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policies or rules were shown to have positive impacts on the nurses’ working conditions,
which in turn are closely related to the quality of care [39]. These observations motivate
hospitals to adopt policies that increasingly accommodate preferences and requests of nursing
staff while ensuring suitably qualified staff on duty at the right time [31]. As appropriate
staffing and shift scheduling of nursing staff play a role in delivering quality patient care, it is
necessary to develop better decision support system for hospital decision makers to manage
nursing staff.

Nursing staff management is basically a sequential planning and control process [6, 36],
consisting of nurse staffing, shift planning, and allocation. In general, staffing is a strategic
and long term manpower planning. Shift scheduling and assignment are to satisfy both the
minimum coverage requirements and time-related rules and practices for the nurses and the
hospital. Nurse allocation determines the individual nurse’s schedule and the timetable for
all nurses. In the past decades, a great deal of efforts have been paid to investigate nurse
scheduling using various methods from different perspectives. In literature, mathematical
optimization approaches, such as linear programming, mixed integer programming, and
stochastic programming, had been widely used to study nurse rostering problem [1, 3, 4, 6,
13, 15, 20, 21, 23, 27, 33]. Other methods were proposed for the nurse scheduling problem as
well, such as queueing models [12, 16, 37], scheduling models based on hierarchal approach
[39]. For a brief overview, the reader is referred to [10].

To deal with nursing staff discontent and frequent turnover, one approach is to introduce
adequate shift scheduling policy addressing factors such as nurse working hours, enough
breaks and individual preferences [26]. Its importance on patient care was further stressed
in [5, 7, 15, 38]. Another approach is to improve the flexibility of nursing staff through
cross-utilization [8, 9, 14, 19]. On the other hand, clinical management of patients in emer-
gency department is particularly complex due to differences in patients’ urgency, changing
conditions of patients and uncertainty of patients’ arrivals and diagnoses. Patients may flow
into different locations in ED depending on their needs. Consequently, the workload at ED
can change dramatically by time of day and day of week. To spread out the workload over
the time of a day, some researchers studied the ideal patient to nurse ratio in the general
ward setting [17, 28]. However, few studied the case under the ED setting. In particular,
there has been an accelerating demand for emergency care targeted to the aging population
[30]. It is observed that the ability of staff to cope with patient load not only affects the
health outcomes and satisfaction of patients [32], but also affects the morale and wellbeing
of the staff [18, 25]. Hence, it is crucial to develop an appropriate nurse staffing model to
address main concerns of healthcare providers.

In this paper, our objective is to balance the overall nurse workloads over the time of a
day under the current staffing capacity. In particular, we would like to use a mathematical
optimization approach to determine optimal staffing rules for shift scheduling and capacity
planning at ED. Different from usual treatment, the proposed model also incorporates shift
working hours, shift times and total number of shifts as decision variables for planning. For
this purpose, an immediate issue is to estimate patient loads (demands) at various areas in
ED over different time intervals of a day. In literature, patient arrivals are usually modeled
as a Poisson process and patient loads at different areas in ED are estimated using queueing
theory with expected service rates (i.e., patient treatment and care) [12]. However, this
approach is criticized oftentimes due to the strong arrival assumption and high variability of
patient duration in ED by nature. In this study, we use a different manner to assess patient
loads by using large scale patient data. Briefly, we study individual patient’s movements
within various areas in ED starting from triage to leaving ED. For given time of the day, we
use a weighted sum of accumulated nursing touch points on average at key areas in ED as
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the demand during this time period. We investigate the nurse workload over certain time
interval of a day by using the demand and the total number of nursing staff on duty during
this period. The proposed model is a deterministic mixed integer programming in which the
objective is to minimize the mean deviation of the workloads over different time intervals of
a day. The model provides optimal decision rules concerning the total number of shifts to be
planned, shift working hours, and the number of nursing staff for each shift. ED managers
can use these suggested results in decision making for nurse rostering.

The rest of this paper is organized as follows. The specific problem description on shift
capacity planning is stated in Section 2. In Section 3, we formulate the problem as a
mixed integer programming model. Section 4 analyzes numerical results of the model under
various scenarios with ED patient data. Concluding remarks and future research directions
are provided in Section 5.

