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process can help establish strategy to improve the productivity. To formulate the fermen-
tation process, a mathematical model is used in the optimization of bioprocess (see [4] and
references therein). In [16], a novel mathematical model is proposed to describe the concen-
tration changes of extracellular and intracellular substances. The parameter identification
and robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system in batch
culture are investigated in [6,32,33]. In [1,26,27], an excess kinetic model for substrate con-
sumption and product formation are established and the parameter identification and the
optimal control of the constructed models are investigated.

In this paper, we proposed an optimal control formulation for the microbial fermentation
in batch culture, where the yield intensity of 1,3-PD at the terminal time, which is yet to be
determined, is maximized subject to some specified to some specified continuous inequality
constraints. The construction and analysis of efficient algorithms for state constrained opti-
mal control problems is still a considerable challenge. It is motivated by the idea to exploit
the global solution of the optimal control problem. Together with the time-scaling trans-
formation and smoothing technique, an algorithm is proposed to solve the optimal control
problem. This is done in the spirit of particle swarm optimization (PSO) algorithm, but
modified in a way that fits into our particular requirements. Traditionally, the original PSO
method deals with unconstrained optimization problems. However, an optimization problem
with both control bounds and state constraints cannot be applied directly. Moreover, if an
updated particle doesn ’t satisfy the constraints in the procedure, the information of the
previous computation for this particle will be wasted. So, in this paper, the gradients of con-
straints are utilized and a reflection strategy is introduced to handle this situation.Numerical
results show that by employing the optimal control strategy, the concentration of 1,3-PD at
the terminal time is higher when compared with the previous results.

Our paper is organized as follows. In Section 2, a nonlinear dynamical system of batch
culture is reviewed. In Section 3, we propose an optimal control model and some properties
of the nonlinear dynamical system are discussed. Then, using the time-scaling technique
and smoothing method, the approximate problems are presented and the main theorems
about the gradient information are derived in Section 4. In Section 5, we develop a modified
PSO algorithm to solve the optimal control model. The numerical results are illustrated in
Section 6 . Finally, conclusions are provided in Section 7.

2 Nonlinear Dynamical System

In practical experiments, we assume the following conditions to be satisfied.

(A1) There is no medium pumped inside or outside of the reactor in the process of batch
fermentation.

(A2) The concentration of reactants are uniform in the reactor.

On the basis of our previous work (see [27]) and assumptions A1 and A2, mass balances
of biomass, substrate and products in batch culture can be formulated as the following
nonlinear dynamical system:

ẋ(t) = f(t,x(t)), t ∈ [0, tf ], (2.1)

x(0) = ξ, (2.2)
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where
f(t,x(t)) := [f1(t,x(t)), f2(t,x(t)), f3(t,x(t)), f4(t,x(t)), f5(t,x(t))]

⊤

:= [µ(t)x1(t),−q2(t)x1(t), q3(t)x1(t), q4(t)x1(t), q5(t)x1(t)]
⊤.

Here, x1(t), x2(t), x3(t), x4(t) and x5(t) are biomass, glycerol, 1,3-PD, acetate and ethanol
concentrations at time t in the reactor, respectively; ξ := [ξ1, ξ2, ξ3, ξ4, ξ5]

⊤ denotes the initial
state vector; tf is the terminal time of the fermentation process; x(t) :=
[x1(t), x2(t), x3(t), x4(t), x5(t)]

⊤ ∈ R5
+ is known as the state vector. The specific growth

rate of cells µ, specific consumption rate of substrate q2 and specific formation rate of prod-
ucts qi, i = 3, 4, 5, are expressed by the following equations [27].

µ(t) = µm exp
(−(t− tm)2

2t2l

) 5∏
i=2

(
1− xi

x∗
i

)
, (2.3)

q2(t) = m2 +
µ

Y2
, (2.4)

qi(t) = mi + µYi, i = 3, 4, 5, (2.5)

where µm is the maximum specific growth rate; tl is the starting moment of lag growth phase
and tm is the time when µ reaches the maximum; mi, i = 2, 3, 4, 5, are, respectively, the
maintenance terms of substrate consumption and product formation under substrate-limited
conditions; Y2 is the maximum growth yield; and Yi, i = 3, 4, 5, are the maximum product
yields; x∗i, i = 1, 2, 3, 4, 5, are, respectively, the critical concentrations of biomass, glycerol,
1,3-PD, acetate and ethanol for cell growth. These values are well-defined in [26] and given
in Section 6.

