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the solution mapping for parametric implicit vector equilibrium problems. By using the
idea of Cheng and Zhu [10], Gong [17] established the continuity of the solution mapping
to parametric weak vector equilibrium problems with vector-valued mappings. Based on a
scalarization representation of the solution mapping and a property involving the union of
a family of lower semicontinuous set-valued mappings, Chen et al. [9] discussed the lower
semicontinuity and continuity of the solution mapping to a parametric generalized vector
equilibrium problem involving set-valued mappings. Hou et al. [21] obtained results on the
existence and semicontinuity of solutions for generalized Ky Fan inequality problems with
trifunctions. Chen and Li [8] studied the continuity of various efficient solution mappings
for a parametric generalized vector equilibrium problem without the uniform compactness
assumption and improved the results of [17, 18]. Under new assumptions, Peng et al. [30]
studied the lower semicontinuity of solution mappings to two classes of parametric weak
generalized Ky Fan inequalities with set-valued mappings in Hausdorff topological vector
spaces. Recently, Chen and Huang [6] established the continuity of solution mappings to the
two kinds of parametric generalized vector equilibrium problems under suitable assumptions.
Very recently, Wang et al. [31,32] obtained the lower semicontinuity of the solution mapping
to a parametric generalized vector equilibrium problem and the continuity of the solution
mapping to a parametric generalized strong vector equilibrium problem, respectively.

On the other hand, in recent years, many reseachers have been interested in approx-
imate solutions of optimization (or equilibrium) problems. There are several important
reasons for considering this kind of solutions. One of them is that exact solutions of the
problems may not exist in many practical problems, but approximate solutions of problems
can be computed by using iterative algorithms or heuristic methods. Khanh and Luu [22]
established the semicontinuity of solution mappings and approximate solution mappings of
parametric multivalued quasivariational inequalities in topological vector spaces. Anh and
Khanh [1] considered two kinds of approximate solutions and approximate solution map-
pings to multivalued quasiequilibrium problems, and established the sufficient conditions
for their Hausdorff semicontinuity (semicontinuity). By using a scalarization method, Li
and Li [26] discussed the continuity of a approximate solution mapping for a parametric
vector equilibrium problem, which is different from the corresponding ones in [1, 22]. Chen
et al. [7] proved the connectedness results of ϵ-weak efficient and ϵ-efficient solutions map-
pings for vector equilibrium problems under some suitable conditions. Recently, Qiu and
Yang [29] obtained some scalar characterization of approximate weakly efficient solutions
and approximate Henig efficient solutions for vector equilibrium problems.

Motivated and inspired by the research works mentioned above, in this paper, some
stability results for parametric set-valued weak vector equilibrium problems are discussed.
Under suitable assumptions, which do not contain any information about solution mappings,
we establish the lower semicontinuity of the approximate solution mapping to a class of
parametric set-valued weak vector equilibrium problem by using a scalarization technique.
These results extend and improve the corresponding ones in the literature ( [6, 17, 30–32]).
Some examples are given to illustrate the conclusions.

2 Preliminaries

Throughout this paper, unless specified otherwise, let X be a real Hausdorff topological
vector space, Y be a real locally convex Hausdorff topological vector space and Y ∗ be the
topological dual space of Y, Z be a topological space. Let C be a closed, convex and pointed
cone in Y with nonempty interior intC.
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Let
C∗ := {f ∈ Y ∗ : f(y) ≥ 0, ∀y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C♯, i.e.,

C♯ := {f ∈ Y ∗ : f(y) > 0, ∀y ∈ C \ {0}}.

It is easy to see that C♯ ̸= ∅ if and only if C has a base.
Let e ∈ intC be fixed and let

B∗
e = {f ∈ C∗ \ {0} : f(e) = 1},

then B∗
e is a weak∗ compact base of C∗.