2 Problem Description

The hospital in this study is an acute hospital in Singapore of about 1,200 beds. The key
functional areas at ED are triage, consult, resuscitation, trolley observation room, fever
observation room, and decontamination. In general, when patients arrive at ED, nurses will
triage them. Doctors will assess them in consultation rooms. After consultation, patients
may proceed to observation rooms, or leave ED. The workload intensity may vary among
these areas. For instance, the workload at decontamination area is generally much heavier
than at observation room. To evaluate the workload in the entire ED, in this study the
demand for nursing staff at different areas is adjusted with the weights, which basically
reflect the differences of the workload intensity between the areas. The values of these
weights are suggested by emergency department. Our analysis is based on the adjusted
demand over various time intervals of a day under consideration.

Nursing staff with different skill sets are deployed at different locations and work in
shifts. In this paper, we assume all the nursing staff is fully skilled and time intervals under
consideration are referred to half-hourly time periods of a day starting at 00:00. Then, there
are total of 48 half-hour intervals of a day in the analysis. Our aim is to balance the overall
workload of nursing staff during these time intervals through designing optimal nursing staff
deployment policies. In what follows, we first assess the demand and the number of nursing
staff on duty at ED over the time intervals.

We say that a patient makes a touch point at some area when the patient arrives at that
location. Changes of touch points are captured when staff updates patients’ locations in the
ED information system. We use the touch points to estimate the demand. Patients could
have multiple touch points for a specific location such as consultation areas. In this case,
we only use the first touch point to represent the demand at the location. The demand at
each time interval is then calculated by the weighted sum of the total touch points of the
key locations at ED.

The emergency department of this study operates with three major shifts for nursing
staff, i.e., morning shift, afternoon shift and night shift, each with the shift time from 07:00
to 15:30, 13:00 to 21:30, and 21:00 to 07:30, respectively. In addition to the major shifts,
there are three minor shifts as well, with the shift time from 09:00 to 17:30, 15:00 to 23:30pm,
and 16:00 to 24:00. These three minor shifts operate between the major shifts. In practice,
the numbers of nursing staff in minor shifts are relatively small. They are assigned to
various locations in ED as extra supporting staff to meet the high patient loads. We take
the present complete staff deployment distribution over the 48 half-hour time intervals as the
baseline schedule. This together with the estimated demand over time intervals facilitates
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the assessment of the ratio of the number of nursing staff to total touch points (or demand)
at each half hour, which is referred as a measure of the workload in subsequent analysis.

By analyzing patient administrative data and current nursing staff assignment, it shows
that the current workload varies remarkably over the time of a day. In particular, the ratio
of nursing staff to touch points is quite high at mid-night or early morning period (03:00 to
06:00) while very low around the noon time (10:00 to 14:30). To deal with the issue, we are
interested to develop shift capacity planning model so as to minimize the mean deviation
of overall workloads over 48 half-hour time intervals. In particular, we concentrate on the
following issues: (i) how many shifts (both major and minor shifts) should we have? (ii)
what would be the right shift times? (iii) how many nursing staff should be allocated in
each shift? These problems are important for hospital decision makers in capacity planning.

3 Shift Capacity Planning Model

In this section, we propose a mathematical optimization model to address the shift capacity
planning problem. First, we state some notations used in the model.

Parameters

• C: total capacity of nursing staff

• Tj : j-th time interval of a day, j = 1, . . . , J , where the first time interval starts at
00:00 and the last one ends at 24:00, denoted by an index set T := {T1, . . . ,TJ}

• Cj : minimum number of nursing staff during time interval Tj , j = 1, . . . , J

• dj : adjusted demand during time interval Tj , j = 1, . . . , J

• x̄j : current number of nursing staff on duty during time interval Tj , j = 1, . . . , J

• ρ: minimum ratio of the number of nursing staff to the demand amongst J time
intervals, i.e., ρ := min{ x̄j

dj
: j = 1, . . . , J}

• K1: index set of major shifts, denoted by K1 := {morning, afternoon, night} =
{M1,M2,M3}

• S: maximum number of possible minor shifts of a day, denoted byK2 := {M4, . . . ,MS+3}

