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This paper is dedicated to Professor Kok Lay Teo’ 70th birthday.

Abstract: This paper studies the H filter design problem for delay systems with polytopic-type uncer-
tainties. A novel Lyapunov-Krasovkii-based H ~ filter design technique is developed to ensure that both the
filter error dynamic system is asymptotically stable and the given H o performance is satisfied. In addition,
based on these H ., performance analysis results, an efficient filter is designed by using sufficient conditions
expressed in form of linear matrix inequalities (LMI), which can be efficiently solved by convex optimization
techniques.
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Introduction

Over the past few decades, uncertain systems have attracted considerable attention and
among them time-varying delay systems with polytopic-type uncertainties have gradually
become one of the hottest research topics. For example, in [1], the stability problem of
time-varying delay systems with polytopic-type uncertainties is investigated using the LMI
method. In [2], delay-dependent robust stability of uncertain delay systems is discussed,
and moreover, the H ., filter design method for discrete-time delay systems is established to
deal with polytopic-type uncertainties in [3,4]. In order to enhance robustness of the filters,
a robust H . filter is designed for stochastic uncertain systems in [5], and delay-dependent
robust H ., filter design is discussed in [6] for uncertain linear systems with time-varying
delays. For more results on delay-related design and control, see [7-9] and the references
therein.

Inspired by these previous results, this paper will discuss the H -, filter design problem for
a time-varying delay system with polytopic-type uncertainties. Firstly, by establishing a new
Lyapunov function, sufficient conditions for the existence of H ., filters are developed. These
conditions are obtained by estimating the upper limit value during the Lyapunov function
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derivative’s calculation process. Then, the H,, filter of this system can be obtained by
solving a series of LMIs.

In this paper, the notation is quite standard. The superscripts “-1”and “T” stand for
the inverse and transpose of the matrix respectively; R™ is defined as the n-dimensional
Euclidean space; R™ ™ is the set of all n x m matrices; P >0 indicates that P is positive
definite; Iis an identity matrix with appropriate dimension; diag{. ..} is defined as the block
diagonal matrix; and “x” is used to indicate the symmetric item of a symmetric matrix.

Problem Formulation

Consider the following time-varying delay system with polytopic-type uncertainties,

z(t) = Az(t) + Agz(t — d(t)) + Bw(t),

() = Cya(t) + Dyu(t) o
2(t) = Cox(t) + Dyw(t), '
z(t) =<(t),t € [-7,0],

where x(t) € R™ is the state variable; y(t) € R™ is the measurable output variable; w(t) € R?
is the output disturbance satisfying w(k) € L3[0, +00); and 2(t) € RP is the output signal
to be estimated. A, Aq4,Cy,D,,C,, Dy are with appropriate dimensions, and d(t) is the
time-varying delay satisfying the following conditions,

0<d(t) <7 (2.2)
and

dt) <p <. (2.3)

Define system matrices A, Aq,Cy, Dy, C,, D, that belongs to the following polytopic-type
uncertain region,

X = [A,Ad,cyaDy;Cz,Dz] €&, (24)

where = is the real convex polytopic domain

q

== [X(A) = i)\iXﬁ ZM =1,X>0]. (2.5)
i—1 i—1

The g vertices of the polytopic can be described as:
xi =4, AY, ¢ D c® DY),
Consider the following filter system of system (2.1),

#(t) = Asa(t) + Bry(t),
{ 2(t) = C;as(t) + D;y(t), (2.6)

where Ay, By, Cy, Dy are given filter matrices with appropriate dimension. Our objective is
to design an asymptotically stable linear filter system (2.6) for system (2.1).
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Define n = { ;Eg }, and let e(t) = z(t) — 2(t). Then, we can obtain the following filter
dynamic error system for system (2.1):

0(t) = Acn(t) + Agen(t — d(t)) + Bew(t),

e(t) = Cen(t) + Dew(t), (2.7)

n(t) = [gT(t) O]T,t e [-7,0].

Here,
A0 [ Ag 0 [ B 3

Ae = [ B;C, Ay } Ade = { 0 0} Be = { B;D, } Ce = [Cz_Dny ~Cs

D.=D.-D;D,

For the given 7, u,~v > 0, if we can find a full-order linear time-invariant filter for system
(2.1), then for any delay that satisfies (2.2) and (2.3), it will hold that (i) the filter error
system (2.7) is asymptotically stable; and (ii) under the initial conditions, for all non-zero
w(t) € Ly]0,4+00] and A > 0, the filter error system (2.7) has the Ho, properties:

Fell<y I E ]2

H , Performance Analysis

The following theorem gives a sufficient condition for the existence of the filter system
(2.6).