Let the set A be a nonempty subset of X, and F : A×A → 2Y be a set-valued mapping.
When the mapping F and A are perturbed by a parameter µ which varies over a subset Λ
of Z, we can consider the following parametric set-valued weak vector equilibrium problem
of finding x ∈ A(µ) such that

(PSWVEP) F (x, y, µ) ∩ (−intC) = ∅, ∀y ∈ A(µ),

where A : Λ → 2X is a set-valued mapping with nonempty values, F : B × B × Λ ⊂
X ×X × Z → 2Y is a set-valued mapping with A(Λ) =

∪
µ∈Λ A(µ) ⊂ B.

For each µ ∈ Λ, ϵ ≥ 0, let V W (µ), V W
ϵ (µ) denote the solution set and the approximate

solution set of (PSWVEP), respectively, i.e.,

V W (µ) = {x ∈ A(µ) : F (x, y, µ) ∩ (−intC) = ∅, ∀y ∈ A(µ)}

and
V W
ϵ (µ) = {x ∈ A(µ) : (F (x, y, µ) + ϵe) ∩ (−intC) = ∅, ∀y ∈ A(µ)},

where e ∈ intC be a fixed element.
For each f ∈ C∗ \ {0} and for each µ ∈ Λ, the f -solution set of (PSWVEP) is defined by

V f (µ) := {x ∈ A(µ) : inf
z∈F (x,y,µ)

f(z) ≥ 0, ∀y ∈ A(µ)}.

For each f ∈ B∗
e and for each µ ∈ Λ, the approximate f -solution set of (PSWVEP) is

defined by
V f
ϵ (µ) := {x ∈ A(µ) : inf

z∈F (x,y,µ)
f(z) + ϵ ≥ 0, ∀y ∈ A(µ)}.

Throughout this paper, we always assume V f (µ) ̸= ∅ for each f ∈ C∗ \ {0}, µ ∈ Λ
and V f

ϵ (µ) ̸= ∅ for each f ∈ B∗
e , µ ∈ Λ. In this paper, we will investigate the lower

semicontinuity of the approximate solution mapping V W
ϵ (µ) to (PSWVEP). Now we recall

some basic definitions and their properties which are needed in the following sections.

Definition 2.1. Let D be a nonempty convex subset of X, G : D → 2Y be a set-valued
mapping.

(i) G is called C-convex on D, if for any x1, x2 ∈ D and t ∈ [0, 1], tG(x1)+(1− t)G(x2) ⊂
G(tx1 + (1− t)x2) + C.

(ii) G is called C-convexlike on D, if for any x1, x2 ∈ D and t ∈ [0, 1], there exists x3 ∈ D
such that tG(x1) + (1− t)G(x2) ⊂ G(x3) + C.
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Definition 2.2. (i) The mapping G : D ×D → 2Y is said to be C-monotone on D ×D
if, for all x, y ∈ D, G(x, y) +G(y, x) ⊂ −C.

(ii) The mapping G : D × D → 2Y is said to be C-strictly monotone on D × D, if G is
C-monotone on D ×D, and for any x, y ∈ D with x ̸= y, one has G(x, y) +G(y, x) ⊂
−intC.

Definition 2.3 ([3]). Let X and Y be topological spaces, G : X → 2Y be a set-valued
mapping.

(i) G is said to be upper semicontinuous (u.s.c, for short) at x0 ∈ X, if for any open set
V with G(x0) ⊂ V, there exists a neighborhood U of x0 in X such that G(x) ⊂ V for
all x ∈ U .

(ii) G is said to be lower semicontinuous (l.s.c, for short) at x0 ∈ X, if for any open set V
with G(x0)∩V ̸= ∅, there exists a neighborhood U of x0 in X such that G(x)∩V ̸= ∅
for all x ∈ U .

(iii) G is said to be continuous at x0 ∈ X, if it is both l.s.c and u.s.c at x0 ∈ X. G is said
to be l.s.c (resp. u.s.c) on X, iff it is l.s.c (resp. u.s.c) at each x ∈ X.

Definition 2.4 ( [19]). Let X and Y be topological vector spaces, G : X → 2Y be a
set-valued mapping.

