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minimizing the model mk(x) inside the trust region. To decide whether or not to accept the
trial point xk + sk and determine the trust-region radius ∆k+1, we compute the ratio

ρk ≜ f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
(1.2)

which measures the agreement between the model function and the objective function. If
the ratio ρk is larger than a small positive constant, say η ∈ (0, 0.25], we accept the trial
point xk+sk as the next iterate xk+1 and choose the trust region radius ∆k+1 ⩾ ∆k (in this
case the k-th iteration is called successful). Otherwise, we reject the trial point xk + sk and
re-solve the subproblem within the smaller trust region by decreasing ∆k to get the new trial
step. Due to the strong global convergence properties and high numerical efficiency, various
researchers contributed to the development of trust-region methods [5,7,18,21,23–27,32,33].
There are several optimization monographs which provide a good summary of trust-region
methods, such as Conn, Gould, Toint [5], Nocedal and Wright [22], and Sun and Yuan [30].

Recently, a variant of the trust-region methods, which is called retrospective trust-region
method was proposed by Bastin et al. [1]. In this method, the most relevant information on
the model’s quality at the current iterate is used, instead of the information at the previous
iterate. Note that, in the classical trust-region methods, the radius ∆k at iterate xk is
updated by ρk−1 at the end of the (k−1)-th iteration which uses the model functionmk−1(x).
But in retrospective trust-region algorithm the trust region radius ∆k is determined at the
beginning of the k-th iteration by the retrospective ratio

ρ̃k ≜ f(xk)− f(xk−1)

mk(xk)−mk(xk−1)
(1.3)

instead of ρk−1 in (1.2). Convergence analysis shows that this new trust-region method
shares all the convergence properties of the classical trust-region method under the similar
assumptions. The preliminary numerical experiments indicate that the retrospective trust-
region method is competitive to the classical trust-region method.

The filter method was first proposed by Fletcher and Leyffer [11] in the context of
constrained optimization. It attracted much attention in optimization society and was
developed further due to its ability of avoiding the pitfalls of penalty function methods,
see [10, 12, 19, 20, 31]. More recently, filter techniques were extended to solve unconstrained
optimization problems, see [3, 9, 13, 16, 20, 35]. The extensive numerical experiments show
the encouraging performance of the filter-type algorithms. Filter methods, to some ex-
tent, have the properties that allow the increasing of the objective function values in
iterative procedure, which is similar to that of the non-monotone optimization methods
(see [6,17,28,29,34]). Many researches indicate that relaxing the monotonicity can improve
the efficiency of algorithms, especially when the objective function features deep narrow
curved valleys.

In this paper, we give a modified version to the retrospective trust-region algorithm and
combine it with a relaxed filter technique. Our algorithm is proved robust and effective
in theory and practice. The paper is organized as follows. In Section 2, we describe the
modified filter retrospective trust-region algorithm (MFRTR). The convergence properties
are analyzed in Section 3. Finally, in Section 4, we report the numerical results obtained by
the experiments on a set of standard test problems from the CUTEr library [2, 15].

In the end of this section, we introduce some notation used in the paper. The notation
∥ · ∥ denotes the Euclidean norm on Rn. For a set S, |S| denotes its cardinal number. For
convenience, we denote the gradient of the objective function by

∇f(x) ≜ g(x) = (g1(x), g2(x), . . . , gn(x))
T .
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2 The New Algorithm

2.1 The weighted retrospective trust-region update

At each iterate xk, we construct the quadratic model function mk(x) as follows:

mk(xk + s) = f(xk) + gTk s+
1

2
sTBks, (2.1)

where gk = g(xk) and Bk is the exact Hessian ∇2f(xk) or its approximation. Then we
obtain the trial step sk by (approximately) solving the following trust-region subproblem:

min{mk(xk + s) : ∥s∥ ⩽ ∆k}, (2.2)

where ∆k is the trust region radius at iteration k.
One of the key ingredients in a trust-region algorithm is the strategy for choosing the

