t)⟩+ q(t) sx[t],

p(ts+) = p(ts−)− γs sx(x(ts)), γs ≥ 0,

p(T ) = (0, 0, 0, 0, pW (T )) if S∗(T ) < Smax,
p(T ) = (pS(T ), 0, 0, 0, pW (T )) if S∗(T ) = Smax.

(iii) (maximum condition for Hamiltonian H)

H(x∗(t), p(t), u∗(t)) = max
0≤u≤1

H(x∗(t), p(t), u).

(iv) (complementarity condition)

q(t) s(x∗(t)) = q(t) (S∗(t)− Smax) = 0 and q(t) ≥ 0.

We assume that the problem is normal so that we can put λ = 1 in the necessary conditions.
This assumption will be verified by the numerical results. The adjoint equations in (ii) for
the adjoint variable p = (pS , pE , pI , pN , pW ) read explicitly:

ṗS(t) = pS(t)(d+ cI∗(t)/N∗(t) + u∗(t))− pE(t) c I∗(t)/N∗(t)

+pW (t)u∗(t) + q(t),

ṗE(t) = pE(t)(e+ d)− pI(t) e,

ṗI(t) = 1 + (pS(t)− pE(t)) c S∗(t)/N∗(t) + pI(t)(g + a+ d) + pN (t) a,

ṗN (t) = −pS(t) b+ (pE(t)− pS(t))c S∗(t) I∗(t)/N∗(t)
2 − pN (t)(b− d).

ṗW (t) = 0.

(7.5)

To evaluate the maximum condition (iii) for the Hamiltonian H, we need the switching
function

ϕ(x, p) = Hu(x, u, p) = −B − pS S + pW S, ϕ(t) = ϕ(x(t), p(t)), (7.6)
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which agrees with the switching function (5.2). Then the maximum condition (iii) gives

u∗(t) =

 1 , if ϕ(t) > 0,
0 , if ϕ(t) < 0,

singular or boundary control , if ϕ(t) = 0 on [t1, t2] ⊂ [0, T ].
(7.7)

A formula of a singular control using(x, p) on interior arcs with S(t) < Smax was derived in
(4.12) in Section 4.1. Recall that the boundary control (7.4) is given by ub(x) = bN/S −
d − cI/N . Computations show that 0 < ub(x(t)) < 1 holds along a boundary arc. This
implies that ϕ(t) = 0 holds on a boundary arc [t1, t2]. Hence, in view of (4.9) the boundary
control behaves formally like a singular control; cf. Maurer [23]. Differentiating the relation
ϕ = −B − pS S + pW S = 0, using the modified adjoint equations (7.5) and noting that
pW (t)S(t) is constant on a boundary arc, we get

ϕ̇ = −pSbN + pE c I S/N − q S = 0.

This equation gives the multiplier for the state constraint as a function of the state and
adjoint variables:

q = q(x, p) = −pS bN /S + pE c I/N . (7.8)

7.2 Optimal Solution Smax = 1300, W (T ) = 3000 and Weight B = 10.

We choose the upper bound Smax = 1300 in (7.1) and the terminal constraintW (T ) ≤ WT =
3000. For both weights B = 2 and B = 10, the solutions are nearly identical. Therefore, we
show only the solution for B = 10. The optimal control has two bang-bang arcs followed by
a terminal boundary arc:

u∗(t) =

 1 for 0 ≤ t < t1
0 for t1 ≤ t < t2

ub(x(t)) for t2 ≤ t ≤ T

 . (7.9)

The boundary control ub(x) is given by the expression (7.4). Using this structure the Induced
Optimization Problem consists of determining the two switching times t1 and t2 such that the
conditions S(t2) = Smax = 1300 and W (T ) = 3000 are satisfied. The arc-parametrization
method [25] and the control package NUDOCCCS yield the following numerical results:

J = 332.624, t1 = 1.32399, t2 = 7.68000,
S(T ) = 1300.0, E(T ) = 2.42694, I(T ) = 2.04866,
N(T ) = 1832.97, R(T ) = 528.498, W (T ) = 3000.0,
pS(0) = −0.096943, pE(0) = −2.3534, pI(0) = −1.2543,
pN (0) = −0.77412, pS(T ) = −0.076920.

(7.10)

Figure 6, top row, left, shows that the control is discontinuous at the junction t2 of the
singular arc with the boundary arc. Then it follows from the junction theorems in Maurer
[23] that the adjoint variable pS(·) does not have a jump at t2, i.e., γ2 = 0 holds in (ii).
Hence, the adjoint variable pS(·) is continuous on [0, T ]; cf. Figure 6, bottom row, left.

We can check that the solution shown in Figure 6 satisfies second-order sufficient con-
ditions (SSC) by applying the test of SSC in Maurer, Vossen [28]. The Jacobian of the
equality constraints S(t1) = Smax and W (T ) = 3000 with respect to the optimization vari-
ables t1, t2 is a regular 2 × 2–matrix. Moreover, the switching function ϕ(t) satisfies the
following strict bang-bang property in relation to the boundary arc, where we have ϕ(t) = 0
for all t ∈ [t2, T ] :

ϕ(t) > 0 ∀ 0 ≤ t < t1, ϕ̇(t1) < 0 ; ϕ(t) < 0 ∀ t1 < t < t2, ϕ̇(t2−) > 0.
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Figure 6: Weight B = 10: state variables for basic control problem with state constraint
S(t) ≤ Smax = 1300 and terminal constraintW (T ) ≤ 3000. Top row: (left) control u, (right)
control u and (scaled) switching function ϕ in (7.6). Middle row: (left) susceptible population
S and total population N , (right) exposed population E and infectious population I. Bottom
row: (left) continuous adjoint variable pS , (right) vaccinated individuals W .

8 Conclusion

We have studied the optimal control of an epidemiological SEIR model under various control
and state constraints. In contrast to control-quadratic L2-type objectives, which are often
used in the literature, we have assumed more realistic L1–type objectives with control ap-
pearing linearly. For each type of constraint, we have evaluated the necessary conditions of
optimality of Pontryagin’s Maximum Principle and derived explicit formulas of the multipli-
ers associated with the mixed control-state constraint and pure state constraint. Since the
control variable appears linearly in the Hamiltonian, the optimal control is a combination of
bang-bang or singular arcs and boundary arcs of the constraints. By applying discretization
and NLP methods we computed optimal control solutions that perfectly match the necessary
conditions, in particular, the switching conditions and the sign of the multipliers on bound-
ary arcs. For mixed control-state constraints, a simple control transformation allows us to
convert the original control into a bang-bang control for which we could check the second
order sufficient conditions in [26, 30]. The control and state trajectories were compared for
two weight parameters in the L1 objective.

In the future, we shall study SEIR models with vaccination and treatment stratgeis; cf.
the SIR model in [20]. Also, we are planning a more systematic study of optimal control
problems with L1-type objectives in the modeling of diseases, e.g., a study of the tuberculosis
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model in Silva, Torres [35]. To make such models more realistic, we shall introduce delays
in the state variables; cf. the survey [9] on dynamic epidemiological models with delays and
also [8, 18].
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