(i) G is said to be C-upper semicontinuous at x0, if for any neighborhood U of 0 in Y,
there exists a neighborhood U(x0) of x0 such that

G(x) ⊂ G(x0) + U + C, ∀x ∈ U(x0) ∩X.

(ii) G is said to be C-lower semicontinuous at x0, if for each z ∈ G(x0), and any neighbor-
hood U of 0 in Y, there exists a neighborhood U(x0) of x0 such that

G(x) ∩ (z + U − C) ̸= ∅, ∀x ∈ U(x0) ∩X.

The following example is given to show that G is C-lower semicontinuous, while it is not
necessarily upper semicontinuous.

Example 2.5. Let X = R, C = R+. G : R → 2R is defined by

G(x) =

{
{0}, if x = 0,
[−1, 1], if x ̸= 0.

Then, G is C-lower semicontinuous at x = 0, but G is not upper semicontinuous at x = 0.

Definition 2.6 ([33]). A set-valued mapping G is said to be nearly C-subconvexlike on A,
if cl cone(G(A) + C) is a convex set.

Remark 2.7. It is clear that G(A) +C is a convex set implies that cl cone(G(A) +C) is a
convex set, but it follows from Example 3.1 of [33] that the converse is not true.

From [3,12], we have the following properties for Definition 2.3.

Proposition 2.8. Let X and Y be topological vector spaces, G : X → 2Y be a set-valued
mapping.
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(i) G is l.s.c at x0 ∈ X if and only if for any net {xα} ⊂ X with xα → x0 and any
y0 ∈ G(x0), there exists yα ∈ G(xα) such that yα → y0.

(ii) If G has compact values (i.e., G(x) is a compact set for each x ∈ X), then G is u.s.c
at x0 if and only if for any net {xα} ⊂ X with xα → x0 and for any yα ∈ G(xα),
there exist y0 ∈ G(x0) and a subnet {yβ} of {yα} such that yβ → y0.

Lemma 2.9 ([4]). The union Γ =
∪

i∈I Γi of a family of l.s.c set-valued mappings Γi from
a topological space X into a topological space Y is also a l.s.c set-valued mapping from X
into Y, where I is an index set.

Lemma 2.10 ([29]). Let C ⊂ Y be a convex cone with intC ̸= ∅. Then

intC = {y ∈ Y : f(y) > 0,∀f ∈ C∗ \ {0}}.

3 Lower Semicontinuity of Approximate Solution Mapping for
(PSWVEP)

In this section, we mainly discuss the lower semicontinuity of the approximate solution
mapping to (PSWVEP). To obtain the lower semicontinuity of the approximate solution
mapping V W

ϵ , we introduce the following assumption (S) :
Let ϵ ≥ 0, f ∈ B∗

e and let F : A(Λ) × A(Λ) × Λ → 2Y be a set-valued mapping.
infz∈F (x,y,µ) f(z) + ϵ = 0 implies that x = y.

The following example is given to illustrate the assumption (S).

Example 3.1. Let X = Z = R, Y = R2, C = R2
+,Λ = [1, 2], ϵ = 1

12 , e = (1, 1), f = (1, 0).
Let A : Λ → 2X be a set-valued mapping defined by A(µ) = [ 12 , 3] and let F : X×X×Λ → 2Y

defined by

F (x, y, µ) =
[
x2 − y2 − x+ y − 1

12
, 30

]
× [(µ2 + 1)(x2 + y2 − 2),+∞).

Then, infz∈F (x,y,µ) f(z) + ϵ = 0 implies that x = y. So the assumption (S) holds.

Lemma 3.2. Let f ∈ B∗
e , ϵ ≥ 0. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact values on Λ;

(ii) F (·, ·, ·) is lower semicontinuous on B ×B × Λ;

(iii) For any given µ ∈ Λ,

( inf
z∈F (x,y,µ)

f(z) + ϵ)( inf
z∈F (y,x,µ)

f(z) + ϵ) ≤ 0, ∀x, y ∈ A(µ);

(iv) The assumption (S) holds for f .