trust-region radius ∆k at k-th iteration. In the classical trust-region algorithm, we compute
the ratio ρk−1 which is defined by (1.2) at the previous iteration k − 1, and then use it to
determine the trust-region radius ∆k. Recently, Bastin et al. [1] proposed a retrospective
trust-region method that determines ∆k according to the retrospective ratio ρ̃k defined by
(1.3), which measures the agreement of the current model function mk(x) and the objective
function at xk. Therefore this technique synchronizes the radius update with the change
in models. In their opinion, the most relevant information on the model’s quality at the
current iterate would be more useful than that at the previous iterate. Extensive numerical
results [1] show the efficiency of this new trust-region algorithm. However, due to the success
of the classical trust-region methods to some extend, we think that it is not wise to discard
completely the ratio ρk−1 for determining ∆k. So, based on using the retrospective ratio
ρ̃k, we also take into account ρk−1 defined by (1.2). Therefore, we introduce the convex
combination of the ratio ρ̃k and ρk−1 which uses the information of both the previous and
the current model functions to improve the efficiency of the trust-region method. More
specially, we define

ρ̂k = λρ̃k + (1− λ)ρk−1, (2.3)

where λ ∈ [0, 1], and then update the trust-region radius ∆k according to ρ̂k instead of the
single retrospective ratio ρ̃k in [1].

2.2 The multidimensional filter

In the convergence analysis of the algorithm to the first-order critical point, we can regard
unconstrained optimization (1.1) as two aims: the first one is to decrease the objective
function f , and the second one is to drive the gradient ∇f to zero. So, to increase the
chance of accepting the new trial point, we consider using a filter mechanism related to
the gradient of f which uses the concept of domination from multi-objective optimization
according to the above two aims.

Definition 2.1 ([11]). A point x1 is said to dominate another point x2 if and only if

|gj(x1)| ⩽ |gj(x2)| for all j = 1, 2, . . . , n. (2.4)

In this case g(x1) is said to dominate g(x2).
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In the context of unconstrained optimization, this means that x1 is at least as good as
x2 with respect to encourage convergence to the first-order critical point. Based on this
definition, we can define a structure called a filter, which will be used in our trust-region
type algorithm as a criterion for testing acceptance of a trial step.

Note that we do not wish to accept a new point x+
k if its gradient g(xk) is arbitrarily

close to being dominated by another point already in the filter. The following strategy we
proposed is a modification of (2.5) in [16] and (2.9) in [4].

Definition 2.2. A point x is acceptable for the filter F if and only if for all g(xl) ∈ F ,

|gj(x)| ⩽ |gj(xl)| − γgΦ(F) for at least one j ∈ {1, 2, . . . , n}, (2.5)

where we set Φ(F) ≜ min{∥gk∥ : gk ∈ F} and γg ∈ (0, 1/
√
n).

We introduce Φ(F) to relax the acceptable condition (2.5) in [16] and allow more iterates
to be potentially acceptable.

When x+
k is acceptable for filter F , we add g(x+

k ) to the filter and remove every g(xl) ∈ F
such that

|gj(xl)| > |gj(xk)| for all j ∈ {1, 2, . . . , n}.

2.3 New algorithm

Based on the framework of the classical trust-region algorithm, we apply the proposed
weighted ratio ρ̂k in (2.3) to update the trust-region radius and use the modified filter
mechanism (2.5) to test the acceptance of the trial step. Further, we use the relaxed filter
technique and the parameter NONCONVEX switching strategy to efficiently solve the trust-
region model subproblem. The new algorithm is described as follows.

Algorithm 2.3. MFRTR

Step 0: Initialization.
Given the initial point x0 ∈ Rn, and an initial trust region radius ∆0 > 0. The
constants γg ∈ (0, 1/

√
n), λ, η, η1, η2, γ1, γ2, and γ3 are also given and satisfy 0 ⩽

λ ⩽ 1, 0 < η < 1, 0 < η1 < η2 < 1, and

0 < γ1 ⩽ γ2 < 1 ⩽ γ3.