Theorem 3.1. Let P = |: 1:1 52 }, @Q1>0,Q2>0,Z2>0,R>0, X = [Xij]5><5 >0,
M, H, Y1
M, Hy Y,

M= | Ms |, H=| Hs |,Y = | Ys |. For the given ™ > 0, u < 1 and v > 0,
My H,y Yy
M; Hs Y5

the augmented system (2.7) is asymptotically stable while the time delay satisfies conditions
(2.2) and (2.3), and it also satisfies the Hs, performance: || e |[2< v || E ||2 if the following
LMIs are valid,

=( T AT Tp-1 AT
20 +rx T, rALZ YTRT' ALR

‘ % I 0 0 0
o) = % x 17 0 0 <0, Vi=1,2,...,¢. (3.1

* * * —Rfl 0

* * * * —R

; X M+H ,
’75):[ By 7 }>O7 Vi=1,2,...,q. (3.2)
7;“—[)( 0}20, Vi=1,2,...,q. (3.3)
* 0

where =0 = [ER]. a9 = a0 0 4P 0 BO], 1O -
¢ = pse? —cp 00 DY -pDP] =) = ALP 4+ A 4 O BTPY

+PyBrCY + Q1+ Qo My+ MT +YiAD + AT Y+ HY + Hy, 29 = AT Py + O BY Py +
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PyAg+ M+ AL YT+ HT, 2l = PAY —M1+M3T+H3T+A£)YT+Y1AIS), =) = M7 —
Hy+H+ AT YT 2 = PLBO+ P, By DY)+ MT + HI + AT, VI +Y1 B, 25 = ATPy+P3 Ay,

=0 = — M, +Y2Afj 2 = —H,y, 2 = P,BD + P,B,; D) +Y,B®, =) = —(1— 1)@, —

MI = M3+ APYF +V3AY, B0 = —MT — Hy+ APTY]T, 2) = —MT+Y,BO + AT HT
:554 = —Q+ H] — Hy, ) = —HI +Y,BY, 2% = -1+ ;BO + B Y{T.

Proof. We choose the following Lyapunov function candidate,

Vixy) = nT(t)Pn(t) —I—/t o xT(s)le(s)ds + /t_ xT(s)ng(s)dS

[ ] /t y s)dsdo. (3.4)

By taking the derivative of (3.4) along the system (2.7), we can obtain
V() := 20" (6)Pi(t) + 2" (£)(Q1 + Q2)a(t) — (1 — d(t))a” (¢ — d(1))Qua(t — d(t))
—2T(t —7)Qox(t — 7) + 7T (1) Za(t) — /ttT iT(s)Zi(s)ds
< 29T () Pij(t) + 2T ()(Q1 + Q2)a(t) — (1 — p)a™ (¢ — d(t))Qua(t — d(t))
—2T(t —7)Qox(t — 7) + 7T (1) Za(t) — /ttT i (s)Zi(s)ds (3.5)

By applying the Leibniz-Newton theory, we get
t
26T ()M [x(t) — x(t — d(t)) — / #(s)ds] =0 (3.6)
t—d(t)

26T () Hz(t) — x(t — 1) — /ti #(s)ds] =0 (3.7)
t t—d(t)
€T () XE(t) — / §T(t)XE(t)ds — / ¢T(t)XE(t)ds =0 (3.8)
t—d(t) t—7
and
26T ()Y [Ax(t) + Agz(t — d(t)) + Bw(t) — @(t)] = 0 (3.9)
Then, the following inequality will be held,
—26T(t)Ya(t) < T ()Y RIWYTE(®) + €T (1) AT RAL(t), (3.10)

where £7(t) = [27(t) 27(t) 2T (t—d(t)) 2T (t—7) w’(t)]. After adding the left side of
(3.6) to (3.9) and applying (3.10), we obtain

V(zy) — 2wl ()w(t) + eT (t)et) <ETHE+7X +TTT +7ATZA+ YT R™YY + ATRAJE(t)

t—d(t)
- / €T (t, S)mE(L, s)ds — / €7 (¢, 5)ya€ (£ )ds
t—T t

—T

where A = [A0 A; 0 B, T = [CZ—Dny -C; 00 Dz—Dny], fT(t7S) =
[€7(t) @(s)]. According to Schur complement lemma, (3.1) shows that across the entire
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uncertain region =, there is £ +7X + I''T' + 7ATZA + YTR™'Y + ATRA < 0. Based on
(3.1) to (3.3), we can ensure that V (z;) — v?w” (t)w(t) + Ze™ (t) Ze(t) < 0 is valid across the
entire uncertain region Z. It also indicates that the augmented system (2.7) is asymptoti-
cally stable when w(t) = 0.