Then, V f
· (·) is l.s.c on ϵ× Λ.

Proof. Suppose that there exists µ0 ∈ Λ such that V f
· (·) is not l.s.c at (ϵ, µ0). Then, there

exist a net {µα} with µα → µ0, ϵα → ϵ with ϵα ∈ [0,+∞) and x0 ∈ V f
ϵ (µ0) such that for

any xα ∈ V f
ϵα(µα), xα ̸→ x0.

Since x0 ∈ A(µ0) and A(·) is l.s.c at µ0, there exists {x̄α} with x̄α ∈ A(µα) such that

x̄α → x0.
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For any yα ∈ V f
ϵα(µα) ⊂ A(µα), since A(·) is u.s.c with compact values at µ0, there exist

y0 ∈ A(µ0) and a subnet {yβ} of {yα} such that

yβ → y0.

It follows from yβ ∈ V f
ϵβ
(µβ) and x̄β ∈ A(µβ) that

inf
z∈F (yβ ,x̄β ,µβ)

f(z) + ϵβ ≥ 0. (3.1)

Since F (·, ·, ·) is lower semicontinuous at (y0, x0, µ0), then for any given z ∈ F (y0, x0, µ0),
there exists zβ ∈ F (yβ , x̄β , µβ) such that zβ → z. Thus, by the continuity of f, we have

f(zβ) + ϵβ → f(z) + ϵ.

This together with (3.1) and the arbitrariness of z ∈ F (y0, x0, µ0) yields

inf
z∈F (y0,x0,µ0)

f(z) + ϵ ≥ 0. (3.2)

It follows from x0 ∈ V f
ϵ (µ0) and y0 ∈ A(µ0) that

inf
z∈F (x0,y0,µ0)

f(z) + ϵ ≥ 0. (3.3)

If infz∈F (x0,y0,µ0) f(z) + ϵ = 0. Then, by assumption (iv), we have

x0 = y0.

If infz∈F (x0,y0,µ0) f(z) + ϵ > 0. Then, by assumption (iii), we have

inf
z∈F (y0,x0,µ0)

f(z) + ϵ ≤ 0. (3.4)

From (3.2) and (3.4), one has

inf
z∈F (y0,x0,µ0)

f(z) + ϵ = 0.

By assumption (iv) again , we can get x0 = y0. This is impossible by the contradiction
assumption, and the proof is complete.

Remark 3.3. In Lemma 3.2, we establish the lower semicontinuity of the approximate f -
solution mapping for parametric set-valued weak vector equilibrium problem. Obviously, the
result extends and improves Lemma 4.2 of [17] (the strict monotone is required) and Lemma
3.1 of [6] (the information of the solution mapping is required). The following example is
given to illustrate this case.

Example 3.4. Let X = Z = R, Y = R2, C = R2
+,Λ = [1, 2], f = (0, 1), ϵ = 1

2 , e = (1, 1).
Let A : Λ → 2X defined by A(µ) = [ 12 , 2] and let F : X ×X × Λ → 2Y defined by

F (x, y, µ) = [x(y − x)2(x2 − 2µ− 5), 18]×
[
3x(y − x)− 1

2
, 20

]
.

Obviously, all conditions of Lemma 3.2 are satisfied. It follows from a direct computation
that V f

ϵ (µ) = { 1
2},∀µ ∈ Λ. Hence, V f

· (·) is l.s.c on ϵ× Λ.



LOWER SEMICONTINUITY OF APPROXIMATE SOLUTION MAPPING 733

However, F (·, ·, µ) is not C-strictly monotone on A(µ)×A(µ) for any given µ ∈ Λ. Thus,
[9, Lemma 3.2] and [17, Lemma 4.2] are not applicable here. Moreover, the information of
solution mapping is not needed, so Lemma 3.1 of [6] (Therem 3.3 of [30]) is not applicable
here.

When ϵ = 0, we can get the following result.