In a batch culture, the grow rate of bacteria is controlled only by their ability to utilize
some component of their environment. Thus, the initial concentrations of biomass, glyc-
erol and the terminal time can be treated as control variables. Let u := [u1, u2, u3]

⊤ :=
[ξ1, ξ2, tf ]

⊤ ∈ R3
+ be the control vector. The solution of system (2.1)-(2.2) with respect to

control vector is defined by x(·;u).
Based on the factual fermentation, there exist critical concentrations of biomass, glycerol,

1,3-PD, acetate and ethanol, outside which cells cease to grow. Hence, it is biologically
meaningful to restrict the concentrations of biomass, glycerol, products to a admissible set
W . The control vector also should be restricted to a admissible control set U . The definitions
are respectively as follows:

W :=
{
x(t;u) ∈

5∏
i=1

[x∗i, x
∗
i ]
∣∣∣ ∀t ∈ I = [0, tf ], u ∈ U

}
, (2.6)

U :=

3∏
i=1

[u∗i, u
∗
i ], (2.7)

where x∗i, i = 1, 2, 3, 4, 5, are, respectively, the lowest allowable concentrations of biomass,
glycerol, 1,3-PD, acetate and ethanol for cell growth. u∗i, u

∗
i , i = 1, 2, 3, are, respectively, the

critical values of the initial concentrations of biomass, glycerol and the terminal time. Let
Cb([0, T ], R

5) denote the space of continuous bounded functions on [0, T ] with values in R5,
equipped with the sup norm topology, that is, for z ∈ Cb([0, T ], R

5), ∥z∥c = sup{∥z(t)∥, t ∈
[0, T ]}, where ∥ · ∥ is the Euclidean norm, tf ∈ [0, T ].

Similar to these described in [21], we have the main properties as follows:
Property 1. f(t,x(t)) is Lipschitz in x on W .
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Property 2. There exist positive constants a and b, such that ∥f(t,x(t))∥ ≤ a∥x∥+ b.

Property 3. For fixed u ∈ U , there exists a unique solution x(·;u) to system (2.1)-(2.2)
and it is continuous in u on U .

3 Optimal Control Problem

The control objective in microbial fermentation is to maximize the yield intensity of 1,3-PD.
Thus, we want to choose the control variables to minimize the following objective function:

J(u) := −e⊤3 x(u3;u)

u3
, (3.1)

where e3 := [0, 0, 1, 0, 0]⊤ for the convenience of notation.

Our optimal control problem (OCP) can be stated formally as follows: given the dynamic
system (2.1)-(2.2), find an admissible control u ∈ U such that the yield intensity of 1,3-PD
at the terminal time (3.1) is minimized subject to the constraints (2.6)-(2.7).

Note that, the terminal time u3 of OCP is a control variable, existing optimal control
software cannot be used directly to solve this type of problem. To overcome this difficulty,
we use the well-known time-scaling transformation technique to convent the OCP to a
equivalent fixed terminal time optimal control problem on a new time horizon.

The time-scaling transformation works by introducing a new time variable s ∈ [0, 1] and
relating s to t through the equation t = µ(s), where µ is the so-called time-scaling function
defined by [13,19]. In this paper, the specific form of µ(s) is given as follows:

µ(s) := tfs, s ∈ [0, 1]. (3.2)

Then the original nonlinear dynamical system (2.1)-(2.2) can be converted into an equiv-
alent form as follows:

˙̃x(s) = tf f̃(s, x̃(s)), (3.3)

x̃(0) = ξ, (3.4)

where

x̃(s) = x(tfs),

f̃(t,x(s)) = tf (µ̃(s)x̃1(s),−q̃2(s)x̃1(s), q̃3(s)x̃1(s), q̃4(s)x̃1(s), q̃5(s)x̃1(s))
⊤,

µ̃(s) = µ(tfs),

q̃i(s) = qi(tfs), i = 2, 3, 4, 5.