Compute f(x0), set k = 0. Initialize the filter F to the empty set and choose fsup =
f(x0). Define a logical flag NONCONVEX.

Step 1: Model definition.
Compute gk = g(xk). If gk ≤ ϵ, set the first-order critical point x∗ = xk and stop;
else compute Bk and define the model function mk(xk + s) by (2.1).

Step 2: Weighted retrospective trust-region radius update.
If k = 0, go to Step 3. If xk = xk−1, then choose ∆k ∈ [γ1∆k−1, γ2∆k−1] (unsuc-
cessful iteration); else define

ρ̃k =
f(xk−1)− f(xk)

mk(xk−1)−mk(xk)
, (2.6)

ρ̂k = λρ̃k + (1− λ)ρk−1 (2.7)
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where ρk−1 was calculated in Step 4 of the preceding iteration, and set

∆k ∈

 [γ1∆k−1, γ2∆k−1], if ρ̂k < η1,
[γ2∆k−1, ∆k−1], if ρ̂k ∈ [η1, η2),
[∆k−1, γ3∆k−1], if ρ̂k ⩾ η2.

(2.8)

Step 3: Step calculation.
Determine an approximate solution sk to the trust-region subproblem (2.2). If the
model mk is nonconvex, set NONCONVEX = TRUE; else set it to be FALSE. Compute the
trial point x+

k = xk + sk.

Step 4: Compute the function value f(x+
k ) and define the ratio:

ρk =
f(xk)− f(x+

k )

mk(xk)−mk(x
+
k )

. (2.9)

If f(x+
k ) > fsup, set xk+1 = xk and go to Step 6.

Step 5: Acceptance of the trial point by the filter F.

If NONCONVEX = TRUE :

If ρk ⩾ η then
set xk+1 = x+

k , fsup = f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk.

If NONCONVEX = FALSE :
Compute g+k = g(x+

k ).

⋄ If x+
k is acceptable for the filter F according to (2.5):

Set xk+1 = x+
k and add g+k to the filter F if ρk < η;

⋄ If x+
k is not acceptable for the filter F according to (2.5):

If ρk ⩾ η, then set xk+1 = x+
k ; else set xk+1 = xk.

Step 6: Set k := k + 1, and go to Step 1.

Remark 2.4. In the algorithm, if xk+1 = x+
k , the k-th iteration is called successful.

Remark 2.5. The parameter NONCONVEX is set TRUE if the negative curvature of the model
is met when solving the trust-region subproblem. Here a generalized Lanczos trust-region
algorithm (see [14]) is employed to solve the trust-region subproblem and, at the same time,
determine the parameter NONCONVEX during the procedure.

Remark 2.6. According to our numerical experiments and Gould et al. [16], employing the
parameter NONCONVEX switching rule can increase the efficiency of the algorithm to some
extent. When the parameter NONCONVEX is set to be TRUE, that means the model mk is
nonconvex. In this case we accept the trial step and reset the filter to the empty set if
there is the sufficient decrease of the objective function. Otherwise, when NONCONVEX is
FALSE which means that the model mk is convex, we employ the filter mechanism to test
the acceptance of the trial step.
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3 Convergence Analysis

In this section, for the convenience of analysis of the convergence properties of Algorithm
2.3, we let the parameter ϵ in our algorithm to be zero. Then we will prove that Algorithm
2.3 either terminates in finitely many iterations, or generates an infinite sequence which is
globally convergent to the first-order critical points. The main convergence analysis is an
extension of the results in [5, 16,30].

Now we give some standard assumptions in the following.

A1 The objective function f(x) : Rn → R is twice continuously differentiable.

A2 The generated sequence {xk} remains in a bounded and closed domain of Rn.

A3 For all k, matrix sequence {Bk} is uniformly bounded, i.e., there is a positive scalar
κumh > 1 such that

∥Bk∥ ⩽ κumh − 1, k = 1, 2, · · · .