• K: index set of all possible shifts (including both major and minor shifts) of a day,
that is, K := K1 ∪ K2 = {M1,M2, . . . ,MS+3}

• γ: maximum number of minor shifts to be operated in ED

• li: lower bound on number of nursing staff in shift Mi ∈ K, i = 1, . . . , S + 3

• ui: upper bound on number of nursing staff in shift Mi ∈ K, i = 1, . . . , S + 3

• M0: big positive real number

In practice, nurses’ working times may end at some half-hour intervals of a day. Hence,
we divide a day into 48 half-hour intervals (i.e., J = 48), where T1 = [00:00, 00:30], . . .,
T48 = [23:30, 24:00]. Evidently, each shift may cover a number of continual time slots of
T . For example, the duration of morning shift (from 07:00 to 15:30) consists of 17 time
slots starting from the 15-th time slot and ending by the 31-th slot, namely, M1 = ∪31

j=15Tj .
At present, the working hours of three major shifts and their shift times are ideal for ED.
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Thus, our focus falls on optimal nursing staff capacity in each major shift. On the other
hand, nurse staffing in minor shifts, such as shift times and the number of nurses in each
shift, is a major concern for hospital managers. We assume that the working hours of all
minor shifts are equal to 8.5 hours. Their shift times can start at any starting time of time
slots in T . This implies that there is a maximum of 48 possible minor shifts (i.e., S = 48)
to choose in capacity planning. To streamline the complexity of nursing service process,
hospital managers prefer to implement relatively few minor shifts whenever it is possible.
To describe this feature, in the model we introduce a parameter γ representing maximum
number of minor shifts. Modelers or decision makers can adjust its value in analysis or treat
γ as a decision variable. Shift working hours and shift times can be incorporated in the
model using a nurse on-duty matrix as discussed later.

The target of the model seeks to reduce the mean deviation of the workloads of the
underlying 48 time intervals of a day. Decision variables will include the best combination
of minor shifts chosen from 48 minor shift candidates, and the number of nursing staff in
each shift. For the former, we consider the optimal number of minor shifts and the respective
shift times. To characterize this issue, we denote the set of all feasible minor shifts by K2,
in which each element is defined by a number of time slots Tj and the working hours.
For example, M4 denotes the minor shift starts at 00:00 and ends at 08:30, which can be
expressed as M4 = ∪17

j=1Tj . In the same way, M5 = ∪18
j=2Tj , . . ., M48 = T48 ∪ {∪16

j=1Tj}.
Further, we introduce a 0-1 binary variable zi, i = 4, . . . , S +3, representing minor shift Mi

to be chosen or not, to formulate the requirement on maximum number of minor shifts to
be implemented. The decision variables are stated as below.

Decision variables

• xi: number of nursing staff in shift Mi, i = 1, . . . , S + 3

• yj : number of nursing staff in time interval Tj , j = 1, . . . , J

• zi: 0-1 binary variable, i = 4, . . . , S + 3. For each Mi ∈ K2,

zi :=

{
1, if minor shift Mi is selected for capacity planning,
0, otherwise.

It is clear that decision variables x ∈ ℜS+3 and y ∈ ℜJ are interrelated. Note also that
we have J = S = 48. To address the decisions concerning shift times, we introduce a nursing
staff on-duty matrix A ∈ ℜ(S+3)×J , capturing the information whether nurses are on duty
or not at each time interval Tj , j = 1, . . . , J , for all possible shifts Mi, i = 1, . . . , S + 3,
which might be implemented in emergency department. Specifically, for each Mi ∈ K and
Tj ∈ T , each element aij of A is 0-1 binary number defined as follows.

aij :=

{
1, if nursing staff in shift Mi is on duty at time interval Tj ,
0, otherwise.