Corollary 3.5. Let f ∈ C∗ \ {0}. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact values on Λ;

(ii) F (·, ·, ·) is C-lower semicontinuous on B ×B × Λ;

(iii) For any given µ ∈ Λ,

( inf
z∈F (x,y,µ)

f(z))( inf
z∈F (y,x,µ)

f(z)) ≤ 0, ∀x, y ∈ A(µ);

(iv) The assumption (S) holds for f .

Then, V f (·) is l.s.c on Λ.

Proof. Suppose that there exists µ0 ∈ Λ such that V f (·) is not l.s.c at µ0. Then, there exist
a net {µα} with µα → µ0 and x0 ∈ V f (µ0) such that for any xα ∈ V f (µα), xα ̸→ x0.

Since x0 ∈ A(µ0) and A(·) is l.s.c at µ0, there exists {x̄α} with x̄α ∈ A(µα) such that

x̄α → x0.

For any yα ∈ V f (µα) ⊂ A(µα), since A(·) is u.s.c with compact values at µ0, there exist
y0 ∈ A(µ0) and a subnet {yβ} of {yα} such that

yβ → y0.

It follows from yβ ∈ V f (µβ) and x̄β ∈ A(µβ) that

inf
z∈F (yβ ,x̄β ,µβ)

f(z) ≥ 0. (3.5)

Now, we claim that infz∈F (y0,x0,µ0) f(z) ≥ 0. If not, there exists z0 ∈ F (y0, x0, µ0) such

that f(z0) < 0. Set U = {z ∈ Y : |f(z)| < 1
2 |f(z0)|}. It is clear that U is a neighborhood of 0

in Y. By assumption (ii), for above U, there exists a neighborhood U(y0, x0, µ0) of (y0, x0, µ0)
in A(Λ)×A(Λ)× Λ such that

F (y′, x′, µ′) ∩ (z0 + U − C) ̸= ∅,∀(y′, x′, µ′) ∈ U(y0, x0, µ0). (3.6)

It follows from (yβ , x̄β , µβ) → (y0, x0, µ0) and (3.6) that there exists some β0, such that

F (yβ , x̄β , µβ) ∩ (z0 + U − C) ̸= ∅, ∀β ≥ β0. (3.7)

Therefore, there exists zβ ∈ F (yβ , x̄β , µβ) such that zβ ∈ z0+U −C, i.e., there exist uβ ∈ U
and cβ ∈ C such that zβ = z0 + uβ − cβ . Thus,

f(zβ) = f(z0 + uβ − cβ) < f(z0) +
1

2
|f(z0)| − f(cβ) ≤

1

2
f(z0) < 0.
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However, by (3.5), we have

f(zβ) ≥ inf
z∈F (yβ ,x̄β ,µβ)

f(z) ≥ 0,

which is a contradiction. Hence, we have

inf
z∈F (y0,x0,µ0)

f(z) ≥ 0. (3.8)

Then, the rest of the proof is similar to Lemma 3.2. Hence, we can obtain the result.

Lemma 3.6. Let f ∈ B∗
e , ϵ ≥ 0. Suppose that the following conditions are satisfied:

(i) For any given µ ∈ Λ,

( inf
z∈F (x,y,µ)

f(z) + ϵ)( inf
z∈F (y,x,µ)

f(z) + ϵ) ≤ 0, ∀x, y ∈ A(µ);

(ii) The assumption (S) holds for f .

Then, V f
· (·) is a singleton on ϵ× Λ.

Proof. By virtue of the assumption and the previous proof idea, we can easily get the
conclusion.

Lemma 3.7. Let ϵ ≥ 0. Suppose that for each µ ∈ Λ, x ∈ A(µ), F (x, ·, µ) + ϵe is nearly
C-subconvexlike on A(µ). Then,

V W
ϵ (µ) =

∪
f∈B∗

e

V f
ϵ (µ).