Obviously, the assumptions A1 and A2 together imply that there exist constants l, u, l ⩽
u and κufh ⩾ 1 such that

f(xk) ∈ [l, u],
∥∥∇2f(xk)

∥∥ ⩽ κufh. (3.1)

For the purpose of our analysis, we define

S = {k | xk+1 = xk + sk},

the set of successful iterations;

A = {k | g(x+
k ) is added to F},

the set of adding filter iterations;

D = {k | ρk ⩾ η1},

the set of sufficient descent iterations; and

N = {k | NONCONVEX = TRUE},

the set of nonconvex iterations. It is easy to show that A ⊆ S and

S ∩ N = D ∩N . (3.2)

First, we state a crucial property of the algorithm.

Lemma 3.1. According to the procedure of Algorithm 2.3, we have that, for all k ⩾ 0,

f(x0)− f(xk+1) ⩾
k∑

j=0
j∈S∩N

[f(xj)− f(xj+1)]. (3.3)
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Proof. We denote S ∩ N ∩ {1, 2, . . . , k} = {ki : i = 1, 2, . . . , t}. At iteration ki, we can get
fsup = f(xki+1). Then it ensures that

f(xki+1) ⩽ f(xki+1) < f(xki), f(xkt+1) ⩾ f(xk+1).

These inequalities give that

k∑
j=0

j∈S∩N

[f(xj)− f(xj+1)] =

t∑
i=1

[f(xki)− f(xki+1)]

⩽
t∑

i=1

[f(xki)− f(xki+1)]

⩽ f(x0)− f(xk+1),

which completes the proof.

In trust-region methods, the solution of the subproblem (2.2) provides, at iteration k, a
sufficient decrease on the model, which plays an important role in the convergence analysis.

Lemma 3.2. Let sk be the solution of the trust-region subproblem (2.2), then there is a
scalar κmdc ∈ (0, 1), such that

mk(xk)−mk(xk + sk) ⩾ κmdc∥gk∥min{∥gk∥/βk,∆k}, (3.4)

where βk = 1 + ∥Bk∥.

Proof. See the proof of Theorem 6.3.1 in [5] and Lemma 6.1.5 in [30].

Similar to Theorem 6.4.1 in [5] and Lemma 6.1.6 in [30], from above lemmas, we can
obtain

|f(xk + sk)−mk(xk + sk)| ⩽ κubh∆
2
k (3.5)

and
|f(xk−1)−mk(xk−1)| ⩽ κubh∆

2
k−1, (3.6)

where
κubh ≜ max{κufh, κumh}. (3.7)

Lemma 3.3. Let assumptions A1–A3 hold. Moreover, suppose that gk−1 ̸= 0. If the trust
region radius ∆k−1 satisfies

∆k−1 ⩽ min{1− η, 1− η2,
1− η2
3− 2η2

}κmdc

κubh
∥gk−1∥ , (3.8)

then ρk−1 ⩾ η and
∆k ⩾ ∆k−1. (3.9)

Proof. Observe, from Algorithm 2.3, that η and η2 lie in the interval (0, 1), which implies
that

1− η < 1, 1− η2 < 1,
1− η2
3− 2η2

< 1. (3.10)

The conditions (3.8), (3.10), (3.7), and κmdc ∈ (0, 1) imply that

∆k−1 ⩽ ∥gk−1∥
κubh

⩽ ∥gk−1∥
κumh

. (3.11)
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As a consequence, we apply (3.4), (3.6), (3.11) and (3.8) to deduce that

|ρk−1 − 1| =

∣∣∣∣ f(xk−1)− f(xk)

mk−1(xk−1)−mk−1(xk)
− 1

∣∣∣∣
=

∣∣∣∣ mk−1(xk)− f(xk)

mk−1(xk−1)−mk−1(xk)

∣∣∣∣
⩽

κubh∆
2
k−1

κmdc ∥gk−1∥min{∥gk−1∥
κumh

, ∆k−1}

=
κubh∆k−1

κmdc ∥gk−1∥
⩽ 1− η. (3.12)

This inequality immediately gives ρk−1 ⩾ η. So the (k − 1)th iteration should be successful
and xk = xk−1 + sk−1 ̸= xk−1.