In general, shift working hours are same for all shifts except for night major shift with a
bit longer duration. Let β1 and β2 be the respective total shift working hours. We have∑J

j=1 aij = 2β1 for each i ∈ {1, . . . , S + 3, i ̸= 3} and
∑J

j=1 a3j = 2β2. In practice, both β1

and β2 are of a few feasible choices such as β1 ∈ {8, 8.5, 9} and β2 ∈ {10, 10.5, 11}, resulting
in 9 different nurse on-duty matrices A altogether. Optimal shift capacity planning rules
can be derived by solving proposed optimization model associated with these matrices.
Moreover, optimal shift times can be derived according to the solutions of zi and β1 or β2.
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Matrix A is thereby an important component in model development which incorporates the
information of shift working hours and shift times. In addition, for j = 1, . . . , J , we have

yj =
S+3∑
i=1

aijxi.

This linear relationship between x and y can be rewritten in matrix form, i.e., y = A′x. For
convenience in presentation, we write z := (z1, z2, z3, z4, . . . , zS+3)

′ where z1 = z2 = z3 = 1.
It follows from the notion of 0-1 binary variable that the three major shifts will be chosen
in shift capacity planning model by default. Based on the above arguments, we develop a
mathematical model for shift capacity planning as follows.

min
1

J

J∑
j=1

∣∣∣∣∣yjdj − 1

J

∑
k∈T

yk
dk

∣∣∣∣∣ (3.1)

s. t. 1′x ≤ C, (3.2)

l ≤ x ≤ u, (3.3)

y = A′x, (3.4)

yj ≥ ρdj , j = 1, . . . , J, (3.5)

yj ≥ Cj , j = 1, . . . , J, (3.6)

z1 = z2 = z3 = 1, (3.7)
S+3∑
i=4

zi ≤ γ, (3.8)

xi ≤ M0zi, i = 4, . . . , S + 3, (3.9)

zi ≤ xi, i = 4, . . . , S + 3, (3.10)

xi ∈ Z+, zi ∈ {0, 1}, i = 1, . . . , S + 3, yj ∈ Z+, j = 1, . . . , J. (3.11)

Here, 1 ∈ ℜS+3 with all elements being ones. Model (3.1) - (3.11) is a nonlinear program-
ming problem with a nonsmooth objective function and integer decision variables subject to
a system of linear equalities and inequalities. The objective function (3.1) is the mean devi-
ation of workloads, i.e., mean of the distances of each workload,

yj

dj
, j = 1, . . . , J , from their

mean, as a measure to smooth the current unbalanced workloads over the time intervals of a
day. Constraint (3.2) is the usual capacity budget, that is, the total number of nursing staff
assigned to all shifts should not exceed the predetermined capacity. Constraint (3.3) sets
lower and upper bounds on the number of nursing staff in each shift. The number of nursing
staff being on duty at specific time slot is expressed in (3.4). Constraint (3.5) indicates that
the obtained ratios of the workload should be no worse off the current minimum ratio. To
meet necessary nursing needs for patient treatment and care, there is a minimum capacity
on nursing staff for each time slot of a day. This requirement is stated in (3.6). Constraints
(3.8) - (3.10) limit the selection of minor shifts from S possible minor shift candidates based
on the idea of big M method in linear programming. The current three major shifts are fea-
sible and commonly adopted in emergency departments. Hence, the total number of major
shifts is not considered as a variable in the model. Constraint (3.11) are standard integer
requirements on the decision variables.

Note that model (3.1) - (3.11) is very general and flexible. Decision makers can determine
optimal manpower planning rules according to their specific requirements and practical
considerations through setting different values of the associated parameters in the model.
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For example, if managers do not want to operate any minor shifts in ED, they can simply
set the value of γ to be zero. The model will force zi, i = 4, . . . , S + 3, to be zero. On the
other hand, if there is no specific requirement on the total number of minor shifts, one may
just set γ to be a large number, such as γ = 50. In this case, the associated model will
provide an optimal number of minor shifts for planning. This information could be used
as a reference for managers in decision making. In addition, our current study is based on
half-hourly analysis. Decision makers or modelers can similarly consider the situation of any
arbitrary time interval of interest following the proposed framework.

The nonsmoothness of the objective function makes the model difficult to solve. To deal
with this obstacle, we introduce additional variables, wj , such that wj = | yj

dj
− 1

J

∑J
k=1

yk

dk
|, j =

1, . . . , J. Accordingly, we add the following set of inequality constraints to the model.

wj ≥
yj
dj

− 1

J

J∑
k=1

yk
dk

, wj ≥
1

J

J∑
k=1

yk
dk

− yj
dj

, j = 1, . . . , J.