Proof. (i) Let x ∈
∪

f∈B∗
e
V f
ϵ (µ). Then there exists f ′ ∈ B∗

e such that x ∈ V f ′

ϵ (µ). Hence, x ∈
A(µ) and infz∈F (x,y,µ) f

′(z)+ ϵ ≥ 0, ∀y ∈ A(µ), i.e., for any y ∈ A(µ), z ∈ F (x, y, µ), f ′(z)+
ϵ ≥ 0, which deduces that z ̸∈ −ϵe − intC. Thus, by the arbitrariness of z, we obtain
F (x, y, µ) ∩ (−ϵe− intC) = ∅,∀y ∈ A(µ). Hence, x ∈ V W

ϵ (µ).
(ii) Let x ∈ V W

ϵ (µ). Then x ∈ A(µ) and F (x, y, µ) ∩ (−ϵe− intC) = ∅, ∀y ∈ A(µ). Thus,

(F (x,A(µ), µ) + C) ∩ (−ϵe− intC) = ∅,

i.e.,
(F (x,A(µ), µ) + C + ϵe) ∩ (−intC) = ∅.

Hence, we have
cl cone(F (x,A(µ), µ) + C + ϵe) ∩ (−intC) = ∅. (3.9)

Since for each µ ∈ Λ, x ∈ A(µ), F (x, ·, µ) + ϵe is nearly C-subconvexlike on A(µ). Then,
cl cone(F (x, A(µ), µ)+C + ϵe) is a convex set, by (3.9) and separation theorem, there exist
a continuous linear functional g ∈ Y ∗ \ {0} and a real number r such that

g(ĉ) < r ≤ g(z + c+ ϵe),

for all ĉ ∈ −intC, z ∈ F (x,A(µ), µ) and c ∈ C. Since C is a cone and ĉ ∈ −intC can be taken
arbitrarily close to 0 ∈ Y. By the continuity of g, we have r ≥ 0. Therefore, from Lemma
2.10, we have g ∈ C∗ \ {0}.
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Since 0 ∈ C, then

z + ϵe ∈ F (x,A(µ), µ) + ϵe+ C, ∀z ∈ F (x,A(µ), µ).

Thus, we get
g(z) + g(ϵe) = g(z) + ϵg(e) ≥ 0, ∀z ∈ F (x,A(µ), µ).

Since e ∈ intC and g ∈ C∗ \ {0}, then g(e) > 0. Let f = g
g(e) , we have f ∈ B∗

e and

f(z) + ϵf(e) = f(z) + ϵ ≥ 0, ∀z ∈ F (x,A(µ), µ),

i.e.,
inf

z∈F (x,y,µ)
f(z) + ϵ ≥ 0, ∀y ∈ A(µ),

which implies that x ∈ V f
ϵ (µ) ⊂

∪
f∈B∗

e
V f
ϵ (µ).

Remark 3.8. (i) When ϵ = 0, Lemma 3.7 collapses to Lemma 3.2 in [31]. (ii) Because
the assumption of nearly C-subconvexlikeness is weaker than C-convexlikeness (and C-
convexity), Lemma 3.7 also improves Lemma 3.1 in [9] (Lemma 3.1 (ii) of [30], Lemma 2.3
of [6]).

Now, we establish the lower semicontinuity of the approximate solution mapping V W
ϵ (·)

to (PSWVEP).

Theorem 3.9. Let f ∈ B∗
e , ϵ ≥ 0. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact values on Λ;

(ii) F (·, ·, ·) is lower semicontinuous on B ×B × Λ;

(iii) For any given µ ∈ Λ,

( inf
z∈F (x,y,µ)

f(z) + ϵ)( inf
z∈F (y,x,µ)

f(z) + ϵ) ≤ 0, ∀x, y ∈ A(µ);

(iv) For each µ ∈ Λ and for each x ∈ A(µ), F (x, ·, µ) + ϵe is nearly C-subconvexlike on
A(µ);

(v) The assumption (S) holds for f .

Then, V W
· (·) is lower semicontinuous on ϵ× Λ.