Thus, after applying the time-scaling transformation, the Problem OCP is equivalent to
the following standard fixed terminal time optimal control Problem OCP′.

(OCP′) : inf
u∈U

J(u) = −e⊤3 x̃(1;u)

u3

s.t. x̃(s;u) ∈W, s ∈ [0, 1].



THE TWO TRAIN SEPARATION OPTIMAL CONTROL IN BATCH CULTURE 441

4 Approximate Problems

Problem OCP′ is in fact an optimization problem subject to a dynamical system and contin-
uous state constraints, it is a constrained dynamical optimization problem with functional
inequality. In this section, the constraint transcription method and local smoothing tech-
nique [5, 19,20] will be applied to the Problem OCP′.

In Problem OCP′, the essential difficulty lies in that we need to judge whether or not
the system state is in the admissible set W for each s ∈ [0, 1]. Essentially, it is semi-infinite
dimensional dynamical constraints [14, 30, 31]. So, in order to overcome the difficulty, we
need to further transform this kind of constraints. Similar to those done in [15], for each
s ∈ [0, 1] and i = 1, 2, 3, 4, 5, we let

gi(x̃(s;u)) := x̃i(s;u)− x∗
i , (4.1)

gi+5(x̃(s;u)) := x∗i − x̃i(s;u), (4.2)

and

G(u) :=
10∑
i=1

∫ 1

0

max{0, gi(x̃(s;u))}ds. (4.3)

Then, for each s ∈ [0, 1], the constraints x̃(s;u) ∈ W is equivalently transcribed into
G(u) = 0. However, G(u) is non-smooth in u on U . Consequently, standard optimiza-
tion routines would have difficulties in dealing with this type of equality constraints. The
following smoothing technique is adopted to replace the non-smooth item max{0, gi(x̃(s;u))}
by defining following functions:

ĝi,ϵ(x̃(s;u)) :=


0, if gi(x̃(s;u)) < −ϵ,
(gi(x̃(s;u)) + ϵ)2

4ϵ
, if − ϵ ≤ gi(x̃(s;u)) ≤ ϵ,

gi(x̃(s;u)), if gi(x̃(s)) > ϵ ,

and

Ĝϵ(u) :=
10∑
i=1

∫ 1

0

ĝi,ϵ(s;u)ds, (4.4)

where ϵ > 0 is an adjustable parameter controlling the accuracy of the approximation.
Note that Ĝϵ(u) is a smooth function in u. The equality constraint G(u) = 0 can now

be approximated by
Ĝϵ(u) = 0. (4.5)

In fact, (4.5) can be further slackened to the following inequality constraint in the actual
computation procedure.

Ḡϵ,γ(u) := Ĝϵ(u)− γ ≥ 0, (4.6)

where γ > 0 is an adjustable parameter controlling the feasibility of constraint (4.6).
Then, similar with [12,19], the gradient formula for constraint functions with respect to

the control parameters are given in the next theorem.

Theorem 4.1 For each ϵ > 0, γ > 0, the derivatives of the constraint functions Ḡϵ,γ(u)
with respect to the parameters are

∂Ḡϵ,γ(u)

∂uj
=

∫ 1

0

∂H(x̃(s;u),u,λ(s))

∂uj
ds, j = 1, 2, 3, (4.7)
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where

H(x̃(s;u),u,λ(s)) =
10∑
i=1

∫ 1

0

ĝi,ϵ(x̃(s;u))ds+ λ⊤(s)f̃(s, x̃(s;u)), (4.8)

and λ(s) = [λ1(s), λ2(s), · · · , λ5(s)]
⊤ is the solution of the costate system

λ̇(s) = −∂H(x̃(s;u),u,λ(s))⊤

∂x
. (4.9)

with the terminal condition λ(1) = (0, 0, 0, 0, 0)⊤.
Let Dϵ,γ := {u|x̃(·;u) ∈W and Ḡϵ,γ(u) ≥ 0}. Then, OCP′ can be approximated by the

following Problem OCPϵ,γ ,

(OCP)ϵ,γ : min J(u) := −e⊤3 x̃(1;u)

u3
(4.10)

s.t. u ∈ Dϵ,γ .