Then, model (3.1) - (3.11) can be reformulated as follows.

min
1

J

J∑
j=1

wj

s. t. 1′x ≤ C,

l ≤ x ≤ u,

y = A′x,

yj ≥ ρdj , j = 1, . . . , J,

yj ≥ Cj , j = 1, . . . , J, (3.12)

wj ≥
yj
dj

− 1

J

J∑
k=1

yk
dk

, j = 1, . . . , J,

wj ≥
1

J

J∑
k=1

yk
dk

− yj
dj

, j = 1, . . . , J,

z1 = z2 = z3 = 1,
S+3∑
i=4

zi ≤ γ,

xi ≤ M0zi, ∀ i = 4, . . . , S + 3,

zi ≤ xi, ∀ i = 4, . . . , S + 3,

xi ∈ Z+, zi ∈ {0, 1}, i = 1, . . . , S + 3, yj ∈ Z+, wj ∈ ℜ, j = 1, . . . , J.

Note that problem (3.12) is a mixed integer programming (MIP) with a linear objective
function and a system of linear inequality or equality constraints, which can be solved
efficiently using available software packages such as AIMMS, CPLEX, and MOSEK.

4 Numerical Experiment

To illustrate the proposed optimization approach, we have carried out numerical tests on
the MIP reformulation using patient administrative data of an emergency department of
Singapore. In this section, we report some preliminary numerical results. The tests are
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carried out by implementing codes in CPLEX 12.4 installed in a PC with Windows XP
Operating System.

4.1 Data

In numerical experiment, we review a total of 41,231 patients of 3-month patient adminis-
trative data with approximately 448.2 daily patient visits. Our analysis is conducted based
on half-hourly intervals of a 24-hour day. Patient changes to touch points in ED are cap-
tured when staff updates patients’ locations in the ED information system. To estimate the
average touch points on each time interval, we examine patient flow pathways by identifying
sequences of patients’ touch points from triage to exit. At each time interval, we calculate
the average total touch points at the key areas in ED. By assigning different weights to
areas, we derive the demand vector d, each di, i = 1, . . . , 48, denoting the adjusted demand
during the i-th time interval. That is,

d = (35.35 31.09 26.37 24.57 21.19 18.86 18.82 17.6 15.75 14.88 13.29 14 14.24

16.71 21.43 23.29 34.59 37.97 45.12 50.98 56.93 58.79 59.99 60.78 60.23 58.33

60.36 60.06 59.71 58.13 58.81 52.89 49.58 49.81 47.24 44.34 41.11 40.92 40.77

44.2 48.01 48.79 46.64 46.84 47.37 44.72 41.07 38.68).

From current nursing staff planning and patient demand, we see that the ratio of nursing
staff to the adjusted demand varies remarkably over the time intervals of a day. In particular,
the work of nursing staff is more intensive during the noon period (10:00 to 14:30) and least
busy during midnight period (02:00 to 06:30). This is basically due to the nature of high
patient demand during the noon time and low emergency arrivals at midnight hours. The
minimum ratio ρ of nursing staff to touch points over the 48 time intervals is calculated
as 0.309. This implies that an individual nurse may need to care about three patients
during the extreme busy period of a day at some locations in ED, say observation rooms.
We also calculate the current mean deviation of the workload ratios as 0.194. This value
is subsequently used as a baseline to evaluate the performance of capacity planning rule
derived by the MIP model.

4.2 Results

In the test, the nursing staff capacity is set as 60, i.e., C = 60. We consider factors con-
cerning shift capacity planning from practical perspective, such as, capacity requirements
on manpower supply in each time interval or in each shift, shift times, and total number
of minor shifts, and so on. We evaluate various shift capacity planning rules under differ-
ent considerations. As shown in Table 1, 9 different scenarios are considered in numerical
experiment.