Now, by using the similar derivation in [1, 5, 30], we get that ∆k−1 satisfies (3.8) and
further that |ρ̃k − 1| ⩽ 1 − η2. Moreover, (3.12) also gives |ρk−1 − 1| ⩽ 1 − η2. Thus we
obtain

|ρ̂k − 1| = |λρ̃k + (1− λ)ρk−1 − 1| ⩽ λ |ρ̃k − 1|+ (1− λ) |ρk−1 − 1| ⩽ 1− η2.

Therefore ρ̂k ⩾ η2, and (2.8) ensures that (3.9) holds.

Now we prove the finite termination of the sequence of the iterates when there are only
finitely many successful iterations.

Theorem 3.4. Let the assumptions A1–A3 and the sufficient decrease condition (3.4) hold.
Suppose that there are only finitely many successful iterations, i.e., |S| < +∞. Then the
algorithm terminates in Step 1 with, for some iteration k, xk = x∗ and ∇f(x∗) = 0.

Proof. Obviously, when |S| < +∞, there are two cases according to the mechanism of the
algorithm:

(i) For some k, ∇f(xk) = 0. So the algorithm terminates in finitely many iterations with
the first-order critical point x∗ = xk;

(ii) There exist infinitely many unsuccessful iterations.

We only need to prove that the case (ii) does not happen. For obtaining a contradiction, we
assume that k0 is the index of the last successful iterate and the algorithm proceeds with

xk0+1 = xk0+j and ∥∇f(xk0+j)∥ = ε > 0, for all j ⩾ 1. (3.13)

This implies that

lim
j→∞

∆k+j = 0 (3.14)

since the trust region radius decreases at unsuccessful iteration. However, because
∥∇f(xk0+j)∥ = ε > 0, by using Lemma 3.4 in [16], we have that (3.14) is impossible and we
deduce a contradiction to (3.13). Thus we confirm that the case (ii) does not happen and
the algorithm must terminate at some iterate xk = x∗.
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Now we are in a position to establish the main convergence property of the algorithm
when there are infinitely many successful iterations, i.e., |S| = +∞. In this situation, we
first consider that there are infinitely many gradients added to the filter F in the course of
the algorithm, and then consider there are finitely many gradients added to the filter.

Theorem 3.5. Suppose that A1–A3 and (3.4) hold, and that |A| = |S| = +∞. Then we
have

lim inf
k→∞

∥gk∥ = 0. (3.15)

Proof. By contradiction. We assume that

∥gk∥ ⩾ κlbg (3.16)

for all k large enough and for some κlbg > 0, and we define A = {ki} .
The assumption (3.16) and Theorem 3.5 in [16] imply that |S ∩ N | is finite and therefore

that the filter is no longer reset to the empty set for k sufficiently large. Moreover, since the
assumptions A1 and A2 imply that the sequence of gradients {g(xk)} remains in a bounded
and closed domain of Rn, there must exist a subsequence {kl} ⊂ {ki + 1} such that

lim
l→∞

g(xkl
) = g∞ with ∥g∞∥ ⩾ κlbg. (3.17)

By the definition of {kl}, xkl
is acceptable for the filter F in each iteration kl − 1. This

implies that for each l sufficiently large, there exists an index jl ∈ {1, 2, . . . , n} such that

|gjl(xkl
)| −

∣∣gjl(xkl−1
)
∣∣ < −γgΦ(F) (3.18)

since the filter is not reset for l large enough. From (3.16) and the definition of Φ(F), we
can say that Φ(F) ⩾ κlbg. Hence we deduce from (3.18) that

|gjl(xkl
)| −

∣∣gjl(xkl−1
)
∣∣ < −γgκlbg

for all l sufficiently large. But the left-hand side of this inequality tends to zero when l tends
to infinity because of (3.17), which yields a contradiction.