Similar to the work [5, 18], we can prove the following theorem.

Theorem 4.2 Let u∗
ϵ,γ be the optimal solution of the approximate problem OCPϵ,γ . Suppose

that there exists an optimal solution u∗ of the original problem OCP. Then

lim
(ϵ,γ)→(0,0)

J(u∗
ϵ,γ) = J(u∗).

5 Modified Particle Swarm Algorithm

In our previous work [26], we have proved the existence of the optimal control, and con-
structed a gradient-based algorithm to solve the optimal control problem. The optimal
control model is approximated by a sequence of parametric optimization problems, which
can be solved using gradient-based optimization techniques. However, those techniques are
only designed to find local optimal solutions. It means that the algorithm may lead that the
optimal solution is trapped at the local one rather than the global one. Moreover, at each
iteration in the procedure, we need to compute the state and costate differential equations
simultaneously.

It is well-known that Particle Swarm Optimization (PSO) algorithm is based on a simple
concept. A group of birds are randomly searching food in an area, while they don’t know
where is the food. But they can estimate the distant between itself current position and
the food. In PSO algorithm, each potential solution to a problem is a “bird” in the search
space, called by “particle”. All the particles have fitness values evaluated by the fitness
function, and have velocities which direct the flying of the particles. In every iteration, the
particles will be updated by two best values and in this way, particles move towards the best
position [7].

PSO algorithm is a kind of random search algorithm and the continuous state inequality
constraints are also need to be satisfied by all particles for our problem. In this paper,
on the basis of the theory of PSO algorithm, we use the gradient information obtained in
Theorem 1 to update the information of the particles when the constraints do not satisfy
equation (4.6). Although we still need to solve the costate equations, we only calculate
at the time when particles hit the related boundary. Since these kind of time is not too
much, the algorithm greatly reduces the computational cost when compared with the pure
gradient-based algorithm. That is a kind of combination of the gradient-based algorithms
and the random search algorithms. The optimization algorithm is given below.
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Algorithm 1

Step 1. Set constants wstart, wend ∈ (0, 1), c1, c2 are positive constants and R1, R2 are
random numbers in [0, 1]. Let k be the sequence number and Kmax be the Maximum
number of iterations. Initialize k = 0, Jgbest = 0, Jbest = 0, pgbest = [pg1, p

g
2, p

g
3]

⊤ and
pbest(k) = [pb1(k), p

b
2(k), p

b
3(k)]

⊤.

Step 2. Randomly generate N initial particles with a uniform distribution on U . Denote
position and velocity of the nth particles by un(k) := [un

1 (k), u
n
2 (k), u

n
3 (k)]

⊤ and pn(k) :=
[pn1 (k), p

n
2 (k), p

n
3 (k)]

⊤, respectively.

Step 3. If Ḡϵ,γ(u
n(k)) ≥ 0, goto Step 4; else compute

h(un(k)) :=
∂Ḡϵ(u)

∂u

∣∣∣
u=un(k)

,

and update the positions of particles as follows

un(k)← un(k) + ρ(un(k))h(un(k)),

where h(un(k)) is the search direction and ρ(un(k)) is the step-size selected by Armijo line
search.

Step 4. Compute equation (4.10) with un(k) and update Jbest and pbest as follows:

Jbest(k) = max{J(un(k)), n = 1, 2, · · · , N}, (5.1)

pbest(k) = argun(k) max{Jbest(un(k))}. (5.2)

Step 5. If Jbest(k) ≥ Jgbest, let Jgbest = Jbest(k), pgbest = pbest(k).