In computation, we set M0 = 100, li = 0 and ui = 50 for i = 1, . . . , 51. In addition, we
set Cj = 0, j = 1, . . . , 48, if there is no minimum capacity requirement on time intervals.
Further, we set γ = 50 for Case 1. For each scenario under consideration, we solve the
corresponding MIP model and report the results in Tables 2-3, where “AM” and “PM”
refer to the respective morning and afternoon major shifts. The former table illustrates
the respective capacity of nursing staff for the shifts and mean deviations in the above 9
cases. We report the reduction rate of mean deviation for each scenario as shown in Table
2. Specific shift times of both major and minor shifts are elaborated in Table 3.

ED managers can assess the feasibility of capacity planning solutions according to the
respective constraints together with other possible considerations in practice. For instance,
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Table 1: Description of Different Scenarios

Table 2: Summary of Shift Capacity Planning Rules

Case 1 considers the situation with a full freedom in planning, resulting in the least opti-
mization model. The results show that there are 9 minor shifts, in which 3 shifts start in the
morning session and the rest starts in the afternoon. The mean deviation reduction is re-
markable with a rate of 45.9%, just next to the highest one of Case 9. However this planning
solution is impractical in operations. There are too many minor shifts, in particular, during
the period of 15:30 to 18:00, a minor shift to be operated in every half-hour interval. In fact,
this staffing plan not only increases the complexity of human resource management, but
also affects quality of direct care to patients due to high variability of nursing staff during
patient duration in ED. Then, we add the constraint on maximum number of minor shifts
in Cases 2-9, where γ is chosen from {1, 2, 3}. The shift time is important in nurse staffing
and scheduling involving a variety of practical factors. We thus add some specific require-
ment on the starting time of minor shift in the model, such as 10:00, 10:30, and so on. In
addition, for each time interval of a day, there might be a minimum capacity requirement in
order to meet necessary care needs of uncertain arrivals. We illustrate this situation in Case
9. Overall, the solution derived in Case 9, x = (14, 10, 13, 10, 8, 5), appears to be the most
promising rule for shift capacity planning. In particular, their shift times concerning minor
shifts seem ideal and the reduction rate of mean deviation of the workload is considerably
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high as 46%, comparing with other reduction rates under consideration. Decision makers
can use the information as a reference in their shift capacity planning.

Table 3: Shift Times of Both Major and Minor Shifts

In the above discussion, we use the mean deviation of workloads over half-hourly time
intervals of a day as a measure to determine the optimal capacity planning rules. For
each obtained shift capacity planning scenario, we further analyze the mean deviation of
workloads over the corresponding major and minor shifts. In this case, the adjusted demand
and the number of nurses on duty by shift are then calculated based on the working hours
of specific shifts. The average workload for each shift and its mean deviation among the
various shifts for each scenario are reported in Table 4. The results show that current mean
workload is higher than that of planning scenarios derived by the model. On top of Case
1, the mean deviation of the workloads over the shift in Case 9 is the smallest. As to
the three major shifts, we also find that for all cases under consideration the workload of
morning shift is always the highest while that of night shift is the lowest, the workload in
the afternoon shift is between these two. In general, this is due to the necessity to maintain
certain nursing staff at various areas at ED even if the average emergency arrivals are very
low. However, during the working hours of morning shift, the number of patients is high but
the shift capacity keeps relatively steady. During the working hours of afternoon shift, there
are more extra manpower supply contributed by minor shifts while the number of emergency
visits decreases during this period. Hence, the minimum workload among these major shifts
(i.e., Row 2-4 of Table 4) can be used as another consideration in decision making.

5 Conclusion

To improve resource utilization at ED, this paper addressed shift scheduling and capacity
planning for nursing staff using a mathematical optimization approach. A mixed integer pro-
gramming model was developed with the objective of minimizing mean deviation of overall
nurse workloads over the time of a day. The model provides an optimal shift scheduling
rule on the number of total shifts, the shift times and the number of nursing staff by shift.
With actual ED patient administrative data, we obtained optimal nurse staffing rules un-
der various scenarios. Hospital managers may use the results for human resource planning
appropriately. In the future, we like to apply the results to help plan nurse roster at ED.
We are also interested to explore shift capacity planning under the situation of uncertain
emergency arrivals using stochastic programming approach.
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Table 4: Average Workload and Mean Deviation over Shifts
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