Theorem 3.6. Suppose that the assumptions A1–A3 and (3.4) hold and that |S| = +∞ but
|A| < +∞. Then (3.15) holds.

Proof. The proof is similar to that of Theorem 3.8 in [16].

4 Numerical Experiments

In this section, we consider to evaluate the performance of Algorithm 2.3 implemented in
Fortran 95. The numerical results are obtained by running our algorithm on the set of 156
unconstrained optimization problems from the CUTEr library [2, 15]. The names of the
problems with their dimensions are detailed in Table 1. For the problems whose dimension
may be adjusted, we choose a reasonably small value in order not to overload our computing
environment. In each case, the starting points are the standard ones provided by the CUTEr
library. All tests are performed in double precision on Dell computer (Intel Core2 Duo,
2.93GHz, 2G RAM) under Fedora 8 Linux and the Intel Fortran compiler (version 10.1.018)
with default options.

We would like to compare our algorithm MFRTR with some variants of trust-region
algorithms described in the following:
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Table 1: The 156 test problems and their dimensions.
Problem n Problem n Problem n
AKIVA 2 EIGENBLS 110 OSBORNEA 5
ALLINITU 4 EIGENCLS 462 OSBORNEB 11
ARGLINA 200 ENGVAL1 100 OSCIPATH 15
ARGLINB 200 ENGVAL2 3 PALMER1C 8
ARGLINC 200 ERRINROS 50 PALMER1D 7
ARWHEAD 100 EXPFIT 2 PALMER2C 8
BARD 3 EXTROSNB 5 PALMER3C 8
BDQRTIC 100 FLETCBV2 100 PALMER4C 8
BEALE 2 FLETCBV3 100 PALMER5C 6
BIGGS6 6 FLETCHBV 100 PALMER6C 8
BOX 100 FLETCHCR 100 PALMER7C 8
BOX3 3 FMINSRF2 64 PALMER8C 8
BRKMCC 2 FMINSURF 121 PENALTY1 10
BROWNAL 200 FREUROTH 100 PENALTY2 10
BROWNBS 2 GENHUMPS 10 PENALTY3 50
BROWNDEN 4 GENROSE 100 PFIT1LS 3
BROYDN7D 100 GROWTHLS 3 PFIT2LS 3
BRYBND 100 GULF 3 PFIT3LS 3
CHAINWOO 100 HAIRY 2 PFIT4LS 3
CHNROSNB 50 HATFLDD 3 POWELLSG 4
CLIFF 2 HATFLDE 3 POWER 75
COSINE 100 HATFLDFL 3 QUARTC 25
CRAGGLVY 100 HEART6LS 6 ROSENBR 2
CUBE 2 HEART8LS 8 S308 2
CURLY10 100 HELIX 3 SBRYBND 50
CURLY20 100 HILBERTA 2 SCHMVETT 100
CURLY30 100 HILBERTB 10 SCOSINE 100
DECONVU 61 HIMMELBB 2 SCURLY10 10
DENSCHNA 2 HIMMELBF 4 SCURLY20 100
DENSCHNB 2 HIMMELBG 2 SCURLY30 100
DENSCHNC 2 HIMMELBH 2 SENSORS 100
DENSCHND 3 HUMPS 2 SINEVAL 2
DENSCHNE 3 HYDC20LS 99 SINQUAD 100
DENSCHNF 2 JENSMP 2 SISSER 2
DIXMAANA 300 KOWOSB 4 SNAIL 2
DIXMAANB 90 LIARWHD 36 SPARSINE 100
DIXMAANC 90 LOGHAIRY 2 SPARSQUR 100
DIXMAAND 90 MANCINO 100 SPMSRTLS 100
DIXMAANE 300 MARATOSB 2 SROSENBR 100
DIXMAANF 300 MEXHAT 2 TOINTGOR 50
DIXMAANG 300 MEYER3 3 TOINTGSS 100
DIXMAANH 90 MODBEALE 10 TOINTPSP 50
DIXMAANI 90 MOREBV 50 TOINTQOR 50
DIXMAANJ 300 MSQRTALS 100 TQUARTIC 100
DIXMAANK 15 MSQRTBLS 49 TRIDIA 30
DIXMAANL 90 NCB20 110 VARDIM 200
DIXON3DQ 100 NCB20B 21 VAREIGVL 50
DJTL 2 NONCVXU2 100 VIBRBEAM 8
DQDRTIC 100 NONCVXUN 100 WATSON 12
DQRTIC 50 NONDIA 30 WOODS 4
EDENSCH 36 NONDQUAR 100 YFITU 3
EIGENALS 110 NONMSQRT 49 ZANGWIL2 2