Step 6. Set k = k + 1, if k > Kmax, then stop. Otherwise, update particles for the next
iteration:

un(k) = un(k − 1) + pn(k − 1), (5.3)

where,

pnj (k) = w ∗ pnj (k − 1) + c1 ∗R1 ∗ (pbj(k)− un
j (k)) + c2 ∗R2 ∗ (pgj − un

j (k)), (5.4)

and

w =
(wstart − wend)(Kmax − k)

Kmax
+ wend. (5.5)

Then, go to Step 3. Here, we cope with velocities and positions of particles as follows [28]:

pnj (k) =

{
pmax
j , if pnj ≥ pmax

j ,
pmin
j , if pnj ≤ pmin

j ,

un
j (k) =

{
u∗, if un

j ≥ u∗
j ,

u∗j , if un
j ≤ u∗j .

where pmax
j = (u∗

j − u∗j)/5, p
min
j = −(u∗

j − u∗j)/5.
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Table 1: Parameters values in dynamical system (2.1)
Substrate/products tl tm µm mi Yi

i = 1(Biomass) 1.7924 2.4508 0.9192 – –
i = 2(Glycerol) – – – 1.358 0.01558
i = 3(1,3-PD) – – – -8.9346 64.69
Acetic acid – – – 2.1098 4.541
Ethanol – – – -0.183 3.046

Table 2: Performance index with respect to the number of iterations and computation time.

Number of iterations Value of the performance index time (seconds)
2 67.9196 10.6
4 70.4733 17.2
6 70.5344 23.9
8 69.1484 30.8
10 71.2427 37.9
15 71.2687 53.0
20 71.1074 71.7
25 71.3358 86.1
35 71.4776 114.8
50 71.3898 164.4

6 Numerical Results

According to the model and algorithm mentioned above, we have programmed the software
and applied it to the optimal control problem of microbial fermentation in batch culture.
The system parameters are listed in Table 1 (see [26]).

The basic data are listed, respectively, as follows:

boundary value of control vector :

u∗1 = 0.01 mmol/L, u∗
1 = 1 mmol/L, u∗2 = 200 mmol/L, u∗

2 = 939.5 mmol/L, u∗3 = 2
h, u∗

3 = 10 h.

boundary value of state vector :

x∗1 = 0.001 mmol/L, x∗
1 = 10 mmol/L, x∗2 = 0.001 mmol/L, x∗

2 = 2039 mmol/L,
x∗3 = 0.01 mmol/L, x∗

3 = 939.5 mmol/L, x∗4 = 0.01 mmol/L, x∗
4 = 1026 mmol/L,

x∗5 = 200 mmol/L, x∗
5 = 360.9 mmol/L.

In Algorithm 1, wstart = 0.9, wend = 0.4, c1 = c2 = 2, Kmax = 20 and N = 1000.
The optimal control vector u∗ and objective function J(u∗) obtained by Algorithm 1 are
0.985241, 582.004, 5.02762 and 71.5578, respectively. Fig. 1 shows the convergence curve
of the algorithm for the performance index. In Fig. 1, the value of the performance index
basically lives up to stabilization, so the number of the sample points with N × Kmax =
20000 are appropriate. Compare with corresponding optimal control vector u∗ and objective
function J(u∗), 0.973186, 547.04, 5.17509 and 54.5911, respectively, in [26]. Numerical
results show that, by employing the optimal control, the concentration of 1,3-PD at the
terminal time can be increased, compared with the previous results. The concentration
change of biomass, glycerol, 1,3-PD under the optimal control variables are shown in Fig 2.



THE TWO TRAIN SEPARATION OPTIMAL CONTROL IN BATCH CULTURE 445

0 10 20 30 40 50
67.5

68

68.5

69

69.5

70

70.5

71

71.5

Number of iterations

T
h

e
 v

a
lu

e
 o

f 
th

e
 p

e
rf

o
rm

a
n

ce
 in

d
e

x

Figure 1: The convergence curve of the algorithm for the performance index.
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control vector u∗.
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7 Conclusions

In this paper, different from the previous approach proposed in [26], based on the theory
of swarm intelligence algorithm, we propose a modified particle swarm algorithm to find
the global solution of the optimal control problem. Time-scaling technique and smoothing
method are adopted to overcome the difficulties of free terminal time and continuous state
inequality constraints. Numerical results show that, by employing the optimal control ob-
tained in this paper, the concentration of 1,3-PD at the terminal time can increase when
compared with the previous results.
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