Proof. Since for each µ ∈ Λ and for each x ∈ A(µ), F (x, ·, µ) + ϵe is nearly C-subconvexlike
on A(µ), it follows from Lemma 3.7 that

V W
ϵ (µ) =

∪
f∈B∗

e

V f
ϵ (µ).

From Lemma 3.2, we know that for each f ∈ B∗
e , V

f
· (·) is l.s.c on ϵ× Λ. Thus, by virtue of

Lemma 2.9, we obtain that V W
· (·) is l.s.c on ϵ× Λ.

Remark 3.10. Our main result Theorem 3.9 is different from the ones in [31, 32] in the
following two aspects:

(i) We extend the lower semicontinuity of the solution mapping of (PSWVEP) to the
lower semicontinuity of the approximate solution mapping of (PSWVEP);

(ii) We use the assumption (ii) instead of the upper semicontinuity and compactness of
F in [31,32].
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Now, we give an example to illustrate that the assumption (v) of Theorem 3.9 is essential.

Example 3.11. Let X = Z = R, Y = R2, C = R2
+,Λ = [−1, 0] and let ϵ = 1

2 , e =(
1
4 ,

1
3

)
, f = (0, 3). Let A : Λ → 2X defined by A(µ) = [0, 1]. For each µ ∈ Λ, x, y ∈ A(µ),

define set-valued mapping F : X ×X × Λ → 2Y by

F (x, y, µ)

=
{
(a, b)|(a, b) = t

(
(µ2+2µ+3)(y−x−1)−1

8
,
1

3
µx(y−x)−1

6

)
+(1−t)

(
−1

8
,−1

6

)
,∀t ∈ [0, 1]

}
.

Obviously, A(·) is continuous with nonempty compact values on Λ, and conditions (ii), (iii)
and (iv) of Theorem 3.9 are satisfied.

It follows from a direct computation that

V W
ϵ (µ) =

{
[0, 1], if µ = 0,
{0, 1}, if µ ∈ [−1, 0).

Hence, V W
ϵ (µ) is even not l.s.c at µ = 0. The reason is that the assumption (v) does not

hold for f = (0, 3) and µ = 0.
Now, we show that V W

ϵ (µ) is even not l.s.c at µ = 0. Indeed, there exists 1
10 ∈ V W

ϵ (0)
and there exists a neighborhood ( 1

20 ,
3
20 ) of

1
10 , for any neighborhood U(0) of 0, there exists

−1 < µ̃ < 0 such that µ̃ ∈ U(0) and

V W
ϵ (µ̃) ∩

( 1

20
,
3

20

)
= ∅.

;nition 2.3, we know that V W
ϵ (·) is not l.s.c at µ = 0. Therefore, the assumption (v) in

Theorem 3.9 is essential.

When ϵ = 0, by virtue of Corollary 3.5 and Theorem 3.9, we can obtain the following
result.

Corollary 3.12. Let f ∈ C∗ \ {0}. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact values on Λ;

(ii) F (·, ·, ·) is C-lower semicontinuous on B ×B × Λ;

(iii) For any given µ ∈ Λ,

( inf
z∈F (x,y,µ)

f(z))( inf
z∈F (y,x,µ)

f(z)) ≤ 0, ∀x, y ∈ A(µ);

(iv) For each µ ∈ Λ and for each x ∈ A(µ), F (x, ·, µ) is nearly C-subconvexlike on A(µ);

(v) The assumption (S) holds for f .

Then, V W (·) is lower semicontinuous on Λ.

Remark 3.13. In Corollary 3.12, under new assumptions, we obtain the lower semiconti-
nuity of the solution mapping to parametric set-valued weak vector equilibrium problems,
where the monotonicity, the information about solution mappings and the upper semicon-
tinuity and compactness of F are not required. Thus, our result improve the corresponding
ones in [6, 9, 17,18,30,31]. The following example is given to illustrate these case.
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Example 3.14. Let X = Y = Z = R,Λ = [1, 2], C = R+. Let A : Λ → 2X defined by
A(µ) = [0, 1] and let F : X ×X × Λ → 2Y defined by

F (x, y, µ) =

{
− 1

2y(y − x), if x = 0,
[−y(y − x), (x+ 2 + µ)2], if x ∈ (0, 1],

for each µ ∈ Λ, x, y ∈ A(µ).
It is easy to verify that all conditions of Corollary 3.12 are satisfied. By a direct compu-

tation that we have
V W (µ) = V f (µ) = {1}.