A MODIFIED FILTER RETROSPECTIVE TRUST REGION METHOD 751

FTR: This variant is the filter-trust-region algorithm proposed in [16] except that the
algorithmic flag “RESTRICT” is not used in our implementation for simplicity.

RTR: Retrospective trust-region algorithm proposed in [1].

BTR: Basic trust-region algorithm presented in Conn et al. [5], or Algorithm 6.1.1
proposed in Sun and Yuan [30].

To make the comparison as fair as possible, all these algorithms discussed above use the
parameters with η = 0.1, η1 = 0.1, η2 = 0.9, γ1 = 0.25, γ2 = 2, ∆0 = 1.0, and

γg = min{0.001, 1

2
√
n
}.

In addition, we choose

fsup = min{106 |f(x0)| , f(x0) + 1000}.

In particular, to justify the use of the weighted retrospective ratio (2.7), we set the weight
λ to be five different values, i.e.,

λ = 0, 0.25, 0.5, 0.75, and 1 (4.1)

in coding retrospective-type trust-region algorithms above. Since the exact Hessian matrix
of f(x) at iterate xk is used to construct the quadratic model (2.1), in this paper we mainly
consider the medium test problems. We approximately solve the trust-region subproblem
(2.2) by running the Fortran-90 module VF05 with the default options from the well-known
HSL Mathematical Software Library, which is the implementation of Generalized Lanczos
trust-region algorithm (GLTR) [14]. In the computational experiments, each algorithm is
stopped if

∥∇f(xk)∥ ⩽ 10−5,

or if the number of iterations exceeds 20000, or if the operation time exceeds 10 minutes.
In the latter two cases the algorithm is failed.

In numerical tests we choose iteration counts (iter) and number of gradient evaluations
(ng) required to satisfy the convergence test as two measures to make numerical comparison.
Efficiency and robustness comparisons are made by using the performance profiles proposed
by Dolan and Moré [8].

Now we are in a position to report our numerical results.

We consider the impact of varying λ. We compare five different algorithmic variants
of MFRTR by setting λ to be the five choices in (4.1). The performance profiles in terms
of iteration counts and number of gradient evaluations are plotted in Fig. 1 and Fig. 2,
respectively. It is not difficult to see in these figures that the algorithm with λ = 0.5
performs more efficient than the other cases.

Moreover, we compare the MFRTR algorithm using λ = 0.5 with other variants of
trust-region algorithms BTR, RTR and FTR described above. Fig. 3 and Fig. 4 give the
performance profiles for four algorithms in terms of the iteration counts and the number of
gradient evaluations. These figures show that the algorithm MFRTR outperforms the other
algorithms.
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Figure 1: Performance profile on the iteration counts for MFRTR with different λ
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Figure 2: Performance profile on the number of gradient evaluations for MFRTR with
different λ
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Figure 4: Performance profile in terms of the number of gradient evaluations
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5 Conclusions

In this paper we propose a modified retrospective trust region method via a convex combi-
nation of the retrospective ratio and the original updating ratio and via embedding a relaxed
filter strategy. Under the mild conditions, we prove the first-order convergence property of
our algorithm. Numerical experiments performed in the CUTEr library indicate that the
new algorithm is competitive to the traditional trust-region algorithm and some existing
variants. For the future research, we will extend this idea to constrained optimization and
nonsmooth optimization.
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