Under the zero initial condition V() |t=o= 0, we obtain

/000 [e" (t)e(t) — YwT (Hw(t)] dt < V(z¢) [1=0 =V (2¢) [t—00< 0.

Therefore, ||e]l2 < v||w]||2 holds. The proof is complete. O

Note: The Lyapunov function candidate in Theorem 1 is constructed based on two
different Lyapunov functions in [1] and [6]. Inequality (3.10) is obtained using the Leibniz-
Newton principle and [2].

Filter Design

In this section, the method to obtain the filter parameter variables {A;, By, Cy, Dy} will
be developed based on Theorem 1. By solving a series of linear matrix inequalities, these
parameter variables {Af, By, C¢, Dy} can be obtained. Then, we can establish the following
theorem.

Theorem 4.1. For the given 7 > 0, v > 0 and p > 0, the Ho, filter model (2.5) for system
(2.1) is wvalid, if there are matrices P, > 0, T > 0, @1 >0, Z >0, R > 0, N; > 0,
J=12,3,4;

My Hy Y1
~ ~ MQ HQ 5}2
X:[X,;J} >0and M= | My | H=| Hs |,Y=]| Y5 |,
5%5 M, H, Y,
M Hs Ys
and the appropriate-dimensional matriz enables
P-T 0
[ 0 T ] >0 (4.1)
E0+7rx TOT 74A0T7z HTR-! AOTR
4 * -1 0 0 0
0w = * * —77 0 0 <0, Vi=1,2,...,q (4.2)
* * * —R! 0
* * * —R
H?’—[X M+H}>0, Vi=1,2,....q (4.3)
* Z
Hg“z{f g}zo, Vi=1,2,...,q (4.4)

where 2 AW TG gre the same with those in Theorem 1.

Proof. We will follow a similar proof procedure of Theorem 3 in [6] and it will be omitted
here. The proof is complete. O
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Figure 1: Step response curve of the filtering system when p = 0.5,v = 0.6123,7 = 1.

Illustrative Examples

This section provides two examples to demonstrate the effectiveness of the criteria pre-
sented in this paper.

Example 1. Consider the following system with polytopic-type uncertainties

i(t) = { 2 ] )+ [ P }x(td(t))qL { ; }w(t)

x
1
y(0) =10 Jao(t]+w(t) o1
2)=[1 2 ]z(¢)
When p = 0.5,7 = 0.6123,7 = 1, by solving LMIs (4.2)-(4.4), we can get
—2.4066 —0.1800 —0.6874
Ay = (1.0e 4 008) { 018001 —4.2068 ] , By =(1.0e + 008) [ 90607 ] ,

Cy=1[0.3242 -24717 |, D; = —2.7072e — 005.

It can be clearly seen in Figure 1 that when p = 0.5, = 0.6123,7 = 1 the H filtering
system is asymptotically stable. In addition, when y = 0.9,y = 1,7 = 0.6872, by solving
LMIs (4.2)-(4.4), we have

—1.6645 —0.1706
—0.1706 —3.1019

Cy=10.0507 —2.3419 |, D; = —2.7184e — 004.

A = (1.06—1—008)*[ —1.3441

} . By = (1.0e + 008) * [ —0.4458 } 7

Clearly, the H, filtering system is asymptotically stable as shown in Figure 2 .
Example 2: Consider the following time-varying delay system

() = [ 2 _0.71[)@) ]x(t)+ [ 1w ]x(t—d(t))+ [ 05 }w(t)
y®)=[0 1 ]z(t)+w(t
A =2 1 ]a(t)
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Figure 2: Step response curve of the filtering system when p =0.9,v = 1,7 = 0.6872.
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Figure 3: Step response curve of the filtering system when y = 0.4,y = 5,7 = 0.6393.

where the uncertain parameters satisfy the conditions ||p(¢)]| < 0.2, and ||6(¢)|| < 0.5. When
p=04,v=0.57=0.6393, according to LMIs (4.2)-(4.4), we obtain

—4.2243  0.9668
0.9668 —4.8123 |’

Cy=[ —1.0073 —0.9616 |, D; = —3.0885¢ — 006.

Ag = (1.0 + 007)

By = (L0 +007) + [ 1.5864 } :

—3.5774

The simulation in Figure 3 shows that the H, filtering system is asymptotically stable.

@ Conclusion

This paper has investigated H, filter design for the time-varying delay system with
polytopic-type uncertainties. By applying the Lyapunov-Krasovsii method, the H, filter
design expressed by LMIs is provided. The H,, filter design for the time-varying delay
system with polytopic-type uncertainties will be converted to solving a set of LMIs. Finally,
two numerical examples are given to illustrate the usefulness and validity of the results
obtained.
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