Clearly, V W (µ) is l.s.c on Λ. Hence, Corollary 3.12 holds here.
However, for any x, y ∈ A(µ) with x ̸= y, we have

F (x, y, µ) + F (y, x, µ) ̸⊂ −intC,

i.e., F (·, ·, µ) is not C-strictly monotone on A(µ)×A(µ) for any given µ ∈ Λ. Thus, Theorem
4.1 in [17], Theorem 2.1 in [18] and Theorem 3.1 in [9] are not applicable.

However, there exists x ∈ A(µ) \ V f (µ), for any z ∈ V f (µ), such that

F (x, z, µ) + F (z, x, µ) +B(0, d(x, z)) ̸⊂ −C.

Thus, Theorem 3.4 in [30] and Theorem 3.1 in [6] are not applicable.
Because F (·, y, µ) is not upper semicontinuous at x = 0 for each µ ∈ Λ, y ∈ A(µ). Hence,

Theorem 3.3 in [31] is not applicable.

References

[1] L.Q. Anh and P.Q. Khanh, Semicontinuity of the approximate solution sets of multi-
valued quasiequilibrium problems, Numer. Funct. Anal. Optim. 29 (2008) 24–42.

[2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhanser, Boston, 1990.

[3] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New
York, 1984.

[4] C. Berge, Topological Spaces, Oliver and Boyd, London, 1963.

[5] B. Chen and X.H. Gong, Continuity of the solution set to parametric set-valued weak
vector equilibrium problems, Pacific. J. Optim. 6 (2010) 511–520.

[6] B. Chen and N.J. Huang, Continuity of the solution mapping to parametric generalized
vector equilibrium problems, J. Glob. Optim. 56 (2013) 1515–1528.

[7] B. Chen, Q.Y. Liu, Z.B. Liu and N.J. Huang, Connectedness of approximate solutions
set for vector equilibrium problems in Huasdorff topological vector spaces, Fixed. Point.
Theory A 36 (2011) 1–11.

[8] C.R. Chen and S.J. Li, On the solution continuity of parametric generalized systems,
Pacific. J. Optim. 6 (2010) 141–151.

[9] C.R. Chen, S.J. Li and K.L. Teo, Solution semicontinuity of parametric generalized
vector equilibrium problems, J. Glob. Optim. 45 (2009) 309–318.



738 Y. ZHAO, Z.-Y. PENG, X.-J. LONG AND J. ZENG

[10] Y.H. Cheng and D.L. Zhu, Global stability results for the weak vector variational in-
equality, J. Glob. Optim. 32 (2005) 543–550.

[11] K. Fan, A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III,
pp. 103-113. Academic Press, New York, 1972.

[12] F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl. 60
(1989) 19–31.

[13] J.F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,
J. Glob. Optim. 31 (2005) 109–119.

[14] F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Mathematical The-
ories, Kluwer, Dordrecht, 2000.

[15] F. Giannessi, A. Maugeri and P.M. Pardalos, Equilibrium Problems: Nonsmooth Opti-
mization and Variational Inequality Models, Kluwer Academic Publishers, Dordrecht,
2001.

[16] X.H. Gong, Efficiency and Heing efficiency for vector equilibrium problems, J. Optim.
Theory Appl. 108 (2001) 139–154.

[17] X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium prob-
lems, J. Optim. Theory Appl. 139 (2008) 35-46.

[18] X.H. Gong and J.C. Yao, Lower semicontinuity of the set of efficient solutions for
generalized systems, J. Optim. Theory Appl. 138 (2008) 197-205.
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